Engineering Design An Introduction 2nd Edition Karsnitz Test Bank

Full Download: http://alibabadownload.com/product/engineering-design-an-introduction-2nd-edition-karsnitz-test-bank/

Chapter 2: The Process of Design

TRUE	FΑ	LSE
------	----	-----

1.	Polya's four problem	n-solvin	g steps are not	sequent	ial.
	ANS: F	PTS:	1	REF:	Polya's Four Steps to Effective Problem Solving
2.	Innovation can start	at the pi	roblem-defining	g phase	
	ANS: T	PTS:	1	REF:	Design Process
3.	A design brief encou	rages th	ninking about o	nly one	aspect of a problem before attempting a solution.
	ANS: F	PTS:	1	REF:	Design Process
4.	A proposal is a full-s form, fit, and function		-	_	gn intended to have complete, or almost complete,
	ANS: F	PTS:	1	REF:	Design Process
5.	Clearly defining limit	itations	accurately desc	cribes, a	nd effectively solves, problems.
	ANS: T	PTS:	1	REF:	Design Limitations
MUL	TIPLE CHOICE				
1.	A(n) process le solution.	ets the d	esigner jump b	ackwaro	d and forward to more effectively develop a
	a. ordered b. sequential			c. d.	Polya nonsequential
	ANS: D	PTS:	1	REF:	Polya's Four Steps to Effective Problem Solving
2.	Throughout the designation a. profit b. iteration	gn proce	ess, managing p	c.	will drive the team's most important decisions. risk order
	ANS: C	PTS:	1	REF:	Polya's Four Steps to Effective Problem Solving
3.	The Robotics Oprofessional enginee a. FIRST b. DARPA			c.	students real-world experience working with Polya IBot
	ANS: A	PTS:	1	REF:	Design Process
4.	Once the problem is a. evaluation b. brainstorming	well-de	fined, the desig	gn team c. d.	ϵ
	ANS: B	PTS:	1	REF:	Design Process

5.	a. Constraints b. Criteria	or standa	ards by which s	c.	ng may be judged or decided. Assessments Necessities
	ANS: B	PTS:	1	REF:	Design Process
6.				to ensu	zing benefits and risks, understanding the trade-offs, are that the desired positive outcomes outweigh any Order Brainstorming
	ANS: A	PTS:	1	REF:	Design Process
7.	The documentation, a. conventional arc b. computer-actuate	hitectur		c.	consist of design (CAD) drawings. computer-aided conventional assessment
	ANS: C	PTS:	1	REF:	Design Process
8.	There are two generals. computer b. sequential	al catego	ories of product		mass production and (ii) production. refined custom
	ANS: D	PTS:	1	REF:	Design Process
9.	a. Semiconductor b. Carbon dioxide	e heart o	of fiber-optics.	c. d.	Metal Water-based
	ANS: A	PTS:	1	REF:	Design Process
10.	Having a project but referred to as a	-	61,575 or only b	eing gi	ven a one-half bottle of glue would typically be
	a. specification b. criterion				constraint requirement
	ANS: C	PTS:	1	REF:	Design Limitations
COM	PLETION				
1.		is	the act of repea	ting a so	et of procedures until a specified condition is met.
	ANS: Iteration				
	PTS: 1	REF:	Polya's Four S	Steps to	Effective Problem Solving
2.	The DARPA Grand Challenge is a prize competition for (driverless and completely self-controlled) vehicles.				
	ANS: autonomous				
	PTS: 1	REF:	Polya's Four S	Steps to	Effective Problem Solving

3.	A design is a written plan that identifies a problem to be solved and its					
	criteria and constraints.					
	ANS: brief					
	PTS: 1 REF: Design Process					
	115. 1 KEF. Design Flocess					
4.	The design should include documents that specify all (i) materials, (ii)					
	dimensions, and (iii) processes used in the construction.					
	ANS: proposal					
	PTS: 1 REF: Design Process					
	T. I. Besign Flocess					
5.	of a design, or design project, can also be referred to as criteria, constraints,					
	specifications, or requirements.					
	ANIC III ' A					
	ANS: Limitations					
	PTS: 1 REF: Design Limitations					
CHOD	RT ANSWER					
SHOP	AT ANSWER					
1.	What are Polya's steps to problem solving?					
	ANS:					
	One of the most famous writers on problem solving was George Polya, a mathematician dedicated to					
	improving mathematics education. In 1945, he wrote the book How to Solve It to summarize his work					
	on problem solving. Polya's four steps to problem solving are: 1. Understand the problem					
	2. Make a plan					
	3. Carry out the plan					
	4. Look back on the plan; how could it have been better?					
	PTS: 1 REF: Polya's Four Steps to Effective Problem Solving					
2.	What role does the leader of a brainstorming session have?					
2.	What fole does the leader of a brainstoffling session have.					
	ANS:					
	The responsibilities of the leader may include setting up the time and place of the meeting, ensuring					
	attendance, and constructing an agenda for the team to follow. An agenda creates order in the meeting					
	and begins the brainstorming process by validating each topic to be discussed.					
	PTS: 1 REF: Design Process					
	115. 1 16. 1 2 to g. 1100000					
3.	What is the importance of an engineering notebook?					
	ANG					
	ANS:					

Engineering Design An Introduction 2nd Edition Karsnitz Test Bank

Full Download: http://alibabadownload.com/product/engineering-design-an-introduction-2nd-edition-karsnitz-test-bank/

An engineering notebook is a very important tool. Your notebook is the source for collecting important information, making it valuable to the designer and the whole project team. An engineering notebook also serves as clear evidence of exact dates of innovative, and potentially patentable, ideas. Engineering notebooks, used frequently in industry, represent legally recognized "hardcopy" evidence of innovation, which can be a deciding factor for both granting a patent and successfully defending a patent.

PTS: 1 REF: Design Process

4. What are some of the most important considerations for the test and evaluation phase?

ANS:

A few recommendations follow:

Make a list of those attributes that are important to test.

Design a set of experiments that address the above list. In this set of experiments consider testing in two types of conditions: (i) under controlled conditions and (ii) in a working environment.

Gather and record your test data. Analyze your data and compare it to the criteria and specification for the design.

Conclude by writing a complete summary of your testing. The summary should identify those major areas of concern that may be the focus of any redesign work.

PTS: 1 REF: Design Process

5. Construct a list that a design team can consult to ensure that they accounted for all of the important limitations for a project.

ANS:

Possible Limitations:

- 1. Resources
- 2. Human resources
- 3. Materials and equipment
- 4. Time
- 5. Economic factors (all costs, such as materials, labor, fees, etc.)
- 6. Physical factors
- 7. Aesthetics
- 8. Marketability
- 9. Reliability
- 10. Manufacturability
- 11. Safety (human, animal, and environmental in general)
- 12. Ethics

PTS: 1 REF: Design Limitations