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Preface 
 

This Instructor’s Manual with Sample Tests is designed 
to accompany Elementary Linear Algebra, 5th edition, by 
Stephen Andrilli and David Hecker. 
 
This manual contains answers for all the computational 
exercises in the textbook and detailed solutions for 
virtually all of the problems that ask students for proofs.  
The exceptions are typically those exercises that ask 
students to verify a particular computation, or that ask for 
a proof for which detailed hints have already been 
supplied in the textbook.  A few proofs that are extremely 
trivial in nature have also been omitted. 
 
This manual also contains sample Chapter Tests for the 
material in Chapters 1 through 7, as well as answer keys 
for these tests. 
 
Additional information regarding the textbook, this 
manual, the Student Solutions Manual, and linear algebra 
in general can be found at the web site for the textbook, 
where you found this manual. 
 
Thank you for using our textbook. 
 
 
         
 Stephen Andrilli 
         
 David Hecker 
         
 August 2015 
  
 



Answers to Exercises Section 1.1

Answers to Exercises

Chapter 1

Section 1.1

(1) (a) [9−4], distance = √97
(b) [−6 1 1], distance = √38

(c) [−1−1 2−3−4], distance = √31

(2) (a) (3 4 2) (see Figure 1)

(b) (0 5 3) (see Figure 2)

(c) (1−2 0) (see Figure 3)
(d) (3 0 0) (see Figure 4)

(3) (a) (7−13) (b) (6 4−8) (c) (−1 3−1 4 6)

(4) (a)
¡
16
3 −133  8

¢
(b) (− 203 −1−6−1)

(5) (a)
h

3√
70
− 5√

70
 6√

70

i
; shorter, since length of original vector is  1

(b)
£−67  27  0−37¤; shorter, since length of original vector is  1

(c) [06−08]; neither, since given vector is a unit vector
(d)

h
1√
11
− 2√

11
− 1√

11
 1√

11
 2√

11

i
; longer, since length of original vector =

√
11
5  1

(6) (a) Parallel (b) Parallel (c) Not parallel (d) Not parallel

(7) (a) [−6 12 15]
(b) [10 6−12]

(c) [−7 1 11]
(d) [−9−2 4]

(e) [−10−32−1]
(f) [−35 3 20]

(8) (a) x+ y = [1 1], x− y = [−3 9], y− x = [3−9] (see Figure 5)
(b) x+ y = [3−5], x− y = [17 1], y− x = [−17−1] (see Figure 6)
(c) x+ y = [1 8−5], x− y = [3 2−1], y − x = [−3−2 1] (see Figure 7)
(d) x+ y = [−2−4 4], x− y = [4 0 6], y − x = [−4 0−6] (see Figure 8)

(9) With  = (7−3 6),  = (11−5 3), and  = (10−7 8), the length of side  = length of side 
=
√
29. The triangle is isosceles, but not equilateral, since the length of side  is

√
30.

(10) (a) [10−10] (b) [−5√3−15] (c) [0 0] = 0

(11) See Figures 1.7 and 1.8 in Section 1.1 of the textbook.
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Answers to Exercises Section 1.1

(12) See Figure 9. Both represent the same diagonal vector by the associative law of addition for vectors.

Figure 9: x+ (y+ z)

(13) [05− 06√2−04√2] ≈ [−03485−05657]
(14) Net velocity = [−2√2−3 + 2√2], resultant speed ≈ 283 km/hr

(15) Net velocity =
h
− 3
√
2

2  8−3
√
2

2

i
; speed ≈ 283 km/hr

(16) [−8−√2−√2]
(17) Acceleration = 1

20 [
12
13 −34465  39265 ] ≈ [00462−02646 03015]

(18) Acceleration =
£
13
2  0

4
3

¤
(19) 180√

14
[−2 3 1] ≈ [−9622 14432 4811]

(20) a = [ −

1+
√
3
 

1+
√
3
]; b = [ 

1+
√
3
 

√
3

1+
√
3
]

(21) Let a = [1     ].

(a) kak2 = 21 + · · ·+ 2 is a sum of squares, which must be nonnegative. But then ||a|| ≥ 0 because
the square root of a nonnegative real number is a nonnegative real number.

(b) If ||a|| = 0, then kak2 = 21 + · · ·+ 2 = 0, which is only possible if every  = 0. Thus, a = 0.

(22) In each part, suppose that x = [1     ], y = [1     ], and z = [1     ].

(a) x+ (y+ z) = [1     ] + [(1 + 1)     ( + )] = [(1 + (1 + 1))     ( + ( + ))]
= [((1 + 1) + 1)     (( + ) + )] = [(1 + 1)     ( + )] + [1     ] = (x+ y) + z

(b) x+ (−x) = [1     ] + [−1    −] = [(1 + (−1))     ( + (−))] = [0     0]. Also,
(−x) + x = x+ (−x) (by part (1) of Theorem 1.3) = 0, by the above.

(c) (x+y) = ([(1+1)     (+)]) = [(1+1)     (+)] = [(1+1)     (+)] =
[1     ] + [1     ] = x+ y

Copyright c° 2016 Elsevier Ltd. All rights reserved. 4



Answers to Exercises Section 1.2

(d) ()x = [(()1)     (())] = [((1))     (())] = [(1)     ()]
= ([1     ]) = (x)

(23) If  = 0, done. Otherwise, (1

)(x) = 1


(0) =⇒ ( 1


· )x = 0 (by part (7) of Theorem 1.3) =⇒ x = 0

Thus either  = 0 or x = 0.

(24) 1x = 2x =⇒ 1x − 2x = 0 =⇒ (1 − 2)x = 0 =⇒ (1 − 2) = 0 or x = 0 by Theorem 1.4. But

since 1 6= 2 (1 − 2) 6= 0 Hence, x = 0

(25) (a) F (b) T (c) T (d) F (e) T (f) F (g) F (h) F

Section 1.2

(1) (a) arccos(− 27
5
√
37
), or about 1526◦, or 266 radians

(b) arccos( 46√
74
√
29
), or about 68◦, or 012 radians

(c) arccos(0), which is 90◦, or 
2 radians

(d) arccos(− 435√
2175
√
87
) = arccos(−1), which is 180◦, or  radians (since x = −5y)

(2) The vector from 1 to 2 is [2−7−3], and the vector from 1 to 3 is [5 4−6]. These vectors are
orthogonal.

(3) (a) [ ] · [− ] = (−) +  = 0 Similarly, [−] · [ ] = 0
(b) A vector in the direction of the line  +  +  = 0 is [−], while a vector in the direction of

−  +  = 0 is [ ].

(4) (a) 15 joules (b) 1040
√
5

9 ≈ 2584 joules (c) −189
√
15

5 ≈ −1464 joules

(5) Note that y·z is a scalar, so x·(y·z) is not defined.
(6) In all parts, let x = [1 2     ]  y = [1 2     ]  and z = [1 2     ] 

(a) x · y = [1 2     ] · [1 2     ] = 11 + · · ·+  = 11 + · · ·+ 
= [1 2     ] · [1 2     ] = y · x

(b) x · x = [1 2     ] · [1 2     ] = 11 + · · ·+  = 21 + · · · + 2. Now 21 + · · · + 2
is a sum of squares, each of which must be nonnegative. Hence, the sum is also nonnegative, and

so its square root is defined. Thus, 0 ≤ x · x = 21 + · · ·+ 2 =
³p

21 + · · ·+ 2

´2
= kxk2.

(c) Suppose x ·x = 0. From part (b), 0 = x ·x = 21+ · · ·+ 2 ≥ 2 , for each , since all terms in the
sum are nonnegative. Hence, 0 ≥ 2 for each . But 2 ≥ 0, because it is a square. Hence each
 = 0. Therefore, x = 0.

(d) (x · y) =  ([1 2     ] · [1 2     ]) =  (11 + · · ·+ )
= 11 + · · ·+  = [1 2     ] · [1 2     ] = (x) · y.

Next, (x · y) = (y · x) (by part (a)) = (y) · x (from above) = x · (y), by part (a)

Copyright c° 2016 Elsevier Ltd. All rights reserved. 5



Answers to Exercises Section 1.2

(e) (x+ y) · z = ([1 2     ] + [1 2     ]) · [1 2     ]
= [1 + 1 2 + 2      + ] · [1 2     ]
= (1 + 1)1 + (2 + 2)2 + · · ·+ ( + )

= (11 + 22 + · · ·+ ) + (11 + 22 + · · ·+ )
Also, (x · z) + (y · z) = ([1 2     ] · [1 2     ]) + ([1 2     ] · [1 2     ])

= (11 + 22 + · · ·+ ) + (11 + 22 + · · ·+ ).

Hence, (x+ y) · z = (x · z) + (y · z).
(7) No; consider x = [1 0], y = [0 1], and z = [1 1].

(8) A method similar to the first part of the proof of Lemma 1.6 in the textbook yields:

ka− bk2 ≥ 0 =⇒ (a · a)− (b · a)− (a · b) + (b · b) ≥ 0 =⇒ 1− 2(a · b) + 1 ≥ 0 =⇒ a · b ≤ 1.
(9) Note that (x+ y)·(x− y) = (x·x) + (y·x)− (x·y)− (y·y) = kxk2 − kyk2. Hence, (x+ y)·(x− y) = 0

implies kxk2 = kyk2, which means kxk = kyk (since both are nonnegative)
(10) Note that kx+ yk2 = kxk2 + 2(x·y) + kyk2, while kx− yk2 = kxk2 − 2(x·y) + kyk2.

Hence, 12(kx+ yk2 + kx− yk2) = 1
2(2kxk2 + 2kyk2) = kxk2 + kyk2

(11) (a) From the first equation in the solution to Exercise 10 above, kx + yk2 = kxk2 + kyk2 implies
2(x·y) = 0 which means x·y = 0.

(b) From the first equation in the solution to Exercise 10 above, x·y = 0 implies kx+yk2 = kxk2+kyk2.
(12) Note that kx+ y+ zk2 = k(x+ y) + zk2

= kx+ yk2 + 2((x+ y)·z) + kzk2
= kxk2 + 2(x·y) + kyk2 + 2(x·z) + 2(y·z) + kzk2
= kxk2 + kyk2 + kzk2 since x, y, z are mutually orthogonal.

(13) From the first two equations in the solution for Exercise 10 above,
1
4(kx+ yk2 − kx− yk2) = 1

4(4(x·y)) = x·y.
(14) Since x is orthogonal to both y and z, we have x·(1y+ 2z) = 1(x·y) + 2(x·z) = 1(0) + 2(0) = 0

(15) Suppose y = x, for some  6= 0 Then, x · y = x·(x) =  (x · x) =  kxk2 = kxk ( kxk) = kxk (±|| kxk)
= ±kxk kxk = ±kxk kyk 

(16) (a) Length =
√
3 (b) angle = arccos(

√
3
3 ) ≈ 547◦, or 0955 radians

(17) (a) projab = [−35 − 3
10 −32 ];b− projab = [85  4310 −32 ]; (b− projab) · a = 0

(b) projab = [−65  1 25 ]; b− projab = [−145 −4 85 ]; (b− projab) · a = 0
(c) projab = [

1
6  0−16  13 ]; b− projab = [176 −1 16 −43 ]; (b− projab) · a = 0

(d) projab = [−1 32 −2−32 ]; b− projab = [6−12 −6 72 ]; (b− projab) · a = 0
(18) (a) 0 (zero vector). The dropped perpendicular travels along b to the common initial point of a and

b.

(b) The vector b. The terminal point of b lies on the line through a, so the dropped perpendicular
has length zero.

Copyright c° 2016 Elsevier Ltd. All rights reserved. 6



Answers to Exercises Section 1.2

(19) i, j, k

(20) (a) Parallel: [2029 −3029  4029 ], orthogonal: [−19429  8829  16329 ]
(b) Parallel: [−12  1− 1

2 ], orthogonal: [−112  1 152 ]
(c) Parallel: [6049 −4049  12049 ], orthogonal: [−35449  13849  22349 ]

(21) From the lower triangle in the figure, we have (projrx) + (projrx − x) = reflection of x (see Figure
10).

Figure 10: Reflection of a vector x through a line.

(22) For the case kxk ≤ kyk: | kxk− kyk | = kyk− kxk = kx+y+(−x)k− kxk ≤ kx+yk+ k−xk− kxk
(by the Triangle Inequality) = kx+ yk+ kxk− kxk = kx+ yk.
The case kxk ≥ kyk is done similarly, with the roles of x and y reversed.

(23) (a) Note that projxy = [
8
5 −65  2] = 2

5x and y− projxy = [75 −245 −4] is orthogonal to x.
Let w = y− projxy Then since y = projxy + (y− projxy) we have y = 2

5x+w where w is

orthogonal to x.

(b) Let  = (x·y)(kxk2) (so that x = projxy), and let w = y − projxy which is orthogonal to x
by the argument before Theorem 1.11. Then y = x+w, where w is orthogonal to x.

(c) Suppose x+w = x+v. Then (−)x = w−v, and (−)x·(w−v) = (w−v)·(w−v) = kw−vk2.
But (− )x·(w−v) = (− )(x·w)− (− )(x·v) = 0, since v and w are orthogonal to x. Hence
kw− vk2 = 0 =⇒ w− v = 0 =⇒ w = v. Then, x = x =⇒  = , from Theorem 1.4, since x is
nonzero.

(24) If  is the angle between x and y, and  is the angle between projxy and projyx, then

cos =
projxy · projyx
kprojxyk

°°projyx°° =
³
x·y
kxk2

´
x ·

³
y·x
kyk2

´
y°°°³ x·y

kxk2
´
x
°°° °°°³ y·x

kyk2
´
y
°°° =

³
x·y
kxk2

´³
y·x
kyk2

´
(x · y)³

|x·y|
kxk2

´
kxk

³
|y·x|
kyk2

´
kyk

=

³
(x·y)3

kxk2kyk2
´

³
(x·y)2
kxkkyk

´ =
(x · y)
kxk kyk = cos 

Hence  = .

Copyright c° 2016 Elsevier Ltd. All rights reserved. 7
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(25) (a) T (b) T (c) F (d) F (e) T (f) F

Section 1.3

(1) (a) We have k4x+ 7yk ≤ k4xk+ k7yk = 4kxk+ 7kyk ≤ 7kxk+ 7kyk = 7(kxk+ kyk).
(b) Let  = max{|| ||}. Then kx± yk ≤ (kxk+ kyk).

(2) (a) Note that 6 − 5 = 3(2( − 1)) + 1. Let  = 2( − 1).
(b) Consider the number 4.

(3) Note that since x 6= 0 and y 6= 0, projxy = 0 iff (x·y)(kxk2) = 0 iff x·y = 0 iff y·x = 0 iff
(y·x)(kyk2) = 0 iff projyx = 0.

(4) If y = x (for   0), then kx+yk = kx+ xk = (1+ )kxk = kxk + kxk = kxk+ kxk = kxk+ kyk.
On the other hand, if kx + yk = kxk + kyk, then kx + yk2 = (kxk + kyk)2. Now kx + yk2 =
(x + y)·(x + y) = kxk2 + 2(x·y) + kyk2, while (kxk + kyk)2 = kxk2 + 2kxkkyk + kyk2. Hence

x·y = kxkkyk. By Result 4, y = x, for some   0.

(5) (a) Suppose y 6= 0. We must show that x is not orthogonal to y. Now kx + yk2 = kxk2, so
kxk2 + 2(x·y) + kyk2 = kxk2. Hence kyk2 = −2(x·y). Since y 6= 0, we have kyk2 6= 0, and so
x·y 6= 0.

(b) Suppose x is not a unit vector. We must show that x·y 6= 1.
Now projxy = x =⇒ ((x·y)(kxk2))x = 1x =⇒ (x·y)(kxk2) = 1 =⇒ x·y = kxk2.
But then kxk 6= 1 =⇒ kxk2 6= 1 =⇒ x·y 6= 1.

(6) (a) Consider x = [1 0 0] and y = [1 1 0].

(b) If x 6= y, then x ·y 6= kxk2.
(c) Yes

(7) See the answer for Exercise 11(a) in Section 1.2.

(8) If kxk  kyk, then kxk2  kyk2, and so kxk2 − kyk2  0 But then (x+ y)·(x−y)  0 and so the
cosine of the angle between (x+ y) and (x−y) is positive. Thus the angle between (x+ y) and (x−y)
is acute.

(9) (a) Contrapositive: If x = 0, then x is not a unit vector.
Converse: If x is nonzero, then x is a unit vector.
Inverse: If x is not a unit vector, then x = 0.

(b) (Let x and y be nonzero vectors.)
Contrapositive: If y 6= projxy, then x is not parallel to y.
Converse: If y = projxy, then x k y.
Inverse: If x is not parallel to y, then y 6= projxy.

(c) (Let x, y be nonzero vectors.)
Contrapositive: If projyx 6= 0, then projxy 6= 0.
Converse: If projyx = 0, then projxy = 0.
Inverse: If projxy 6= 0, then projyx 6= 0.

(10) (a) Converse: Let x and y be nonzero vectors in R. If kx+ yk  kyk, then x·y ≥ 0.

Copyright c° 2016 Elsevier Ltd. All rights reserved. 8
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(b) Let x = [2−1] and y = [0 2].
(11) (a) Converse: Let x, y, and z be vectors in R. If y = z, then x·y = x·z. The converse is obviously

true, but the original statement is false in general, with counterexample x = [1 1], y = [1−1],
and z = [−1 1].

(b) Converse: Let x and y be vectors in R. If kx + yk ≥ kyk, then x ·y = 0. The original

statement is true, but the converse is false in general. Proof of the original statement follows from

kx+ yk2 = (x+ y) · (x+ y) = kxk2 + 2(x ·y) + kyk2 = kxk2 + kyk2 ≥ kyk2.
Counterexample to converse: let x = [1 0], y = [1 1].

(c) Converse: Let x, y be vectors in R, with   1. If x = 0 or y = 0, then x·y = 0. The converse
is obviously true, but the original statement is false in general, with counterexample x = [1−1]
and y = [1 1].

(12) Suppose x ⊥ y and  is odd. Then x · y = 0. Now x · y = P
=1 . But each product  equals

either 1 or −1. If exactly  of these products equal 1, then x · y =  − ( − ) = − + 2. Hence
−+ 2 = 0, and so  = 2, contradicting  odd.

(13) Suppose that [6 5], [−2 3], and [1 2] are mutually orthogonal, with [1 2] 6= [0 0]. Then 61+52 =
0 and −21 + 32 = 0. Multiplying the latter equation by 3, we obtain −61 + 92 = 0 Adding this
to the first equation gives 142 = 0, which means 2 = 0, and hence 1 = 0. Thus, [1 2] = [0 0], a
contradiction.

(14) Assume that ||x|| = 1. We know that ||projxy|| 6= x·y However, projxy =
¡
(x·y)||x||2¢x so

||projxy|| = |x·y|||x||2 = |x·y| But x · y  0 because the angle between x and y is acute, so
||projxy|| = x·y, a contradiction. Thus, ||x|| 6= 1

(15) Base Step ( = 1): x1 = x1.
Inductive Step: Assume x1 + x2 + · · ·+ x−1 + x = x + x−1 + · · ·+ x2 + x1, for some  ≥ 1
Prove: x1 + x2 + · · ·+ x−1 + x + x+1 = x+1+ x + x−1 + · · ·+ x2 + x1
But,

x1 + x2 + · · ·+ x−1 + x + x+1 = (x1 + x2 + · · ·+ x−1 + x) + x+1
= x+1 + (x1 + x2 + · · ·+ x−1 + x)
= x+1 + (x + x−1 + · · ·+ x2 + x1)

(by the inductive hypothesis)

= x+1 + x + x−1 + · · ·+ x2 + x1

(16) Base Step ( = 1): kx1k ≤ kx1k.
Inductive Step: Assume kx1 + · · ·+ xk ≤ kx1k+ · · ·+ kxk, for some  ≥ 1.
Prove: kx1 + · · ·+ x + x+1k ≤ kx1k+ · · ·+ kxk+ kx+1k.
But, by the Triangle Inequality,

k(x1 + · · ·+ x) + x+1k ≤ kx1 + · · ·+ xk+ kx+1k
≤ kx1k+ · · ·+ kxk+ kx+1k

by the inductive hypothesis.

(17) Base Step ( = 1): kx1k2 = kx1k2.
Inductive Step: Assume kx1 + · · ·+ xk2 = kx1k2 + · · ·+ kxk2.

Copyright c° 2016 Elsevier Ltd. All rights reserved. 9



Answers to Exercises Section 1.3

Prove: kx1 + · · ·+ x + x+1k2 = kx1k2 + · · ·+ kxk2 + kx+1k2.
We have

k(x1 + · · ·+ x) + x+1k2 = kx1 + · · ·+ xk2 + 2((x1 + · · ·+ x)·x+1) + kx+1k2
= kx1 + · · ·+ xk2 + kx+1k2

(since x+1is orthogonal to all of x1    x)

= kx1k2 + · · ·+ kxk2 + kx+1k2

by the inductive hypothesis.

(18) Base Step ( = 1): We must show (1x1)·y ≤ |1| kyk.
But,

(1x1)·y ≤ |(1x1)·y| ≤ k1x1k kyk
(by the Cauchy-Schwarz Inequality)

= |1| kx1k kyk = |1| kyk

since x1 is a unit vector.
Inductive Step: Assume (1x1 + · · ·+ x)·y ≤ (|1|+ · · ·+ ||)kyk, for some  ≥ 1.
Prove: (1x1 + · · ·+ x + +1x+1)·y ≤ (|1|+ · · ·+ ||+ |+1|)kyk.
We have

((1x1 + · · ·+ x) + +1x+1)·y = (1x1 + · · ·+ x)·y+ (+1x+1)·y
≤ (|1|+ · · ·+ ||)kyk+ (+1x+1)·y

(by the inductive hypothesis)

≤ (|1|+ · · ·+ ||)kyk+ |+1| ||y||
(by an argument similar to the Base Step)

= (|1|+ · · ·+ ||+ |+1|)kyk

(19) Step 1 cannot be reversed, because  could equal ±(2 + 2).
Step 2 cannot be reversed, because 2 could equal 4 + 42 + .
Step 4 cannot be reversed, because in general  does not have to equal 2 + 2.
Step 6 cannot be reversed, since 


could equal 2+ .

All other steps remain true when reversed.

(20) (a) For every unit vector x in R3, x · [1−2 3] 6= 0.
(b) x 6= 0 and x·y ≤ 0, for some vectors x and y in R.
(c) x = 0 or kx+ yk 6= kyk, for all vectors x and y in R.
(d) There is some vector x ∈ R for which x·x ≤ 0.
(e) There is an x ∈ R3 such that for every nonzero y ∈ R3, x ·y 6= 0.
(f) For every x ∈ R4, there is some y ∈ R4 such that x·y 6= 0.

(21) (a) Contrapositive: If x 6= 0 and kx− yk ≤ kyk, then x ·y 6= 0.
Converse: If x = 0 or kx− yk  kyk, then x ·y = 0.
Inverse: If x ·y 6= 0, then x 6= 0 and kx− yk ≤ kyk.
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(b) Contrapositive: If kx− yk ≤ kyk, then either x = 0 or x·y 6= 0.
Converse: If kx− yk  kyk, then x 6= 0 and x·y = 0.
Inverse: If x = 0 or x·y 6= 0, then kx− yk ≤ kyk.

(22) Suppose x 6= 0. We must prove x·y 6= 0 for some vector y ∈ R. Let y = x.
(23) Let x = [1 1], y = [1−1].
(24) Let y = [1−2 2]. Then since x·y ≥ 0, Result 3 implies that kx+ yk  kyk = 3.

(25) (a) F (b) T (c) T (d) F (e) F (f) F (g) F (h) T (i) F

Section 1.4

(1) (a)

⎡⎣ 2 1 3
2 7 −5
9 0 −1

⎤⎦
(b) Impossible

(c)

⎡⎣ −16 8 12
0 20 −4
24 4 −8

⎤⎦
(d)

⎡⎣ −32 8 6
−8 2 14
0 6 −8

⎤⎦
(e) Impossible

(f)

⎡⎣ −7 0 8
−1 3 1
9 9 −5

⎤⎦

(g)

⎡⎣ −23 14 −9
−5 8 8
−9 −18 1

⎤⎦
(h) Impossible

(i)

⎡⎣ −1 1 12
−1 5 8
8 −3 −4

⎤⎦

(j)

⎡⎣ −1 1 12
−1 5 8
8 −3 −4

⎤⎦
(k)

∙ −12 8 −6
10 −8 26

¸
(l) Impossible

(m) Impossible

(n)

⎡⎣ 13 −6 2
3 −3 −5
3 5 1

⎤⎦
(2) Square: BCEFGHJKLMNPQ

Diagonal: BGN
Upper triangular: BGLN
Lower triangular: BGMNQ
Symmetric: BFGJNP
Skew-symmetric: H (but not ECK)

Transposes: A =

∙ −1 0 6
4 1 0

¸
, B = B, C =

∙ −1 −1
1 1

¸
, and so on

(3) (a)

⎡⎢⎢⎣
3 −12 5

2

− 1
2 2 1

5
2 1 2

⎤⎥⎥⎦+
⎡⎢⎢⎣

0 −12 3
2

1
2 0 4

− 3
2 −4 0

⎤⎥⎥⎦

(b)

⎡⎢⎢⎣
1 3

2 0

3
2 3 −1
0 −1 0

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0 −32 −4
3
2 0 0

4 0 0

⎤⎥⎥⎦

(c)

⎡⎢⎢⎣
2 0 0 0
0 5 0 0
0 0 −2 0
0 0 0 5

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0 3 4 −1
−3 0 −1 2
−4 1 0 0
1 −2 0 0

⎤⎥⎥⎦
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(d)

⎡⎢⎢⎣
−3 7 −2 −1
7 4 3 −6
−2 3 5 −8
−1 −6 −8 −5

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0 −4 7 −3
4 0 2 5
−7 −2 0 −6
3 −5 6 0

⎤⎥⎥⎦
(4) If A = B , then

¡
A
¢
=
¡
B
¢
, implying A = B, by part (1) of Theorem 1.13.

(5) (a) If A is an  ×  matrix, then A is  × . If A = A , then  = .

(b) If A is a diagonal matrix and if  6= , then  = 0 = .

(c) Follows directly from part (b), since I is diagonal.

(d) The matrix must be a square zero matrix; that is, O, for some .

(6) (a) If  6= , then  +  = 0 + 0 = 0.

(b) Use the fact that  +  =  + .

(7) Use induction on . Base Step ( = 1): Obvious. Inductive Step: Assume A1    A+1 and B =P
=1A are upper triangular. Prove that D =

P+1
=1 A is upper triangular. Let C = A+1. Then

D = B + C. Hence,  =  +  = 0 + 0 = 0 if    (by the inductive hypothesis). Hence D is

upper triangular.

(8) (a) Let B = A . Then  =  =  = . Let D = A. Then  =  =  = .

(b) Let B = A . Then  =  = − = −.
Let D = A. Then  =  = (−) = − = −.

(9) (a) Part (4): Let B = A+ (−A) (= (−A) +A, by part (1)). Then  =  + (−) = 0.
(b) Part (5): Let D = (A+B) and let E = A+ B. Then,  = ( + ) =  +  =  .

(c) Part (7): Let B = ()A and let E = (A). Then  = () = () =  .

(10) (a) Part (1): (A ) and A are both ×  matrices. The ( ) entry of (A ) = ( ) entry of A

= ( ) entry of A Thus, (A ) = A

(b) Part (2), Subtraction Case: (A −B) and A −B are both  × matrices. The ( ) entry
of (A−B) = ( ) entry of A−B = ( ) entry of A− () entry of B = ( ) entry of A −
() entry of B = ( ) entry of A −B  Thus, (A−B) = A −B 

(c) Part (3): (A) and (A ) are both × matrices. The ( ) entry of (A) = ( ) entry of
A = (( ) entry of A) = (( ) entry of A ) = ( ) entry of (A ) Thus, (A) = (A )

(11) Assume  6= 0. We must show A = O. But for all  , 1 ≤  ≤ , 1 ≤  ≤ ,  = 0 with  6= 0.
Hence, all  = 0.

(12) (a) S+V = 1
2(A+A

 ) + 1
2(A−A ) = 1

2(2A) = A;

S = ( 12(A+A
 )) = 1

2(A+A
 ) = 1

2 (A
 + (A ) ) = 1

2(A
 +A) = 1

2 (A+A
 ) = S;

V = ( 12(A−A )) = 1
2(A−A ) = 1

2(A
 − (A ) ) = 1

2(A
 −A) = −12(A−A ) = −V

(b) S1 −V1 = S2 −V2

(c) Follows immediately from part (b).

(d) Part (a) shows A can be decomposed as the sum of a symmetric matrix and a skew-symmetric

matrix, while parts (b) and (c) show that the decomposition for A is unique.
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(13) (a) Trace (B) = 1, trace (C) = 0, trace (E) = −6, trace (F) = 2, trace (G) = 18, trace (H) = 0,

trace (J) = 1, trace (K) = 4, trace (L) = 3, trace (M) = 0, trace (N) = 3, trace (P) = 0,
trace (Q) = 1

(b) Part (i): LetD = A+B. Then trace(D) =
P

=1  =
P

=1 +
P

=1  = trace(A)+trace(B).
Part (ii): Let B = A. Then trace(B) =

P
=1  =

P
=1  = 

P
=1  = (trace(A)).

Part (iii): LetB = A . Then trace(B) =
P

=1  =
P

=1  (since  =  for all )= trace(A).

(c) Not necessarily: consider the matrices L and N in Exercise 2. (Note: If  = 1, the statement is
true.)

(14) (a) F (b) T (c) F (d) T (e) T

Section 1.5

(1) (a) Impossible

(b)

⎡⎣ 34 −24
42 49
8 −22

⎤⎦
(c) Impossible

(d)

⎡⎣ 73 −34
77 −25
19 −14

⎤⎦

(e) [−38]

(f)

⎡⎣ −24 48 −16
3 −6 2

−12 24 −8

⎤⎦
(g) Impossible

(h) [56−8]
(i) Impossible

(j) Impossible

(k)

⎡⎣ 22 9 −6
9 73 18
2 −6 4

⎤⎦

(l)

⎡⎢⎢⎣
5 3 2 5
4 1 3 1
1 1 0 2
4 1 3 1

⎤⎥⎥⎦
(m) [226981]

(n)

⎡⎣ 146 5 −603
154 27 −560
38 −9 −193

⎤⎦ (o) Impossible

(2) (a) No (b) Yes (c) No (d) Yes (e) No

(3) (a) [15−13−8]

(b)

⎡⎣ 11
6
3

⎤⎦
(c) [4]

(d) [2 8−2 12]

(4) (a) Valid, by Theorem 1.16, part (1)

(b) Invalid

(c) Valid, by Theorem 1.16, part (1)

(d) Valid, by Theorem 1.16, part (2)

(e) Valid, by Theorem 1.18

(f) Invalid

(g) Valid, by Theorem 1.16, part (3)

(h) Valid, by Theorem 1.16, part (2)

(i) Invalid

(j) Valid, by Theorem 1.16, part (3),

and Theorem 1.18

(5)

Outlet 1

Outlet 2

Outlet 3

Outlet 4

Salary Fringe Benefits⎡⎢⎢⎣
$367500 $78000
$225000 $48000
$765000 $162000
$360000 $76500

⎤⎥⎥⎦
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(6)

June

July

August

Tickets Food Souvenirs⎡⎣ $1151300 $3056900 $2194400
$1300700 $3456700 $2482400
$981100 $2615900 $1905100

⎤⎦

(7)

Nitrogen

Phosphate

Potash

Field 1 Field 2 Field 3⎡⎣ 100 045 065
090 035 075
095 035 085

⎤⎦(in tons)

(8)

Rocket 1

Rocket 2

Rocket 3

Rocket 4

Chip 1 Chip 2 Chip 3 Chip 4⎡⎢⎢⎣
2131 1569 1839 2750
2122 1559 1811 2694
2842 2102 2428 3618
2456 1821 2097 3124

⎤⎥⎥⎦
(9) (a) One example:

∙
1 1
0 −1

¸

(b) One example:

⎡⎣ 1 1 0
0 −1 0
0 0 1

⎤⎦
(c) Consider

⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦

(10) (a) Third row, fourth column entry of AB

(b) Fourth row, first column entry of AB

(c) Third row, second column entry of BA

(d) Second row, fifth column entry of BA

(11) (a)
P

=1 32 (b)
P

=1 41

(12) (a) [−27 43−56]
(b)

⎡⎣ 56
−57
18

⎤⎦
(13) (a) [−61 15 20 9]

(b)

⎡⎣ 43
−41
−12

⎤⎦
(14) (a) Let B = Ai. Then B is × 1 and 1 =

P
=1 1 = (1)(1) + (2)(0) + (3)(0) = 1.

(b) Ae = th column of A.

(c) By part (b), each column of A is easily seen to be the zero vector by letting x equal each of
e1     e in turn.

(15) (a) Proof of Part (2): The ( ) entry of A(B+C)
= (th row of A)·(th column of (B+C))
= (th row of A)·(th column of B + th column of C)
= (th row of A)·(th column of B)

+ (th row of A)·(th column of C)
= (( ) entry of AB) + (( ) entry of AC)
= ( ) entry of (AB+AC).
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(b) Proof of Part (3): The ( ) entry of (A+B)C
= (th row of (A+B))·(th column of C)
= (th row of A + th row of B)·(th column of C)
= (th row of A)·(th column of C)

+ (th row of B)·(th column of C)
= (( ) entry of AC) + (( ) entry of BC)
= ( ) entry of (AC+BC).

(c) For the first equation in Part (4), the ( ) entry of (AB)
= ((th row of A)·(th column of B))
= ((th row of A))·(th column of B)
= (th row of A)·(th column of B)
= ( ) entry of (A)B.
For the second equation in Part (4), the ( ) entry of (A)B
= (th row of A)·(th column of B)
= ((th row of A))·(th column of B)
= (th row of A)·((th column of B))
= (th row of A)·(th column of B)
= ( ) entry of A(B).

.

(16) Let B = AO. Clearly B is an ×  matrix and  =
P

=1 0 = 0.

(17) Proof that AI = A: Let B = AI. Then B is clearly an ×  matrix and  =
P

=1  = ,
since  = 0 unless  = , in which case  = 1. The proof that IA = A is similar.

(18) (a) We need to show  = 0 if  6= . Now, if  6= , both factors in each term of the formula for 
in the formal definition of matrix multiplication are zero, except possibly for the terms  and
 . But since the factors  and  also equal zero, all terms in the formula for  equal zero.

(b) Assume   . Consider the term  in the formula for  . If   , then  = 0. If  ≤ ,
then   , so  = 0. Hence all terms in the formula for  equal zero.

(c) Let L1 and L2 be lower triangular matrices. U1 = L

1 and U2 = L


2 are then upper triangular,

and L1L2 = U

1U


2 = (U2U1)

 (by Theorem 1.18). But by part (b), U2U1 is upper triangular.

So L1L2 is lower triangular.

(19) Base Step: Clearly, (A)1 = 1A1.

Inductive Step: Assume (A) = A, and prove (A)+1 = +1A+1. Now, (A)+1 = (A)(A)
= (A)(A) (by the inductive hypothesis) = AA (by part (4) of Theorem 1.16) = +1A+1.

(20) (a) Proof of Part (1): Base Step: A+0 = A = AI = AA0.

Inductive Step: Assume A+ = AA for some  ≥ 0. We must prove A+(+1) = AA+1. But

A+(+1) = A(+)+1 = A+A = (AA)A (by the inductive hypothesis)= A(AA) = AA+1.

(b) Proof of Part (2): (We only need prove (A) = A.) Base Step: (A)0 = I = A0 = A0.

Inductive Step: Assume (A) = A for some integer  ≥ 0. We must prove (A)+1 = A(+1).

But (A)+1 = (A)A = AA (by the inductive hypothesis) = A+ (by part (1)) = A(+1).

(21) AA = A+ (by part (1) of Theorem 1.17) = A+ = AA (by part (1) of Theorem 1.17).

(22) (a) A(1B1+ 2B2+ · · ·+ B) = 1AB1+ 2AB2+ · · ·+ AB (by parts (2) and (4) of Theorem

1.16) = 1B1A + 2B2A + · · · + BA (since A commutes with B1, B2,   , B) = (1B1 +
2B2 + · · ·+ B)A (by part (3) of Theorem 1.16).
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(b) By Exercise 21, A commutes with A, for  = 0 to . Therefore, by part (a), A commutes with

I + 1A+ 2A
2 + · · ·+ A

.

(c) By part (b), (I+ 1A+ 2A
2+ · · ·+ A

) commutes with A for every nonnegative integer .
Therefore, by part (a), (I + 1A+ 2A

2 + · · ·+ A
) commutes with (I + 1A+ 2A

2 +
· · ·+ A

).

(23) (a) If A is an  ×  matrix, and B is a  ×  matrix, then the fact that AB exists means  = ,
and the fact that BA exists means  = . Then AB is an × matrix, while BA is an × 
matrix. If AB = BA, then  = .

(b) Note that by the Distributive Law, (A+B)2 = A2 +AB+BA+B2.

(24) (AB)C = A(BC) = A(CB) = (AC)B = (CA)B = C(AB).

(25) Use the fact that AB = (BA) , while BA = (AB) .

(26) (AA ) = (A )A (by Theorem 1.18) = AA . (Similarly for AA.)

(27) (a) If AB are both skew-symmetric, then (AB) = BA = (−B)(−A) = (−1)(−1)BA = BA.
The symmetric case is similar.

(b) Use the fact that (AB) = BA = BA, since AB are symmetric.

(28) (a) The ( ) entry of AA = (th row of A)·(th column of A ) = (th row of A)·(th row of A)
= sum of the squares of the entries in the th row of A. Hence, trace(AA ) is the sum of the

squares of the entries from all rows of A.

(c) Trace(AB) =
P

=1(
P

=1 ) =
P

=1

P
=1  =

P
=1

P
=1 .

Reversing the roles of the dummy variables  and  gives
P

=1

P
=1 , which is equal to

trace(BA).

(29) (a) Consider any matrix of the form

∙
1 0
 0

¸
.

(c) (I −A)2 = I2 − IA−AI +A2 = I −A−A+A = I −A.

(d)

⎡⎣ 2 −1 −1
1 0 −1
1 −1 0

⎤⎦
(e) A2 = (A)A = (AB)A = A(BA) = AB = A.

(30) (a) (th row of A) · (th column of B) = ( )th entry of O = 0.

(b) Consider A =

∙
1 2 −1
2 4 −2

¸
and B =

⎡⎣ 1 −2
0 1
1 0

⎤⎦.
(c) Let C =

⎡⎣ 2 −4
0 2
2 0

⎤⎦.
(31) A 2× 2 matrix A =

∙
11 12
21 22

¸
that commutes with every other 2 × 2 matrix must have the form

A = I2. For, if B =

∙
0 1
0 0

¸
, then AB =

∙
0 11
0 21

¸
, which must equal BA =

∙
21 22
0 0

¸
. Hence,
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21 = 0 and 11 = 22. Let  = 11 = 22. Then A =

∙
 12
0 

¸
. Also, if D =

∙
0 0
1 0

¸
, then

AD =

∙
12 0
 0

¸
must equal DA =

∙
0 0
 12

¸
, which gives 12 = 0, and so A = I2.

Finally, note that I2 actually does commute with every 2×2 matrixM, since (I2)M = (I2M) =
M = (MI2) =M(I2).

(32) (a) T (b) T (c) T (d) F (e) F (f) F (g) F

Chapter 1 Review Exercises

(1) Yes. Vectors corresponding to adjacent sides are orthogonal. Vectors corresponding to opposite sides

are parallel, with one pair having slope 3
5and the other pair having slope −53 .

(2) u =
h

5√
394

− 12√
394

 15√
394

i
≈ [02481−05955 07444]; slightly longer.

(3) Net velocity =
£
4
√
2− 5−4√2¤ ≈ [06569−56569]; speed ≈ 56947 mi/hr.

(4) a = [−10 9 10] m/sec2

(5) |x · y| = 74 ≤ kxk kyk ≈ 909
(6)  ≈ 136◦

(7) projab =
£
114
25 −3825  1925  5725

¤
= [456−152 076 228];

b− projab =
£−1425 −6225  5625 −3225¤ = [−056−248 224−128];

a · (b− projab) = 0.
(8) −1782 joules
(9) We must prove that (x+ y) · (x− y) = 0 =⇒ kxk = kyk  But,

(x+ y) · (x− y) = 0 =⇒ x · x− x · y + y · x− y · y = 0
=⇒ kxk2 − kyk2 = 0 =⇒ kxk2 = kyk2 =⇒ kxk = kyk 

(10) First, x 6= 0, or else projxy is not defined. Also, y 6= 0, since that would imply projxy = y. Now,
assume x k y. Then, there is a scalar  6= 0 such that y = x. Hence,

projxy =

Ã
x · y
kxk2

!
x =

Ã
x · x
kxk2

!
x =

Ã
 kxk2
kxk2

!
x = x = y

contradicting the assumption that y 6= projxy.

(11) (a) 3A− 4C =

∙
3 2 13

−11 −19 0

¸
; AB =

∙
15 −21 −4
22 −30 11

¸
; BA is not defined;

AC =

∙
23 14
−5 23

¸
; CA =

⎡⎣ 30 −11 17
2 0 18

−11 5 16

⎤⎦; A3 is not defined;

B3 =

⎡⎣ 97 −128 24
−284 375 −92
268 −354 93

⎤⎦
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(b) Third row of BC = [5 8].

(12) S =

⎡⎢⎢⎣
4 −12 11

2

−12 7 −1
11
2 −1 −2

⎤⎥⎥⎦; V =

⎡⎢⎢⎣
0 −52 −12
5
2 0 −2
1
2 2 0

⎤⎥⎥⎦
(13) Now, (3(A − B) ) = 3

¡
(A−B) ¢ (by part (3) of Theorem 1.13) = 3(A − B) (by part (1) of

Theorem 1.13). Also, −(3(A − B) ) = 3(−1)(A − B ) (parts (2) and (3) of Theorem 1.13) =
3(−1)((−A)−(−B)) (definition of skew-symmetric)= 3(A−B). Hence, (3(A−B) ) = −(3(A−B) ),
and so 3(A−B) is skew-symmetric.

(14) Let C = A+B. Now,  =  +  . But for   ,  =  = 0. Hence, for   ,  = 0. Thus, C
is lower triangular.

(15)

Company I

Company II

Company III

Price Shipping Cost⎡⎣ $168500 $24200
$202500 $29100
$155000 $22200

⎤⎦ .
(16) Take the transpose of both sides of AB = BA to get BA = AB.

Then, (AB)2 = (AB)(AB) = A(BA)B = A(AB)B = A2B2.

(17) Negation: For every square matrix A, A2 = A. Counterexample: A = [−1].
(18) If A 6= O22, then some row of A, say the th row, is nonzero. Apply Result 5 in Section 1.3 with

x = (th row of A).

(19) Base Step ( = 2): Suppose A and B are upper triangular  ×  matrices, and let C = AB. Then
 =  = 0, for   . Hence, for   ,

 =
X

=1

 =
−1X
=1

0 ·  +  +
X

=+1

 · 0 = (0) = 0

Thus, C is upper triangular.

Inductive Step: Let A1    A+1 be upper triangular matrices. Then, the product C = A1 · · ·A

is upper triangular by the Inductive Hypothesis, and so the product A1 · · ·A+1 = CA+1 is upper

triangular by the Base Step.

(20) (a) F

(b) T

(c) F

(d) F

(e) F

(f) T

(g) F

(h) F

(i) F

(j) T

(k) T

(l) T

(m) T

(n) F

(o) F

(p) F

(q) F

(r) T
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Chapter 2

Section 2.1

(1) (a) Consistent; {(−2 3 6)}
(b) Consistent; {(5−4 2)}
(c) Inconsistent; {}
(d) Consistent; {(+ 7 2− 3  6) |  ∈ R}; (7−3 0 6) (8−1 1 6) (9 1 2 6)
(e) Consistent; {(2− − 4  2+ 5  2) |   ∈ R}; (−4 0 5 0 2) (−2 1 5 0 2) (−5 0 7 1 2)
(f) Consistent; {(+ 3− 2   8) |   ∈ R}; (−2 0 0 8) (−1 1 0 8) (1 0 1 8)
(g) Consistent; {(6−1 3)}
(h) Inconsistent; {}

(2) (a) {(3+ 13+ 46 + + 13 −2+ 5 ) |   ∈ R}
(b) {(3− 12+ 50− 13  2− 8+ 3  −2) |    ∈ R}
(c) {(−20+ 9− 153 − 68 7− 2+ 37 + 15   4 + 2 ) |    ∈ R}
(d) {}

(3) 52 nickels, 64 dimes, 32 quarters

(4)  = 22 − + 5

(5)  = −33 + 42 − 5+ 6
(6) 2 + 2 − 6− 8 = 0, or (− 3)2 + ( − 4)2 = 25
(7) In each part, (AB) = ((A))B, which equals the given matrix.

(a)

⎡⎢⎢⎣
26 15 −6
6 4 1
0 −6 12
10 4 −14

⎤⎥⎥⎦ (b)

⎡⎢⎢⎣
26 15 −6
10 4 −14
18 6 15
6 4 1

⎤⎥⎥⎦
(8) (a) To save space, we write hCi for the th row of a matrix C.

For the Type (I) operation  : hi← hi: Now, h(AB)i = hABi = hAiB (by the hint

in the text) = h(A)iB = h(A)Bi. But, if  6= , h(AB)i = hABi = hAiB (by the hint

in the text) = h(A)iB = h(A)Bi.
For the Type (II) operation  : hi ← hi + hi: Now, h(AB)i = hABi + hABi =

hAiB+ hAiB (by the hint in the text) = (hAi + hAi)B = h(A)iB = h(A)Bi. But, if
 6= , h(AB)i = hABi = hAiB (by the hint in the text) = h(A)iB = h(A)Bi.

For the Type (III) operation  : hi ←→ hi: Now, h(AB)i = hABi = hAiB (by the

hint in the text) = h(A)iB = h(A)Bi. Similarly, h(AB)i = hABi = hAiB (by the hint

in the text) = h(A)iB = h(A)Bi . And, if  6=  and  6= , h(AB)i = hABi = hAiB
(by the hint in the text) = h(A)iB = h(A)Bi.

Copyright c° 2016 Elsevier Ltd. All rights reserved. 19



Answers to Exercises Section 2.2

(b) Use induction on , the number of row operations used.
Base Step: The case  = 1 is part (1) of Theorem 2.1, and is proven in part (a) of this exercise.

Inductive Step: Assume that

(· · · (2(1(AB))) · · ·) = (· · · (2(1(A))) · · ·)B

and prove that

+1((· · · (2(1(AB))) · · ·)) = +1((· · · (2(1(A))) · · ·))B

Now,

+1((· · · (2(1(AB))) · · ·)) = +1((· · · (2(1(A))) · · ·)B)
(by the inductive hypothesis) = +1((· · · (2(1(A))) · · ·))B (by part (a)).

(9) Multiplying a row by zero changes all of its entries to zero, essentially erasing all of the information in

the row.

(10) Suppose that A, B, X1, and X2 are as given in the problem.

(a) Let  be a scalar. Then,

A(X1 + (X2 −X1)) = AX1 + A(X2 −X1) = B+ AX2 − AX1 = B+ B− B = B

Hence, X1 + (X2 −X1) is a solution to AX = B.

(b) Suppose X1 + (X2 −X1) = X1 + (X2 −X1). Then,

X1 + (X2 −X1) = X1 + (X2 −X1)
=⇒ (X2 −X1) = (X2 −X1)
=⇒ (− )(X2 −X1) = 0
=⇒ (− ) = 0 or (X2 −X1) = 0

However, X2 6= X1, and so  = .

(c) Parts (a) and (b) show that, for each different real number , X1 + (X2 − X1) is a different
solution to AX = B. Therefore, since there are an infinite number of real numbers, AX = B has
an infinite number of solutions.

(11) (a) T (b) F (c) F (d) F (e) T (f) T (g) F

Section 2.2

(1) Matrices in (a), (b), (c), (d), and (f) are not in reduced row echelon form.

Matrix in (a) fails condition 2 of the definition.

Matrix in (b) fails condition 4 of the definition.

Matrix in (c) fails condition 1 of the definition.

Matrix in (d) fails conditions 1, 2, and 3 of the definition.

Matrix in (f) fails condition 3 of the definition.
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(2) (a)

⎡⎣ 1 4 0
0 0 1
0 0 0

¯̄̄̄
¯̄ −13−3

0

⎤⎦
(b) I4

(c)

⎡⎢⎢⎣
1 −2 0 11 −23
0 0 1 −2 5
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎦

(d)

⎡⎢⎢⎢⎢⎣
1 0
0 1
0 0
0 0
0 0

¯̄̄̄
¯̄̄̄
¯̄
0
0
1
0
0

⎤⎥⎥⎥⎥⎦
(e)

∙
1 −2 0 2 −1
0 0 1 −1 3

¯̄̄̄
1
2

¸
(f) I5

(3) (a)

⎡⎣ 1 0 0
0 1 0
0 0 1

¯̄̄̄
¯̄ −23

6

⎤⎦; (−2 3 6)
(e)

⎡⎣ 1 −2 0 1 0
0 0 1 −2 0
0 0 0 0 1

¯̄̄̄
¯̄ −45

2

⎤⎦; {(2− − 4  2+ 5  2) |   ∈ R}

(g)

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

¯̄̄̄
¯̄̄̄ 6
−1
3
0

⎤⎥⎥⎦; {(6−1 3)}
(4) (a) Solution set = {(− 2−3  ) |   ∈ R}; one particular solution = (−3−6 1 2)

(b) Solution set = {(−2− −3  ) |   ∈ R}; one particular solution = (1 1 3−1 1)
(c) Solution set = {(−4 + 2 −  −3 + 2 −2 ) |    ∈ R}; one particular solution =

(−3 1 0 2−6 3)

(5) (a) {(2−4 ) |  ∈ R} = {(2−4 1) |  ∈ R}
(b) {(0 0 0)}
(c) {(0 0 0 0)}

(d) {(3−2  ) |  ∈ R}
= {(3−2 1 1) |  ∈ R}

(6) (a)  = 2,  = 15,  = 12,  = 6

(b)  = 2,  = 25,  = 16,  = 18

(c)  = 4,  = 2,  = 4,  = 1,  = 4

(d)  = 3,  = 11,  = 2,  = 3,  = 2,  = 6

(7) (a)  = 3,  = 4,  = −2 (b)  = 4,  = −3,  = 1,  = 0

(8) Solution for system AX = B1: (6−51 21); solution for system AX = B2: (
35
3 −98 792 ).

(9) Solution for system AX = B1: (−1−6 14 9); solution for system AX = B2: (−10 56 8 103 ).
(10) (a) 1: (III): h1i ↔ h2i

2: (I): h1i ← 1
2 h1i

3: (II): h2i← 1
3 h2i

4: (II): h1i← −2 h2i+ h1i ;
(b) AB =

∙
57 −21
56 −20

¸
; 4(3(2(1(AB)))) = 4(3(2(1(A))))B =

∙ −10 4
19 −7

¸


(11) (a) A(X1 +X2) = AX1 +AX2 = 0+ 0 = 0; A(X1) = (AX1) = 0 = 0.
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(b) Any nonhomogeneous system with two equations and two unknowns that has a unique solution

will serve as a counterexample. For instance, consider½
 +  = 1
 −  = 1



This system has a unique solution: (1 0). Let (1 2) and (1 2) both equal (1 0). Then the sum
of solutions is not a solution in this case. Also, if  6= 1, then the scalar multiple of a solution by
 is not a solution.

(c) A(X1 +X2) = AX1 +AX2 = B+ 0 = B.

(d) Let X1 be the unique solution to AX = B. Suppose AX = 0 has a nontrivial solution X2. Then,

by (c), X1+X2 is a solution to AX = B, and X1 6= X1+X2 since X2 6= 0. This contradicts the
uniqueness of X1.

(12) If  6= 0, then pivoting in the first column of
∙

 
 

¯̄̄̄
0
0

¸
yields

"
1 



0 − 
¡



¢
¯̄̄̄
¯ 00

#
. By Theorem

2.2, there is a nontrivial solution if and only if the (2 2) entry of this matrix is zero, which occurs if
and only if −  = 0.

If  = 0 and  6= 0, then

∙
 
 

¯̄̄̄
0
0

¸
=

∙
0 
 

¯̄̄̄
0
0

¸
 Swapping the first and second rows

and then pivoting in the first column yields

"
1 



0 

¯̄̄̄
¯ 00

#
. By Theorem 2.2, there is a nontrivial

solution if and only if the (2 2) entry of this matrix (that is, ) equals zero. But  is zero if and only
if −  = 0 since  = 0 and  6= 0.

Finally, if both  and  equal 0, then −  = 0 and (1 0) is a nontrivial solution.

(13) (a) The contrapositive is: If AX = 0 has only the trivial solution, then A2X = 0 has only the trivial
solution.

Let X1 be a solution to A
2X = 0. Then 0 = A2X1 = A(AX1). Thus AX1 is a solution to

AX = 0. Hence AX1 = 0 by the premise. Thus, X1 = 0, using the premise again.

(b) The contrapositive is: Let  be a positive integer. If AX = 0 has only the trivial solution, then
AX = 0 has only the trivial solution.

Proceed by induction. The statement is clearly true when  = 1, completing the Base Step.

Inductive Step: Assume that if AX = 0 has only the trivial solution, then AX = 0 has only the
trivial solution. We must prove that if AX = 0 has only the trivial solution, then A+1X = 0
has only the trivial solution.

Let X1 be a solution to A
+1X = 0. Then A(AX1) = 0. Thus AX1 = 0, since AX1 is a

solution to AX = 0. But then X1 = 0 by the inductive hypothesis.

(14) (a) T (b) T (c) F (d) T (e) F (f) F

Section 2.3

(1) (a) A row operation of Type (I) converts A to B: h2i ← −5 h2i.
(b) A row operation of Type (III) converts A to B: h1i ↔ h3i.
(c) A row operation of Type (II) converts A to B: h2i ← h3i+ h2i.
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(2) (a) B = I3. The sequence of row operations converting A to B is:

(I): h1i ← 1
4 h1i

(II): h2i ← 2 h1i + h2i
(II): h3i ← −3 h1i + h3i
(III): h2i ↔ h3i
(II): h1i ← 5 h3i + h1i

(b) The sequence of row operations converting B to A is:

(II): h1i ← −5 h3i+ h1i
(III): h2i ↔ h3i
(II): h3i ← 3 h1i+ h3i
(II): h2i ← −2 h1i+ h2i
(I): h1i ← 4 h1i

(3) (a) Let C be the common reduced row echelon form matrix for A and B. Then, A and B are both

row equivalent to C. Also, by part (1) of Theorem 2.4, C is row equivalent to B. But, since A is

row equivalent to C, and C is row equivalent to B, part (2) of Theorem 2.4 asserts that A is row

equivalent to B.

(b) The common reduced row echelon form is I3.

(c) The sequence of row operations is:

(II): h3i← 2 h2i+ h3i
(I): h3i← −1 h3i
(II): h1i← −9 h3i+ h1i
(II): h2i← 3 h3i+ h2i
(II): h3i← −95 h2i+ h3i

(II): h1i← −35 h2i+ h1i

(I): h2i← −15 h2i

(II): h3i← −3 h1i+ h3i
(II): h2i← −2 h1i+ h2i
(I): h1i← −5 h1i

(4) (a) Assume B is row equivalent to A. Let C be the reduced row echelon form matrix for A. Then A
is row equivalent to C. But, since B is row equivalent to A, and A is row equivalent to C, part
(2) of Theorem 2.4 asserts that A is row equivalent to C. Now, by Theorem 2.6, the reduced row

echelon form matrix for B is unique, so it must be C. Thus A and C have the same reduced row

echelon form matrix.

(b) The reduced row echelon form matrices for A and B are, respectively,⎡⎢⎢⎣
1 0 0 −2 3
0 1 0 −1 0
0 0 1 1 0
0 0 0 0 0

⎤⎥⎥⎦ and

⎡⎢⎢⎣
1 0 0 −2 0
0 1 0 −1 0
0 0 1 1 0
0 0 0 0 1

⎤⎥⎥⎦ 
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(5) (a) 2 (b) 1 (c) 2 (d) 3 (e) 3 (f) 2

(6) (a) Rank = 3. Theorem 2.7 predicts that there is only the trivial solution. Solution set = {(0 0 0)}
(b) Rank = 2. Theorem 2.7 predicts that nontrivial solutions exist.

Solution set = {(3−4 ) |  ∈ R}
(7) In the following answers, the asterisk represents any real entry:

(a) Smallest rank = 1 Largest rank = 4⎡⎢⎢⎣
1 ∗ ∗
0 0 0
0 0 0
0 0 0

¯̄̄̄
¯̄̄̄ ∗0
0
0

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

¯̄̄̄
¯̄̄̄ 00
0
1

⎤⎥⎥⎦
(b) Smallest rank = 1 Largest rank = 3⎡⎣ 1 ∗ ∗ ∗

0 0 0 0
0 0 0 0

¯̄̄̄
¯̄ ∗0
0

⎤⎦ ⎡⎣ 1 0 0 ∗
0 1 0 ∗
0 0 1 ∗

¯̄̄̄
¯̄ ∗∗∗

⎤⎦
(c) Smallest rank = 2 Largest rank = 3⎡⎣ 1 ∗ ∗ ∗

0 0 0 0
0 0 0 0

¯̄̄̄
¯̄ 01
0

⎤⎦ ⎡⎣ 1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0

¯̄̄̄
¯̄ 00
1

⎤⎦
(d) Smallest rank = 1 Largest rank = 3⎡⎢⎢⎢⎢⎣

1 ∗ ∗
0 0 0
0 0 0
0 0 0
0 0 0

¯̄̄̄
¯̄̄̄
¯̄
∗
0
0
0
0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

¯̄̄̄
¯̄̄̄
¯̄
∗
∗
∗
0
0

⎤⎥⎥⎥⎥⎦
(8) (a) x = −2111a1 + 6

11a2

(b) x = 3a1 − 4a2 + a3
(c) Not possible

(d) x = 1
2a1 − 1

2a2 +
1
2a3

(e) The answer is not unique; one possible answer is x = −3a1 + 2a2 + 0a3.

(f) Not possible (g) x = 2a1 − a2 − a3 (h) Not possible

(9) (a) Yes: 5(row 1) − 3(row 2) − 1(row 3)
(b) Not in row space

(c) Not in row space

(d) Yes: −3(row 1) + 1(row 2)

(e) Yes, but the linear combination of the rows

is not unique; one possible expression for the

given vector is

−3(row 1) + 1(row 2) + 0(row 3).

(10) (a) [13−23 60] = −2q1 + q2 + 3q3
(b) q1 = 3r1 − r2 − 2r3; q2 = 2r1 + 2r2 − 5r3; q3 = r1 − 6r2 + 4r3
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(c) [13−23 60] = −r1 − 14r2 + 11r3

(11) (a) (i) B =

⎡⎣ 1 0 −1 2
0 1 3 2
0 0 0 0

⎤⎦ ;
(ii) [1 0−1 2] = −78 [0 4 12 8] + 1

2 [2 7 19 18] + 0[1 2 5 6];

[0 1 3 2] = 1
4 [0 4 12 8] + 0[2 7 19 18] + 0[1 2 5 6]

(iii) [0 4 12 8] = 0[1 0−1 2] + 4[0 1 3 2];
[2 17 19 18] = 2[1 0−1 2] + 7[0 1 3 2];
[1 2 5 6] = 1[1 0−1 2]+ 2[0 1 3 2]

(b) (i) B =

⎡⎢⎢⎣
1 2 3 0 −1
0 0 0 1 5
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎦ ;
(ii) [1 2 3 0−1] = −53 [1 2 3−4−21]− 4

3 [−2−4−6 5 27]+0[13 26 39 5 12]+0[2 4 6−1−7];
[0 0 0 1 5] = − 23 [1 2 3−4−21]− 1

3 [−2−4−6 5 27]+0[13 26 39 5 12]+0[2 4 6−1−7]
(iii) [1 2 3−4−21] = 1[1 2 3 0−1] − 4[0 0 0 1 5];

[−2−4−6 5 27] = −2[1 2 3 0−1] + 5[0 0 0 1 5];
[13 26 39 5 12] = 13[1 2 3 0−1] + 5[0 0 0 1 5];
[2 4 6−1−7] = 2[1 2 3 0−1] − 1[0 0 0 1 5]

(12) Suppose that all main diagonal entries of A are nonzero. Then, for each , perform the row operation

hi← (1)hi on the matrixA. This will convertA into I. We prove the converse by contrapositive.
Suppose some diagonal entry  equals 0. Then the th column of A has all zero entries. No step in

the row reduction process will alter this column of zeroes, and so the unique reduced row echelon form

for the matrix must contain at least one column of zeroes, and so cannot equal I.

(13) (a) Suppose we are performing row operations on an × matrix A. Throughout this part, we will
write hBi for the th row of a matrix B.

For the Type (I) operation  : hi← hi: Now −1 is hi← 1

hi. Clearly,  and −1 change

only the th row of A. We want to show that −1 leaves hAi unchanged. But h−1((A))i
= 1


h(A)i = 1


(hAi) = hAi.

For the Type (II) operation  : hi← hi+ hi: Now −1 is hi← −hi+ hi. Again,  and
−1 change only the th row of A, and we need to show that −1 leaves hAi unchanged. But
h−1((A))i = −h(A)i + h(A)i = −hAi + h(A)i = −hAi + hAi + hAi = hAi.

For the Type (III) operation  : hi↔ hi: Now, −1 = . Also,  changes only the th and
th rows of A, and these get swapped. Obviously, a second application of  swaps them back to

where they were, proving that  is indeed its own inverse.

(b) Suppose C is row equivalent to D, and D is row equivalent to E. Then by the definition of
row equivalence, there is a sequence 1 2   of row operations converting C to D, and a
sequence 1 2   of row operations converting D to E. But then the combined sequence
1 2   1 2   of row operations converts C to E, and so C is row equivalent to E.

(c) An approach similar to that used for Type (II) operations in the abridged proof of Theorem 2.5 in

the text works just as easily for Type (I) and Type (III) operations. However, here is a different

approach: Suppose  is a row operation, and let X satisfy AX = B. Multiplying both sides of
this matrix equation by the matrix (I) yields (I)AX = (I)B, implying (IA)X = (IB),
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by Theorem 2.1. Thus, (A)X = (B), showing that X is a solution to the new linear system

obtained from AX = B after the row operation  is performed.

(14) The zero vector is a solution to AX = 0, but it is not a solution for AX = B.

(15) Consider the systems ½
 +  = 1
 +  = 0

and

½
 −  = 1
 −  = 2



The reduced row echelon matrices for these inconsistent systems are, respectively,∙
1 1
0 0

¯̄̄̄
0
1

¸
and

∙
1 −1
0 0

¯̄̄̄
0
1

¸


Thus, the original augmented matrices are not row equivalent, since their reduced row echelon forms

are different.

(16) (a) Plug each of the 5 points in turn into the equation for the conic. This will give a homogeneous

system of 5 equations in the 6 variables , , , , , and  . This system has a nontrivial solution,

by Corollary 2.2.

(b) Yes. In this case, there will be even fewer equations, so Corollary 2.3 again applies.

(17) BecauseA andB are row equivalent,A = (· · · (2(1(B))) · · · ) for some row operations 1     .

Now, if D is the unique reduced row echelon form matrix to which A is row equivalent, then for some

additional row operations +1     +,

D = +(· · · (+2(+1(A))) · · · )
= +(· · · (+2(+1((· · · (2(1(B))) · · · )))) · · · )

showing that B also has D as its reduced echelon form matrix. Therefore, by the definition of rank,

rank(B) = the number of nonzero rows in D = rank(A).

(18) (a) (· · · (1(A)) · · · ) and A are clearly row equivalent. Use Exercise 17.

(b) Since the row reduction process has no effect on rows having all zeroes, at least  of the  rows

in the reduced row echelon form of A are rows of all zeroes. Thus, rank(A) ≤ − 

(c) Since A is in reduced row echelon form and has  rows of zeroes, rank(A) = − . But AB has
at least  rows of zeroes, so rank(AB) ≤ −  by part (b).

(d) Let A = (· · · (2(1(D))) · · · ), where D is in reduced row echelon form. Then rank(AB) =
rank((· · · (2(1(D))) · · ·)B) = rank((· · · (2(1(DB))) · · ·)) (by part (2) of Theorem 2.1)

= rank(DB) (by part (a)) ≤ rank(D) (by part (c)) = rank(A) (by definition of rank).
(19) As in the abridged proof of Theorem 2.9 in the text, let a1    a represent the rows of A, and let

b1    b represent the rows of B.
For the Type (I) operation  : hi← hi: Now b = 0a1 + 0a2 + · · ·+ a + 0a+1 + · · ·+ 0a,

and, for  6= , b = 0a1 + 0a2 + · · · + 1a + 0a+1 + · · · + 0a. Hence, each row of B is a linear

combination of the rows of A, implying it is in the row space of A.
For the Type (II) operation  : hi← hi+ hi: Now b = 0a1 + 0a2 + · · ·+ a + 0a+1 + · · ·+

a + 0a+1 +   + 0a, where our notation assumes   . (An analogous argument works for   .)
And, for  6= , b = 0a1 + 0a2 + · · · + 1a + 0a+1 + · · · + 0a. Hence, each row of B is a linear
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combination of the rows of A, implying it is in the row space of A.
For the Type (III) operation  : hi↔ hi: Now, b = 0a1+0a2+· · ·+1a+0a+1+· · ·+0a, b =

0a1+0a2+· · ·+1a+0a+1+· · ·+0a, and, for  6= ,  6= , b = 0a1+0a2+· · ·+1a+0a+1+· · ·+0a.
Hence, each row of B is a linear combination of the rows of A, implying it is in the row space of A.

(20) Let  be the number of matrices between A and B when performing row operations to get from A to

B. Use a proof by induction on .
Base Step: If  = 0, then there are no intermediary matrices, and Exercise 19 shows that the row
space of B is contained in the row space of A.
Inductive Step: Given the chain

A→ D1 → D2 → · · ·→ D → D+1 → B

we must show that the row space of B is contained in the row space of A. The inductive hypothesis
shows that the row space of D+1 is in the row space of A, since there are only  matrices between
A and D+1 in the chain. Thus, each row of D+1 can be expressed as a linear combination of the

rows of A. But by Exercise 19, each row of B can be expressed as a linear combination of the rows of

D+1. Hence, by Lemma 2.8, each row of B can be expressed as a linear combination of the rows of

A, and therefore is in the row space of A. By Lemma 2.8 again, the row space of B is contained in

the row space of A.

(21) Let  represent the th coordinate of x. The corresponding homogeneous system in variables

1     +1 is ⎧⎪⎨⎪⎩
111 + 221 + · · · + +1+11 = 0
...

...
. . .

...
...

11 + 22 + · · · + +1+1 = 0



which has a nontrivial solution for 1     +1, by Corollary 2.3.

(22) (a) T (b) T (c) F (d) F (e) F (f) T

Section 2.4

(1) The product of each given pair of matrices equals I.

(2) (a) Rank = 2; nonsingular

(b) Rank = 2; singular

(c) Rank = 3; nonsingular

(d) Rank = 4; nonsingular

(e) Rank = 3; singular

(3) No inverse exists for (b), (e) and (f).

(a)

" 1
10

1
15

3
10 − 2

15

#
(c)

" − 2
21 − 5

84

1
7 − 1

28

#
(d)

" 3
11

2
11

4
11 − 1

11

#
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(4) No inverse exists for (b) and (e).

(a)

⎡⎣ 1 3 2
−1 0 2
2 2 −1

⎤⎦

(c)

⎡⎢⎢⎣
3
2 0 1

2

− 3 1
2 −12

− 8
3

1
3 −23

⎤⎥⎥⎦

(d)

⎡⎢⎢⎣
1 −1 1 2
−7 5 −10 −19
−2 1 −2 −4
3 −2 4 8

⎤⎥⎥⎦

(f)

⎡⎢⎢⎣
4 −1 3 −6
−3 1 −5 10
10 −2 0 1
1 0 −3 6

⎤⎥⎥⎦
(5) (a)

∙ 1
11

0

0 1
22

¸
(b)

⎡⎣ 1
11

0 0

0 1
22

0

0 0 1
33

⎤⎦
(c)

⎡⎢⎢⎢⎣
1
11

0 · · · 0

0 1
22

· · · 0
...

...
. . .

...

0 0 · · · 1


⎤⎥⎥⎥⎦

(6) (a) The general inverse is

∙
cos  sin 
− sin  cos 

¸
. When  = 

6 , the inverse is

" √
3
2

1
2

− 1
2

√
3
2

#
.

When  = 
4 , the inverse is

" √
2
2

√
2
2

−
√
2
2

√
2
2

#
. When  = 

2 , the inverse is

∙
0 1
−1 0

¸
.

(b) The general inverse is

⎡⎣ cos  sin  0
− sin  cos  0

0 0 1

⎤⎦. When  = 
6 , the inverse is

⎡⎢⎢⎣
√
3
2

1
2 0

− 1
2

√
3
2 0

0 0 1

⎤⎥⎥⎦.

When  = 
4 , the inverse is

⎡⎢⎢⎣
√
2
2

√
2
2 0

−
√
2
2

√
2
2 0

0 0 1

⎤⎥⎥⎦. When  = 
2 , the inverse is

⎡⎣ 0 1 0
−1 0 0
0 0 1

⎤⎦.

(7) (a) Inverse =

" 2
3

1
3

7
3

5
3

#
; solution set = {(3−5)}

(b) Inverse =

⎡⎢⎢⎣
1 0 −3
8
5

2
5 −175

1
5 −15 −45

⎤⎥⎥⎦; solution set = {(−2 4−3)}

(c) Inverse =

⎡⎢⎢⎣
1 −13 −15 5
−3 3 0 −7
−1 2 1 −3
0 −4 −5 1

⎤⎥⎥⎦; solution set = {(5−8 2−1)}
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(8) (a) Consider

∙
0 1
1 0

¸
.

(b) Consider

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦. (c) A =A−1 ifA is involutory.

(9) (a) A = I2, B = −I2, A+B = O2

(b) A =

∙
1 0
0 0

¸
, B =

∙
0 0
0 1

¸
, A+B =

∙
1 0
0 1

¸
(c) If A = B = I2, then A+B = 2I2, A

−1 = B−1 = I2, A−1 +B−1 = 2I2, and (A+B)−1 = 1
2I2,

so A−1 +B−1 6= (A+B)−1.
(10) (a) B must be the zero matrix.

(b) No. AB = I implies A
−1 exists (and equals B). Multiply both sides of AC = O on the left

by A−1.

(11)    A−9A−5A−1A3A7A11   

(12) B−1A is the inverse of A−1B.

(13) (A−1) = (A )−1 (by Theorem 2.12, part (4)) = A−1.

(14) (a) Suppose first that the matrix contains a column of zeroes. No row operations can alter a column

of zeroes, so the unique reduced row echelon form for the matrix must also contain a column of

zeroes, and thus cannot equal I. Hence the matrix has rank less than  But by Theorem 2.15,

an × matrix is nonsingular if and only if its rank equals . Thus, the matrix must be singular.
Suppose a matrix contains a row of all zeroes. We assume that it is nonsingular and derive a

contradiction. If the matrix is nonsingular, then part (4) of Theorem 2.12 says that its transpose

is also nonsingular. But the transpose contains a column of all zeroes. This contradicts the result

obtained in the first paragraph.

(b) Such a matrix will contain a column of all zeroes. Use part (a).

(c) When pivoting in the th column of the matrix during row reduction, the ( ) entry will be
nonzero, allowing a pivot in that position. Then, since all entries in that column below the

main diagonal are already zero, none of the rows below the th row are changed in that column.
Hence, none of the entries below the th row are changed when that row is used as the pivot row.
Thus, none of the nonzero entries on the main diagonal are affected by the row reduction steps

on previous columns (and the matrix stays in upper triangular form throughout the process).

Therefore the matrix row reduces to I.

(d) If A is lower triangular with no zeroes on the main diagonal, then A is upper triangular with no

zeroes on the main diagonal. By part (c), A is nonsingular. Hence A = (A ) is nonsingular
by part (4) of Theorem 2.12.

(e) Note that when row reducing the th column of A, all of the following occur:

1. The pivot  is nonzero, so we use a Type (I) operation to change it to a 1. This changes
only row .

2. No nonzero targets appear below row , so all Type (II) row operations only change rows

above row .

3. Because of (2), no entries are changed below the main diagonal, and no main diagonal entries

are changed by Type (II) operations.
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When row reducing [A|I], we use the exact same row operations we use to reduce A. Since I
is also upper triangular, fact (3) above shows that all the zeroes below the main diagonal of I
remain zero when the row operations are applied. Thus, the result of the row operations, namely

A−1, is upper triangular.

(15) (a) Part (1): Since AA−1 = I, we must have (A−1)−1 = A.
Part (2): For   0, to show (A)−1 = (A−1), we must show that A(A−1) = I. We proceed
by induction on .

Base Step: For  = 1, clearly AA−1 = I.
Inductive Step: Assume A(A−1) = I. Prove A+1(A−1)+1 = I.
Now, A+1(A−1)+1 = AA(A−1)A−1 = AInA

−1 = AA−1 = I. This concludes the proof
for   0.
We now show A(A−1) = I for  ≤ 0.
For  = 0, clearly A0(A−1)0 = II = I. The case  = −1 is covered by part (1) of the theorem.
For  ≤ −2, (A)−1 = ((A−1)−)−1 (by definition) = ((A−)−1)−1 (by the   0 case) = A−

(by part (1)).

(b) To show (A1 · · ·A)
−1 = A−1 · · ·A−11 , we must prove that

(A1 · · ·A)(A
−1
 · · ·A−11 ) = I. Use induction on .

Base Step: For  = 1, clearly A1A
−1
1 = I.

Inductive Step: Assume that (A1 · · ·A)(A
−1
 · · ·A−11 ) = I.

Prove that (A1 · · ·A+1)(A
−1
+1 · · ·A−11 ) = I.

Now, (A1 · · ·A+1)(A
−1
+1 · · ·A−11 ) = (A1 · · ·A)A+1A

−1
+1(A

−1
 · · ·A−11 )

= (A1 · · ·A)I(A
−1
 · · ·A−11 ) = (A1 · · ·A)(A

−1
 · · ·A−11 ) = I.

(16) We must prove that (A)( 1

A−1) = I. But, (A)(1


A−1) = 1


AA−1 = 1I = I.

(17) (a) Let  = −,  = −. Then    0. Now, A+ = A−(+) = (A−1)+ = (A−1)(A−1) (by
Theorem 1.17) = A−A− = AA.

(b) Let  = −. Then (A) = (A)− = ((A)−1) = ((A−1)) (by Theorem 2.12, part (2)) =
(A−1) (by Theorem 1.17) = A− (by Theorem 2.12, part (2)) = A(−) = A. Similarly,

(A) = ((A−1)) (as before) = ((A−1)) (by Theorem 1.17) = (A−) = (A).

(18) First assume AB = BA. Then (AB)2 = ABAB = A(BA)B = A(AB)B = A2B2.

Conversely, if (AB)2 = A2B2, then ABAB = AABB =⇒ A−1ABABB−1 = A−1AABBB−1 =⇒
BA = AB.

(19) If (AB) = AB for all  ≥ 2, use  = 2 and the proof in Exercise 18 to show BA = AB.
Conversely, we need to show that BA = AB =⇒ (AB) = AB for all  ≥ 2.
First, we prove that BA = AB =⇒ AB = BA for all  ≥ 2. We use induction on .
Base Step ( = 2): AB2 = A(BB) = (AB)B = (BA)B = B(AB) = B(BA) = (BB)A = B2A.
Inductive Step: AB+1 = A(BB) = (AB)B = (BA)B (by the inductive hypothesis) = B(AB)
= B(BA) = (BB)A = B+1A.
Now we use this “lemma” (BA = AB =⇒ AB = BA for all  ≥ 2) to prove BA = AB =⇒
(AB) = AB for all  ≥ 2. Again, we proceed by induction on .
Base Step ( = 2): (AB)2 = (AB)(AB) = A(BA)B = A(AB)B = A2B2.
Inductive Step: (AB)+1 = (AB)(AB) = (AB)(AB) (by the inductive hypothesis) = A(BA)B
= A(AB)B (by the lemma) = (AA)(BB) = A+1B+1.
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(20) Base Step ( = 0): I = (A
1 − I)(A− I)−1.

Inductive Step: Assume I +A+A
2 + · · ·+A = (A+1 − I)(A− I)−1 for some 

Prove I +A+A
2 + · · ·+A +A+1 = (A+2 − I)(A− I)−1

Now, I +A+A
2 + · · ·+A +A+1 = (I +A+A

2 + · · ·+A) +A+1

= (A+1 − I)(A− I)−1 + A+1(A − I)(A− I)−1 (where the first term is obtained from the

inductive hypothesis) = ((A+1 − I) +A+1(A− I))(A− I)−1 = (A+2 − I)(A− I)−1
(21) Suppose A is an × matrix and B is a × matrix. Suppose, further, that AB = I and   . By

Corollary 2.3, the homogeneous system having B as its matrix of coefficients has a nontrivial solution

X. That is, there is a nonzero vector X such that BX = 0. But then X = IX = (AB)X = A(BX)
= A0 = 0, a contradiction.

(22) (a) F (b) T (c) T (d) F (e) F (f) T

Chapter 2 Review Exercises

(1) (a) staircase pattern of pivots after Gauss-Jordan Method:

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

¯̄̄̄
¯̄̄̄ −68−5

0

⎤⎥⎥⎦ ;
complete solution set = {(−6, 8, −5)}

(b) staircase pattern of pivots after Gauss-Jordan Method:

⎡⎢⎢⎢⎢⎣
1 0 0 19

6

0 1 0 1
6

0 0 1 7
6

0 0 0 0

¯̄̄̄
¯̄̄̄
¯̄
0

0

0

1

⎤⎥⎥⎥⎥⎥⎦; no solutions

(c) staircase pattern of pivots after Gauss-Jordan Method:

⎡⎣ 1 0 1 0 −1
0 1 2 0 1
0 0 0 1 −2

¯̄̄̄
¯̄ −51

1

⎤⎦ ;
complete solution set = {[−5− +  1− 2−   1 + 2 ] |   ∈ R}

(2)  = −23 + 52 − 6+ 3

(3) (a) No. Entries above pivots need to be zero. (b) No. Rows 3 and 4 should be switched.

(4)  = 4,  = 7,  = 4,  = 6

(5) (i) 1 = −308, 2 = −18, 3 = −641, 4 = 108 (ii) 1 = −29, 2 = −19, 3 = −88, 4 = 36

(6) Corollary 2.3 applies since there are more variables than equations.

(7) (a) (I): h3i← −6 h3i (b) (II): h2i← 3 h4i+ h2i (c) (III): h2i↔ h3i

(8) (a) rank(A) = 2, rank(B) = 4, rank(C) = 3

(b) AX = 0 and CX = 0: infinite number of solutions; BX = 0: one solution
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(9) The reduced row echelon form matrices for A and B are both

⎡⎣ 1 0 −3 0 2
0 1 2 0 −4
0 0 0 1 3

⎤⎦. Therefore, A
and B are row equivalent by an argument similar to that in Exercise 3(b) of Section 2.3.

(10) (a) Yes. [−34 29−21] = 5[2−3−1] + 2[5−2 1]− 6[9−8 3]
(b) Yes. [−34 29−21] is a linear combination of the rows of the matrix.

(11) A−1 =

" −29 1
9

−16 1
3

#

(12) (a) Nonsingular. A−1 =

⎡⎢⎣ −
1
2

5
2 2

−1 6 4
1 −5 −3

⎤⎥⎦ (b) Singular

(13) This is true by the Inverse Method, which is justified in Section 2.4.

(14) No, by part (1) of Theorem 2.16.

(15) The inverse of the coefficient matrix is

⎡⎣ 3 −1 −4
2 −1 −3
1 −2 −2

⎤⎦ 
The solution set is 1 = −27, 2 = −21, 3 = −1

(16) (a) Because B is nonsingular, B is row equivalent to I (see Exercise 13). Thus, there is a sequence

of row operations, 1      such that 1(· · · ((B)) · · · ) = I. Hence, by part (2) of Theorem
2.1,

1(· · · ((BA)) · · · ) = 1(· · · ((B)) · · · )A = IA = A

Therefore, BA is row equivalent to A. Thus, by Exercise 17 in Section 2.3, BA and A have the

same rank.

(b) By part (d) of Exercise 18 in Section 2.3, rank(AC) ≤ rank(A).
Similarly, rank(A) = rank((AC)C−1) ≤ rank(AC). Hence, rank(AC) = rank(A).

(17) (a) F

(b) F

(c) F

(d) T

(e) F

(f) T

(g) T

(h) T

(i) F

(j) T

(k) F

(l) F

(m) T

(n) T

(o) F

(p) T

(q) T

(r) T

(s) T
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Chapter 3

Section 3.1

(1) (a) −17
(b) 6

(c) 0

(d) 1

(e) −108
(f) 156

(g) −40
(h) −60

(i) 0

(j) −3

(2) (a)

¯̄̄̄
4 3
−2 4

¯̄̄̄
= 22

(b)

¯̄̄̄
¯̄ 0 2 −3
1 4 2
4 −1 1

¯̄̄̄
¯̄ = 65 (c)

¯̄̄̄
¯̄ −3 0 5

2 −1 4
6 4 0

¯̄̄̄
¯̄ = 118

(3) (a) (−1)2+2
¯̄̄̄
4 −3
9 −7

¯̄̄̄
= −1

(b) (−1)2+3
¯̄̄̄ −9 6

4 3

¯̄̄̄
= 51

(c) (−1)4+3
¯̄̄̄
¯̄ −5 2 13
−8 2 22
−6 −3 −16

¯̄̄̄
¯̄ = 222

(d) (−1)1+2
¯̄̄̄
− 4 − 3
− 1 + 2

¯̄̄̄
= −2+ 11

(4) Same answers as Exercise 1.

(5) (a) 0 (b) −251 (c) −60 (d) 352

(6) 11223344 + 11233442 + 11243243 + 12213443 + 12233144 + 12243341
+ 13213244 + 13223441 + 13243142 + 14213342 + 14223143 + 14233241
− 11223443 − 11233244 − 11243342 − 11213344 − 12233441 − 12243143
− 13213442 − 13223144 − 13243241 − 14213243 − 14223341 − 14233142

(7) Let A =

∙
1 1
1 1

¸
, and let B =

∙
1 0
0 1

¸
.

(8) (a) Perform the basketweaving method.

(b) (a× b)·a = (23 − 32)1 + (31 − 13)2 + (12 − 21)3
= 123 − 132 + 231 − 123 + 132 − 231 = 0.

Similarly, (a× b)·b = 0.

(9) (a) 7 (b) 18 (c) 12 (d) 0

(10) Let x = [1 2] and y = [1 2]. Then

projxy =

µ
x·y
kxk2

¶
x =

1

kxk2 [(11 + 22)1 (11 + 22)2]

Hence,

y− projxy =
1

kxk2 (kxk
2y)− projxy

=
1

kxk2 [(
2
1 + 22)1 (

2
1 + 22)2]−

1

kxk2 [(11 + 22)1 (11 + 22)2]

=
1

kxk2 [
2
11 + 221 − 211 − 122 

2
12 + 222 − 121 − 222]
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=
1

kxk2 [
2
21 − 122 

2
12 − 121]

=
1

kxk2 [2(21 − 12) 1(12 − 21)]

=
12 − 21

kxk2 [−2 1]

Thus,

kxk ky − projxyk = kxk |12 − 21|
kxk2

q
22 + 21 = |12 − 21|

= absolute value of

¯̄̄̄
1 2
1 2

¯̄̄̄


(11) (a) 18 (b) 7 (c) 63 (d) 8

(12) First, notice from the definition of x× y in Exercise 8, that

kx× yk =
p
(23 − 32)2 + (13 − 31)2 + (12 − 21)2

We will verify that kx×yk is equal to the area of the parallelogram determined by x and y Now, from
the solution to Exercise 10 above, the area of this parallelogram is equal to kxk ky − projxyk. One
can verify kx × yk = kxk ky − projxyk by a tedious, brute force, argument. (Algebraically expand
and simplify kxk2 ky−projxyk2 to get (23−32)2+(13−31)2+(12−21)2) An alternate
approach is the following: Note that

kx× yk2 = (23 − 32)
2 + (13 − 31)

2 + (12 − 21)
2

= 22
2
3 − 22323 + 23

2
2 + 21

2
3 − 21313 + 23

2
1 + 21

2
2 − 21212 + 22

2
1 

Using some algebraic manipulation, this can be expressed as

kx× yk2 = (21 + 22 + 23)(
2
1 + 22 + 23)− (11 + 22 + 33)

2

Therefore,

kx× yk2 = kxk2 kyk2 − (x · y)2

=
kxk2
kxk2

³
kxk2 kyk2 − (x · y)2

´
= kxk2

Ã
kxk2 kyk2
kxk2 − (x · y)

2

kxk2
!

= kxk2
Ã
kxk2 (y · y)
kxk2 − 2

Ã
(x · y)2
kxk2

!
+
(x · y)2
kxk2

!

= kxk2
⎛⎝(y · y)− 2Ãx · ykxk2

!
(x · y) +

Ã
x · y
kxk2

!2
(x · x)

⎞⎠
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= kxk2
Ã
y − (x · y)xkxk2

!
·
Ã
y − (x · y)xkxk2

!

= kxk2
°°°°°y −

Ã
x · y
kxk2

!
x

°°°°°
2

= kxk2ky − projxyk2
Hence, kx× yk = kxk ky− projxyk, the area of the parallelogram determined by x and y.

Now, we determine the volume of the parallelepiped. As in the hint, let h = proj(x×y)z, the
perpendicular from z to the parallelogram determined by x and y. Since the area of this parallelogram
equals kx× yk, the volume of the parallelepiped equals

khk kx× yk = kproj(x×y)zk kx× yk =
¯̄̄̄
z · (x× y)
kx× yk

¯̄̄̄
kx× yk = |z · (x× y)| = |(x× y) · z| 

But from the definition in Exercise 8,

|(x× y) · z| = | (23 − 32)1 + (31 − 13)2 + (12 − 21)3 |
= | 123 + 231 + 312 − 321 − 132 − 213 |

= absolute value of

¯̄̄̄
¯̄ 1 2 3
1 2 3
1 2 3

¯̄̄̄
¯̄ 

(13) (a) Base Step: If  = 1, then A = [11], so A = [11], and |A| = 11 = |A|.
Inductive Step: Assume that if A is an ×  matrix and  is a scalar, then |A| = |A|. Prove
that if A is an ( + 1) × ( + 1) matrix, and  is a scalar, then |A| = +1|A|. Let B = A.
Then

|B| = +11B+11 + +12B+12 + · · ·+ +1B+1 + +1+1B+1+1
Each B+1 = (−1)+1+|B+1| = (−1)+1+|A+1| (by the inductive hypothesis, since
B+1 is an ×  matrix) = A+1 Thus,

|A| = |B| = +11(
A+11) + +12(

A+12) + · · ·+ +1(
A+1)

+ +1+1(
A+1+1)

= +1(+11A+11 + +12A+12 + · · ·+ +1A+1 + +1+1A+1+1)

= +1|A|

(b) |2A| = 23|A| (since A is a 3× 3 matrix) = 8|A|
(14) ¯̄̄̄

¯̄̄̄  −1 0 0
0  −1 0
0 0  −1
0 1 2 3 + 

¯̄̄̄
¯̄̄̄ = 0(−1)4+1

¯̄̄̄
¯̄ −1 0 0

 −1 0
0  −1

¯̄̄̄
¯̄ + 1(−1)4+2

¯̄̄̄
¯̄  0 0
0 −1 0
0  −1

¯̄̄̄
¯̄

+ 2(−1)4+3
¯̄̄̄
¯̄  −1 0
0  0
0 0 −1

¯̄̄̄
¯̄ + 3(−1)4+4

¯̄̄̄
¯̄  −1 0
0  −1
0 0 

¯̄̄̄
¯̄ 
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The four 3× 3 determinants in the previous equation can be calculated using “basketweaving” as −1,
, −2, and 3, respectively. Therefore, the original 4× 4 determinant equals

(−0)(−1) + (1)() + (−2)(−2) + (3)(3) = 0 + 1+ 2
2 + 3

3

(15) (a)  = −5 or  = 2 (b)  = −2 or  = −1 (c)  = 3,  = 1, or  = 2

(16) (a) Use “basketweaving” and factor. (b) 20

(17) (a) Area of  =
√
32

4 

(b) Suppose one side of  extends from ( ) to ( ), where ( ) and ( ) are lattice points. Then

2 = (− )2 + (− )2 an integer. Hence, 
2

4 is rational, and the area of  =
√
32

4 is irrational.

(c) Suppose the vertices of  are lattice points  = ( ),  = ( ),  = ( ). Then side 
is expressed using vector [ −   − ], and side  is expressed using vector [ −   − ].
Hence, the area of  = 1

2(area of the parallelogram formed by [ −   − ] and [ −   − ])

= 1
2

¯̄̄̄
−  − 
−   − 

¯̄̄̄


(d) 1
2

¯̄̄̄
−  − 
−   − 

¯̄̄̄
= 1

2 (( − )( − ) − ( − )( − )) which is 1
2 times the difference of two

products of integers, and hence, is rational.

(18) (a) F (b) T (c) F (d) F (e) T

Section 3.2

(1) (a) (II): h1i ← −3 h2i+ h1i; determinant = 1
(b) (III): h2i ↔ h3i; determinant = −1
(c) (I): h3i ← −4 h3i; determinant = −4
(d) (II): h2i ← 2 h1i+ h2i; determinant = 1
(e) (I): h1i ← 1

2 h1i; determinant = 1
2

(f) (III): h1i ↔ h2i; determinant = −1

(2) (a) 30 (b) −3 (c) −4 (d) 3 (e) 35 (f) 20

(3) (a) Determinant = −2; nonsingular
(b) Determinant = 1; nonsingular

(c) Determinant = −79; nonsingular
(d) Determinant = 0; singular

(4) (a) Determinant = −1; the system has only the trivial solution.

(b) Determinant = 0; the system has nontrivial solutions. (One nontrivial solution is (1 7 3)).

(c) Determinant = −42; the system has only the trivial solution.

(5) Use Theorem 3.2.

(6) Use row operations to reverse the order of the rows of A. This can be done using 3 Type (III)

operations, an odd number. (These operations are h1i ↔ h6i, h2i ↔ h5i and h3i ↔ h4i.) Hence, by
part (3) of Theorem 3.3, |A| = −162534435261.
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(7) If |A| 6= 0, A−1 exists. Hence AB = AC =⇒ A−1AB = A−1AC =⇒ B = C.

(8) (a) Base Step: When  = 1, A = [11]. Then B = (A) (with  = 1) = [11]. Hence, |B| = 11 =
|A|

(b) Inductive Hypothesis: Assume that if A is an ×  matrix, and  is the row operation

(I): hi←  hi  and B = (A), then |B| = |A|.
Note: In parts (c) and (d), we must prove that if A is an ( + 1) × ( + 1) matrix and  is the row

operation (I): hi←  hi  and B = (A), then |B| = |A|.
(c) Inductive Step when  6= :

|B| = +11B+11 + · · ·+ +1B+1 + +1+1B+1+1
= +11(−1)+1+1|B+11|+ · · ·+ +1(−1)+1+|B+1|

+ +1+1(−1)+1++1|B+1+1|

But since |B+1| is the determinant of the  ×  matrix A+1 after the row operation (I):

hi←  hi has been performed (since  6= ), the inductive hypothesis shows that each |B+1| =
|A+1| Since each +1 = +1, we have

|B| = +11(−1)+1+1|A+11|+ · · ·+ +1(−1)+1+|A+1|
+ +1+1(−1)+1++1|A+1+1|

= |A|

(d) Inductive Step when  = : Again,

|B| = +11B+11 + · · ·+ +1B+1 + +1+1B+1+1

Since  = , each +1 = +1, while each B+1 = A+1 (since the first  rows of A are left

unchanged by the row operation in this case). Hence,

|B| = (+11A+11) + · · ·+ (+1A+1) + (+1+1A+1+1) = |A|

(9) (a) In order to add a multiple of one row to another, we need at least two rows. Hence  = 2 here.

(b) Let A =

∙
11 12
21 22

¸
 Then the row operation (II): h1i ← h2i + h1i produces

B =

∙
21 + 11 22 + 12

21 22

¸


and |B| = (21 + 11)22 − (22 + 12)21 which reduces to 1122 − 1221 = |A|

(c) Let A =

∙
11 12
21 22

¸
 Then the row operation (II): h2i ← h1i + h2i produces

B =

∙
11 12

11 + 21 12 + 22

¸


and |B| = 11(12 + 22)− 12(11 + 21) which reduces to 1122 − 1221 = |A|
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(10) (a) Inductive Hypothesis: Assume that if A is an (− 1)× (− 1) matrix and  is a Type (II) row

operation, then |(A)| = |A|.
To complete the Inductive Step, we must prove that if A is an × matrix, and  is a Type (II)
row operation, then |(A)| = |A|
In what follows, let  be the Type (II) row operation hi←  hi+ hi (so,  6= ).

(b) Inductive Step when  6=   6= : Let B = (A). Then |B| = 1B1 + · · ·+ B But since
the th row of A is not affected by , each  =  Also, each B = (−1)+|B| and |B|
is the determinant of the (− 1)× (− 1) matrix (A). But by the inductive hypothesis, each
|B| = |A|. Hence, |B| = |A|.

(c) Since  6= , we can assume  6= . Let  = , and let  6= 
The th row of 1(2(1(A)))

= th row of 2(1(A))
= th row of 1(A) + (th row of 1(A))
= th row of A+ (th row of A)
= th row of (A).

The th row of 1(2(1(A)))
= th row of 2(1(A))
= th row of 1(A) (since  6= )
= th row of A = th row of (A).

The th row (where  6=  ) of 1(2(1(A)))
= th row of 2(1(A)) (since  6=  )
= th row of 1(A) (since  6= )
= th row of A (since  6=  )
= th row of (A) (since  6=  = ).

(d) Inductive Step when  = : From part (c), we have:

|(A)| = |1(2(1(A)))| = −|2(1(A))| (by part (3) of Theorem 3.3)

= −|1(A)| (by part (b), since   6=  = )
= −(−|A|) (by part (3) of Theorem 3.3) = |A|

(e) Since  6= , we can assume  6=  Now,
the th row of 1(3(1(A)))

= th row of 3(1(A))
= th row of 1(A) + (th row of 1(A))
= th row of A+ (th row of A) (since  6= )
= th row of (A) (since  = ).

The th row of 1(3(1(A)))
= th row of 3(1(A))
= th row of 1(A) (since  6= )
= th row of A = th row of (A) (since  6= ).

The th row of 1(3(1(A)))
= th row of 3(1(A))
= th row of 1(A) (since  6= ) = th row of A
= th row of (A) (since  6= ).

The th row (where  6=   ) of 1(3(1(A)))
= th row of 3(1(A))
= th row of 1(A)
= th row of A
= th row of (A).
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(f) Inductive Step when  = :
|(A)| = |1(3(1(A)))| = −|3(1(A))| (by part (3) of Theorem 3.3)

= −|1(A)| (by part (b))
= −(−|A|) (by part (3) of Theorem 3.3) = |A|

(11) (a) Suppose the th row of A is a row of all zeroes. Let  be the row operation (I): hi← 2 hi. Then
|(A)| = 2|A| by part (1) of Theorem 3.3. But also |(A)| = |A| since  has no effect on A.
Hence, 2|A| = |A|, so |A| = 0.

(b) If A contains a row of zeroes, rank(A)   (since the reduced row echelon form of A also contains

at least one row of zeroes). Hence by Corollary 3.6, |A| = 0.
(12) (a) Let rows   of A be identical. Let  be the row operation (III): hi ↔ hi  Then, (A) = A,

and so |(A)| = |A| But by part (3) of Theorem 3.3, |(A)| = −|A| Hence, |A| = −|A| and
so |A| = 0

(b) If two rows of A are identical, then subtracting one of these rows from the other shows that A is

row equivalent to a matrix with a row of zeroes. Use part (b) of Exercise 11.

(13) (a) Suppose the th row of A = (th row of A). Using the row operation (II): hi ← − hi + hi
shows that A is row equivalent to a matrix with a row of zeroes. Use part (a) of Exercise 11.

(b) Use the given hint, Theorem 2.7 and Corollary 3.6.

(14) (a) We present two different proofs of this result.

First proof: LetA =

∙
B C
O D

¸
. If |B| = 0, then, when row reducingA into upper triangular

form, one of the first  columns will not be a pivot column. Similarly, if |B| 6= 0 and |D| = 0,
one of the last (−) columns will not be a pivot column. In either case, some column will not
contain a pivot, and so rank(A)  . Hence, in both cases, |A| = 0 = |B||D|.

Now suppose that both |B| and |D| are nonzero. Then the row operations for the first 
pivots used to put A into upper triangular form will be the same as the row operations for the

first  pivots used to put B into upper triangular form (putting 1’s along the entire main diagonal

of B). These operations convert A into the matrix

∙
U G
O D

¸
, where U is an  ×  upper

triangular matrix with 1’s on the main diagonal, and G is some  × ( −) matrix. Hence,
at this point in the computation of |B|, the multiplicative factor  that we use to calculate the

determinant (as in Example 5 in the text) equals 1|B|.
The remaining (−) pivots to put A into upper triangular form will involve the same

row operations needed to put D into upper triangular form (with 1’s all along the main diagonal).
Clearly, this means that the multiplicative factor  must be multiplied by 1|D|, and so the new
value of  equals 1(|B||D|). Since the final matrix is in upper triangular form with 1’s all along
the main diagonal, its determinant is 1. Multiplying this by the reciprocal of the final value of 
(as in Example 5) yields |A| = |B||D|, completing the first proof.

Second proof: Let A =

∙
B C
O D

¸
, where B is an × submatrix, C is an × (−)

submatrix, D is an (−)× (−) submatrix, and O is an (−)× zero submatrix. Let

 = −, so that D is a  ×  matrix. We will prove |A| = |B| |D| by induction on .
Base Step ( = 1):

|A| = 1A1 + · · ·+ A = 0A1 + · · ·+ 0A(−1) + 11 |B| = |D| |B| 
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Inductive Step: Assume |A| = |B| |D| whenever D is a (− 1)× (− 1) matrix. We must
prove |A| = |B| |D| when D is a  ×  matrix. Now, |A| =

1A1+· · ·+A = 0A1+· · ·+0A(−)+1 (−1)2−+1
¯̄
A(−+1)

¯̄
+· · ·+ (−1)2 |A| 

But A(−+) =
∙
B G

O D

¸
 where G is the matrix C with its th column removed. Hence,

by the inductive hypothesis |A| = 1 (−1)2−+1 |B| |D1|+· · ·+ (−1)2 |B| |D|. Now, +
can be expressed as (2−+)+2(−), and so has the same parity (even or odd) as 2−+, and
hence (−1)2−+ = (−1)+. Therefore, |A| = 1 (−1)+1 |B| |D1|+ · · ·+  (−1)2 |B| |D|
= |B|

³
1 (−1)+1 |D1|+ · · ·+  (−1)2 |D|

´
= |B| |D|, completing the second proof.

(b) (18− 18)(20− 3) = 0(17) = 0
(15) Follow the hint in the text. If A is row equivalent to B in reduced row echelon form, follow the method

in Example 5 in the text to find determinants using row reduction by maintaining a multiplicative

factor  throughout the process. But, since the same rules work for  with regard to row operations
as for the determinant, the same factor  will be produced for  . If B = I, then (B) = 1 = |B|.
Since the factor  is the same for  and the determinant, (A) = (1 )(B) = (1 )|B| = |A|. If,
instead, B 6= I, then the th row of B will be all zeroes. Perform the operation (I): hi ← 2hi on
B, which yields B. Then, (B) = 2(B), implying (B) = 0. Hence, (A) = (1 )0 = 0.

(16) By Corollary 3.6 and part (1) of Theorem 2.7, the homogeneous system AX = 0 has nontrivial
solutions. Let B be any × matrix such that every column of B is a nontrivial solution for AX = 0.
Then the th column of AB = A(th column of B) = 0 for every . Hence, AB = O.

(17) (a) F (b) T (c) F (d) F (e) F (f) T

Section 3.3

(1) (a) 31(−1)3+1|A31|+ 32(−1)3+2|A32|+ 33(−1)3+3|A33|+ 34(−1)3+4|A34|
(b) 11(−1)1+1|A11|+ 12(−1)1+2|A12|+ 13(−1)1+3|A13|+ 14(−1)1+4|A14|
(c) 14(−1)1+4|A14|+ 24(−1)2+4|A24|+ 34(−1)3+4|A34|+ 44(−1)4+4|A44|
(d) 11(−1)1+1|A11|+ 21(−1)2+1|A21|+ 31(−1)3+1|A31|+ 41(−1)4+1|A41|

(2) (a) −76 (b) 465 (c) 102 (d) 410

(3) (a) {(−4 3−7)} (b) {(5−1−3)} (c) {(6 4−5)} (d) {(4−1−3 6)}

(4) (a) Suppose  is the Type (I) operation hi ←  hi. Then (I) is the diagonal matrix having 1’s
in every entry on the main diagonal, except for the ( ) entry, which has the value . But, since
(I) is a diagonal matrix, it is symmetric.

(b) Suppose  is the Type (III) operation hi ↔ hi. Then the only nonzero entries off the main
diagonal for (I) are the ( ) entry and the ( ) entry, which are both 1’s. Hence, all entries
across the main diagonal from each other in (I) are equal, and so (I) is symmetric.
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(c) Suppose  is the Type (II) operation hi←  hi+ hi and  is the Type (II) operation
hi ←  hi + hi. Then (I) is the  ×  matrix having 1’s on the main diagonal and 0’s
everywhere else, except for the ( ) entry, which has the value . Similarly, (I) has 1’s all
along the main diagonal and 0’s everywhere else, except for the ( ) entry, which has the value

. However, this exactly describes the matrix ((I))

.

(5) (a) If A is nonsingular, (A )−1 = (A−1) by part (4) of Theorem 2.12.

For the converse, A−1 = ((A )−1) .

(b) |AB| = |A||B| = |B||A| = |BA|.
(6) (a) Use the fact that |AB| = |A||B|.

(b) |AB| = |−BA| =⇒ |AB| = (−1)|BA| (by Corollary 3.4) =⇒ |A||B| = (−1)|B||A| (since  is
odd). Hence, either |A| = 0 or |B| = 0.

(7) (a) |AA | = |A||A | = |A||A| = |A|2 ≥ 0. (b) |AB | = |A||B | = |A ||B|

(8) (a) A = −A, so |A| = |A | = | −A| = (−1)|A| (by Corollary 3.4) = (−1)|A| (since  is odd).
Hence |A| = 0.

(b) Consider A =

∙
0 −1
1 0

¸
.

(9) (a) I = I = I
−1
 .

(b) Consider

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦.
(c) |A | = |A−1| =⇒ |A| = 1|A|

=⇒ |A|2 = 1 =⇒ |A| = ±1.

(10) Note that

B =

⎡⎣ 9 0 −3
3 2 −1
−6 0 1

⎤⎦
has a determinant equal to −18. Hence, if B = A2, then |A|2 is negative, a contradiction.

(11) (a) Base Step:  = 2: |A1A2| = |A1||A2| by Theorem 3.7.

Inductive Step: Assume |A1A2 · · ·A| = |A1||A2| · · · |A|, for any × matricesA1A2    A
Prove |A1A2 · · ·AA+1| = |A1||A2| · · · |A||A+1|, for any ×matricesA1A2    AA+1
But, |A1A2 · · ·AA+1| = |(A1A2 · · ·A)A+1| = |A1A2 · · ·A||A+1| (by Theorem 3.7) =
|A1||A2| · · · |A||A+1| by the inductive hypothesis.

(b) Use part (a) with A = A, for 1 ≤  ≤  Or, for an induction proof:
Base Step ( = 1): Obvious.

Inductive Step: |A+1| = |AA| = |A||A| = |A||A| = |A|+1
(c) Use part (b): |A| = |A| = |O| = 0, and so |A| = 0. Or, for an induction proof:

Base Step ( = 1): Obvious.
Inductive Step: Assume.A+1 = O. If A is singular, then |A| = 0, and we are done. If A is

nonsingular, A+1 = O =⇒ A+1A−1 = OA
−1 =⇒ A = O =⇒ |A| = 0 by the inductive

hypothesis, which implies A is singular, a contradiction.
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(12) (a) |A| = |A|. If |A| = 0, then |A| = 0 is not prime. Similarly, if |A| = ±1, then |A| = ±1 and
is not prime. Otherwise, letting  = |A|, we have ||  1, and |A| has || as a positive proper
divisor, for  ≥ 2.

(b) |A| = |A| = |I| = 1. Since |A| is an integer, |A| = ±1. If  is odd, then |A| 6= −1, so |A| = 1.
(13) (a) Let P−1AP = B. Suppose P is an  ×  matrix. Then P−1 is also an  ×  matrix. Hence

P−1AP is not defined unless A is also an  ×  matrix, and thus, the product B = P−1AP is
also  × .

(b) For example, consider

B =

∙
2 1
1 1

¸−1
A

∙
2 1
1 1

¸
=

∙ −6 −4
16 11

¸
 and,

B =

∙
2 −5
−1 3

¸−1
A

∙
2 −5
−1 3

¸
=

∙
10 −12
4 −5

¸


(c) A = IAI = I
−1
 AI

(d) If P−1AP = B, then PP−1APP−1 = PBP−1 =⇒ A = PBP−1. Hence (P−1)−1BP−1 = A.

(e) A similar to B implies there is a matrix P such that A = P−1BP. B similar to C implies

there is a matrix Q such that B = Q−1CQ. Hence, A = P−1BP = P−1(Q−1CQ)P =
(P−1Q−1)C(QP) = (QP)−1C(QP), and so A is similar to C.

(f) A similar to I implies there is a matrix P such that A = P−1IP. Hence, A = P−1P = I.

(g) |B| = |P−1AP| = |P−1||A||P| = |P−1||P||A| = (1|P|)|P||A| = |A|.
(14) (a) Let  be the Type (III) row operation hi↔ h−1i, let A be an × matrix and let B = (A).

Then, by part (3) of Theorem 3.3, |B| = (−1)|A|. Next, notice that the submatrix A(−1) = B

because the (−1)st row ofA becomes the th row ofB, implying the same row is being eliminated
from both matrices, and since all other rows maintain their original relative positions (notice the

same column is being eliminated in both cases). Hence,

(−1)1A(−1)1 + (−1)2A(−1)2 + · · ·+ (−1)A(−1)
= 1(−1)(−1)+1|A(−1)1|+ 2(−1)(−1)+2|A(−1)2|+ · · ·+ (−1)(−1)+|A(−1)|

(because (−1) =  for 1 ≤  ≤ )

= 1(−1)|B1|+ 2(−1)+1|B2|+ · · ·+ (−1)+−1|B|
= (−1)(1(−1)+1|B1|+ 2(−1)+2|B2|+ · · ·+ (−1)+|B|)
= (−1)|B| (by applying part (1) of Theorem 3.11 along the th row of B,

since we have assumed this result is valid for  = )
= (−1)|(A)|
= (−1)(−1)|A|
= |A|, finishing the proof.

(b) The definition of the determinant is the Base Step for an induction proof on the row number,

counting down from  to 1. Part (a) is the Inductive Step.

(15) (a) Case 1: Assume 1 ≤    and 1 ≤   . Then the ( ) entry of (A)


= ( ) entry of A = ( ) entry of A = ( ) entry of A = ( ) entry of (A ) .

Case 2: Assume  ≤    and 1 ≤   . Then the ( ) entry of (A)


= ( ) entry of A = (+1 ) entry of A = ( +1) entry of A = ( ) entry of (A ) .

Case 3: Assume 1 ≤    and  ≤   . Then the ( ) entry of (A)
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= ( ) entry of A = ( +1) entry of A = (+1 ) entry of A = ( ) entry of (A ) .

Case 4: Assume  ≤    and  ≤   . Then the ( ) entry of (A)


= ( ) entry of A = ( + 1 + 1) entry of A = (+ 1  + 1) entry of A

= ( ) entry of (A ) .

Hence, the corresponding entries of (A)
 and (A ) are all equal, proving that the matrices

themselves are equal.

(b) 1A1 + 2A2 + · · ·+ A = 1 (−1)1+ |A1 |+ 2 (−1)2+ |A2 |+ · · ·+  (−1)+ |A |
= 1 (−1)1+

¯̄̄
(A1)


¯̄̄
+ 2 (−1)2+

¯̄̄
(A2)


¯̄̄
+ · · · +  (−1)+

¯̄̄
(A)


¯̄̄
(by Theorem 3.10)

= 1 (−1)+1
¯̄̄¡
A
¢
1

¯̄̄
+ 2 (−1)+2

¯̄̄¡
A
¢
2

¯̄̄
+ · · ·+  (−1)+

¯̄̄¡
A
¢


¯̄̄
(by part (a))

=
¯̄
A
¯̄
(using part (1) of Theorem 3.11 along the th row of A ) = |A|, (by Theorem 3.10).

(16) Let A,   and B be as given in the exercise and its hint. Then by Exercise 12 in Section 3.2, |B| = 0,
since its th and th rows are the same. Also, since every row of A equals the corresponding row of B,
with the exception of the th row, the submatrices A and B are equal for 1 ≤  ≤ . Hence, A =
B for 1 ≤  ≤ . Now, computing the determinant of B using a cofactor expansion along the th row
(part (1) of Theorem 3.11) yields 0 = |B| = 1B1+2B2+· · ·+B = 1B1+2B2+· · ·+B
(because the th row of B equals the th row of A) = 1A1+ 2A2+ · · ·+ A, completing the

proof.

(17) For  6= , the ( ) entry of AB is 1A1+2A2+ · · ·+A. This equals 0 by Exercise 16. The

( ) entry of AB is 1A1 + 2A2 + · · ·+ A, which equals |A|, by part (1) of Theorem 3.11.

Hence, AB = (|A|) I.
(18) Assume in what follows that A is an ×  matrix. Let A be the th matrix (as defined in Theorem

3.12) for the matrix A.

(a) Let C = ([A|B])We must show that for each , 1 ≤  ≤  the matrix C (as defined in Theorem

3.12) for C is identical to (A)
First we consider the columns of C other than the th column. If 1 ≤  ≤  with  6= ,

then the th column of C is the same as the th column of C = ([A|B]). But since the th
column of [A|B] is identical to the th column of A, it follows that the th column of ([A|B])
is identical to the th column of (A). Therefore, for 1 ≤  ≤  with  6= , the th column of
C is the same as the th column of (A).
Finally, we consider the th column of C. Now, the th column of C is identical to the last

column of ([A|B]) = [(A)|(B)], which is (B) But since the th column of A equals B, it
follows that the th column of (A) = (B). Thus, the th column of C is identical to the th
column of (A).
Therefore, since C and (A) agree in every column, we have C = (A)

(b) Consider each type of operation in turn. First, if  is the Type (I) operation hi←  hi for some
 6= 0, then by part (1) of Theorem 3.3,

|(A)|
|(A)| =

|A|
|A| =

|A|
|A| 

If  is any Type (II) operation, then by part (2) of Theorem 3.3,

|(A)|
|(A)| =

|A|
|A| 
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If  is any Type (III) operation, then

|(A)|
|(A)| =

(−1)|A|
(−1)|A| =

|A|
|A| 

(c) In the special case when  = 1, we have A = [1]. Let B = []. Hence, A1 (as defined in Theorem

3.12) = B = [] Then the formula in Theorem 3.12 gives

1 =
|A1|
|A| =



1
= 

which is the correct solution to the equation AX = B in this case. For the remainder of the proof,
we assume   1.
If A = I, then the solution to the system is X = B. Therefore we must show that, for each

, 1 ≤  ≤ , the formula given in Theorem 3.12 yields  =  (the th entry of B). First, note
that |A| = |I| = 1. Now, the th matrix A (as defined in Theorem 3.12) for A is identical to

I except in its th column, which equals B. Therefore, the th row of A has  as its th entry,
and zeroes elsewhere. Thus, a cofactor expansion along the th row of A yields

|A| = (−1)+|I−1| = 

Hence, for each , the formula in Theorem 3.12 produces

 =
|A|
|A| =


1
= 

completing the proof.

(d) Because A is nonsingular, [A|B] row reduces to [I|X], where X is the unique solution to the sys-

tem. Let [C|D] represent any intermediate augmented matrix during this row reduction process.
Now, by part (a) and repeated use of part (b), the ratio

|C|
|C| is identical to the ratio

|A|
|A|

obtained from the original augmented matrix, for each , 1 ≤  ≤ . But part (c) proves that for
the final augmented matrix, [I|X], this common ratio gives the correct solution for , for each
, 1 ≤  ≤ . Since all of the systems corresponding to these intermediate matrices have the same
unique solution, the formula in Theorem 3.12 gives the correct solution for the original system,

[A|B], as well. Thus, Cramer’s Rule is validated.

(19) Suppose A is an ×  matrix with |A| = 0. Then, by Theorem 3.10,
¯̄
A
¯̄
= 0. Thus, by Exercise 16

in Section 3.2, there is an ×  matrix C such that AC = O. Taking the transpose of both sides

of this equation yields CA = O
 = O. Letting B = C

 completes the proof.

(20) (a) T (b) T (c) F (d) T (e) T (f) T
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Section 3.4

(1) (a) 2 − 7+ 14
(b) 3 − 62 + 3+ 10

(c) 3 − 82 + 21− 18
(d) 3 − 82 + 7− 5

(e) 4 − 33 − 42 + 12

(2) (a) 2 = {[1 1]} (b) 2 = {[−1 1 0]} (c) −1 = {[1 2 0]+ [0 0 1]}

(3) In the answers for this exercise, , , and  represent arbitrary scalars.

(a)  = 1, 1 = {[1 0]}, algebraic multiplicity of  = 2
(b) 1 = 2, 2 = {[1 0]}, algebraic multiplicity of 1 = 1;

2 = 3, 3 = {[1−1]}, algebraic multiplicity of 2 = 1
(c) 1 = 1, 1 = {[1 0 0]}, algebraic multiplicity of 1 = 1;

2 = 2, 2 = {[0 1 0]}, algebraic multiplicity of 2 = 1;
3 = −5, −5 = {[−16  37  1]} = {[−7 18 42]}, algebraic multiplicity of 3 = 1

(d) 1 = 1, 1 = {[3 1]}, algebraic multiplicity of 1 = 1;
2 = −1, −1 = {[7 3]}, algebraic multiplicity of 2 = 1

(e) 1 = 0, 0 = {[1 3 2]}, algebraic multiplicity of 1 = 1;
2 = 2, 2 = {[0 1 0] + [1 0 1]}, algebraic multiplicity of 2 = 2

(f) 1 = 13, 13 = {[4 1 3]}, algebraic multiplicity of 1 = 1;
2 = −13, −13 = {[1−4 0] + [3 0−4]}, algebraic multiplicity of 2 = 2

(g) 1 = 1, 1 = {[2 0 1 0]}, algebraic multiplicity of 1 = 1;
2 = −1, −1 = {[0 2−1 1]}, algebraic multiplicity of 2 = 1

(h) 1 = 0, 0 = {[−1 1 1 0] + [0−1 0 1]}, algebraic multiplicity of 1 = 2;
2 = −3, −3 = {[−1 0 2 2]}, algebraic multiplicity of 2 = 2

(4) (a) P =

∙
3 2
1 1

¸
 D =

∙
3 0
0 −5

¸
(b) P =

∙
2 5
1 2

¸
, D =

∙
2 0
0 −2

¸
(c) Not diagonalizable

(d) P =

⎡⎣ 6 1 1
2 2 1
5 1 1

⎤⎦, D =

⎡⎣ 1 0 0
0 −1 0
0 0 2

⎤⎦
(e) Not diagonalizable

(f) Not diagonalizable

(g) P =

⎡⎣ 2 1 0
3 0 −1
0 3 1

⎤⎦, D =

⎡⎣ 2 0 0
0 2 0
0 0 3

⎤⎦

(h) P =

⎡⎣ 6 3 1
2 1 0
−1 0 1

⎤⎦, D =

⎡⎣ 0 0 0
0 1 0
0 0 1

⎤⎦

(i) P =

⎡⎢⎢⎣
2 1 1 1
2 0 2 −1
1 0 1 0
0 1 0 1

⎤⎥⎥⎦,

D =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤⎥⎥⎦

(5) (a)

∙
32770 −65538
32769 −65537

¸
(b)

⎡⎣ −17 6 24
−15 6 20
−9 3 13

⎤⎦ (c) A49 = A
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(d)

⎡⎣ 352246 −4096 354294
−175099 2048 −175099
−175099 4096 −177147

⎤⎦ (e)

⎡⎣ 4188163 6282243 −9421830
4192254 6288382 −9432060
4190208 6285312 −9426944

⎤⎦
(6) A similar to B implies there is a nonsingular matrix P such that A = P−1BP. Hence,

A() = |I −A| = |I −P−1BP| = |P−1IP−P−1BP|
= |P−1(I −B)P| = |P−1||(I −B)||P| = 1

|P| |(I −B)||P|

=
1

|P| |P||(I −B)| = |(I −B)| = B()

(7) (a) SupposeA = PDP−1 for some diagonal matrixD. LetC be the diagonal matrix with  = ()
1
3 .

Then C3 = D. Clearly then, (PCP−1)3 = A.

(b) If A has all eigenvalues nonnegative, then A has a square root. Proceed as in part (a), only taking

square roots instead of cube roots.

(8) Let B =

⎡⎣ 15 −14 −14
−13 16 17
20 −22 −23

⎤⎦. We find a matrix P and a diagonal matrix D such that B = PDP−1.

If C is the diagonal matrix with  =
3
√
, then C

3 = D. So, ifA = PCP−1, thenA3 = (PCP−1)3 =
PC3P−1 = PDP−1 = B. Hence, to solve this problem, we first need to find P and D. To do this, we
diagonalize B.

Step 1: B() = |I3 −B| = 3 − 82 − + 8 = (− 1)(+ 1)(− 8).
Step 2: The three eigenvalues of B are 1 = 1, 2 = −1 and 3 = 8.
Step 3: Now we solve for fundamental eigenvectors.

Eigenvalue 1 = 1: [(1I3−B)|0] reduces to
⎡⎣ 1 0 1
0 1 2
0 0 0

¯̄̄̄
¯̄ 00
0

⎤⎦. This yields the fundamental eigenvector
[−1−2 1].

Eigenvalue 2 = −1: [((−1)I3 −B)|0] reduces to
⎡⎣ 1 0 0
0 1 1
0 0 0

¯̄̄̄
¯̄ 00
0

⎤⎦. This produces the fundamental
eigenvector [0−1 1].

Eigenvalue 3 = 8: [(8I3 −B)|0] reduces to

⎡⎢⎣ 1 0 −1
0 1 1

2

0 0 0

¯̄̄̄
¯̄̄ 00
0

⎤⎥⎦. This yields the fundamental eigen-
vector [2−1 2].
Step 4: Since  = 3, and we have found 3 fundamental eigenvectors, B is diagonalizable.

Step 5: P =

⎡⎣ −1 0 2
−2 −1 −1
1 1 2

⎤⎦.
Step 6: D =

⎡⎣ 1 0 0
0 −1 0
0 0 8

⎤⎦. Also, P−1 =
⎡⎣ 1 −2 −2
−3 4 5
1 −1 −1

⎤⎦.
The diagonal matrix C whose main diagonal entries are the cube roots of the eigenvalues of B. That is,
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C =

⎡⎣ 1 0 0
0 −1 0
0 0 2

⎤⎦. Finally, A = PCP−1 =

⎡⎣ 3 −2 −2
−7 10 11
8 −10 −11

⎤⎦  Direct calculation of A3 verifies

that A3 = B.

(9) The characteristic polynomial of the matrix is 2 − (+ )+ (− ), whose discriminant simplifies
to (− )2 + 4.

(10) (a) Let v be an eigenvector for A corresponding to . Then Av = v

A2v = A(Av) = A(v) = (Av) = (v) = 2v

and an analogous induction argument shows Av = v, for any integer  ≥ 1.
(b) Consider the matrix A =

∙
0 −1
1 0

¸
. Although A has no eigenvalues, A4 = I2 has 1 as an

eigenvalue.

(11) (−)|A−1|A( 1 ) = (−)|A−1| | 1I −A| = (−)|A−1( 1I −A)|
= (−)| 1


A−1 − I| = |(−)( 1A−1 − I)| = |I −A−1| = A−1().

(12) Both parts are true, because I −A is also upper triangular, and so

A() = |I −A| = (− 11)(− 22) · · · (− ), by Theorem 3.2.

(13) A () = |I −A | = |I −A | = |(I −A) | = |I −A| = A()

(14) AX = X since the entries of each row of A sum to 1. Hence  = 1 is an eigenvalue for A , and

hence for A, by Exercise 13.

(15) Base Step:  = 1. Use the argument in the text directly after the definition of similarity.
Inductive Step: Assume that if P−1AP = D, then for some   0, A = PDP−1. We must prove
that if P−1AP = D then A+1 = PD+1P−1 But A+1 = AA = (PDP−1)(PDP−1) (by the
inductive hypothesis) = PD+1P−1

(16) Since A is upper triangular, so is I−A. Thus, by Theorem 3.2, |I−A| equals the product of the
main diagonal entries of I −A, which is (− 11)(− 22) · · · (− ). Hence the main diagonal
entries ofA are the eigenvalues ofA. Thus, A has  distinct eigenvalues. Then, by the Diagonalization
Method given in Section 3.4, the necessary matrix P can be constructed (since only one fundamental

eigenvector for each eigenvalue is needed in this case), and so A is diagonalizable.

(17) Assume A is an × matrix. Then A is singular⇐⇒ |A| = 0⇐⇒ (−1)|A| = 0⇐⇒ |−A| = 0⇐⇒
|0I −A| = 0 ⇐⇒ A(0) = 0 ⇐⇒  = 0 is an eigenvalue for A.

(18) Let D = P−1AP. Then D = D = (P−1AP) = PA (P−1) = ((P )−1)−1A (P )−1, so A is

diagonalizable.

(19) D = P−1AP =⇒ D−1 = (P−1AP)−1 = P−1A−1P. But D−1 is a diagonal matrix whose main
diagonal entries are the reciprocals of the main diagonal entries of D (Since the main diagonal entries
of D are the nonzero eigenvalues of A, their reciprocals exist.) Thus, A−1 is diagonalizable.

(20) (a) The th column of AP = A(th column of P) = AP. Since P is an eigenvector for  we have
AP = P, for each .

(b) P−1P = (P
−1(th column of P)) = (th column of I) = e
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(c) The th column of P−1AP = P−1(th column of AP) = P−1(P) (by part (a)) = (e) (by
part (b)). Hence, P−1AP is a diagonal matrix with main diagonal entries 1 2     

(21) Since PD = AP, the th column of PD equals the th column of AP. But,
th column of PD

= P(th column of D)
= P(e) = Pe = (P(th column of I))
= (th column of PI)
= (th column of P) = P

Also, the th column of AP = A(th column of P) = AP Thus,  is an eigenvalue for the th column
of P.

(22) Use induction on .
Base Step ( = 1): |C| = 11+ 11, which has degree 1 if  = 1 (implying 11 6= 0), and degree 0 if
 = 0.
Inductive Step: Assume true for ( − 1) × ( − 1) matrices and prove for  ×  matrices. Using a

cofactor expansion along the first row yields

|C| = (11+ 11)(−1)2|C11|+ (12+ 12)(−1)3|C12|+ · · ·+ (1+ 1)(−1)+1|C1|

Case 1: Suppose the first row ofA is all zeroes (so each 1 = 0). Then, each of the submatrices A1 has

at most  nonzero rows. Hence, by the inductive hypothesis, each |C1| = |A1+B1| is a polynomial
of degree at most . Therefore,

|C| = 11(−1)2|C11|+ 12(−1)3|C12|+ · · ·+ 1(−1)+1|C1|

is a sum of constants multiplied by such polynomials, and hence is a polynomial of degree at most .
Case 2: Suppose some 1 6= 0. Then, at most  − 1 of the rows from 2 through  of A have a

nonzero entry. Hence, each submatrix A1 has at most  − 1 nonzero rows, and, by the inductive
hypothesis, each of |C1| = |A1+B1| is a polynomial of degree at most − 1. Therefore, each term
(1+ 1)(−1)+1|C1| is a polynomial of degree at most . The desired result easily follows.

(23) (a) |I2 −A| =
¯̄̄̄
− 11 −12
−21 − 22

¯̄̄̄
= (− 11)(− 22)− 1221

= 2 − (11 + 22)+ (1122 − 1221) = 2 − (trace(A))+ |A|
(b) Use induction on .

Base Step ( = 1): Now A() = − 11, which is a first degree polynomial with the coefficient
of its  term equal to 1.
Inductive Step: Assume that the statement is true for all (− 1)× (− 1) matrices, and prove it
is true for an ×  matrix A. Consider

C = I −A =

⎡⎢⎢⎢⎣
(− 11) −12 · · · −1
−21 (− 22) · · · −2
...

...
. . .

...

−1 −2 · · · (− )

⎤⎥⎥⎥⎦ .
Using a cofactor expansion along the first row, A() = |C| =
(−11)(−1)1+1|C11| + (−12)(−1)1+2|C12| + (−13)(−1)1+3|C13| + · · ·+(−1)(−1)1+|C1|.
Now |C11| = A11(), and so, by the inductive hypothesis, is an  − 1 degree polynomial with
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coefficient of −1 equal to 1. Hence, ( − 11)|C11| is a degree  polynomial having coefficient
1 for its  term. But, for  ≥ 2, C1 is an (− 1) × (− 1) matrix having exactly − 2 rows
containing entries which are linear polynomials, since the linear polynomials at the (1 1) and ( )
entries of C have been eliminated. Therefore, by Exercise 22, |C1 | is a polynomial of degree at
most −2. Summing to get |C| then gives an  degree polynomial with coefficient of the  term
equal to 1, since only the term (− 11)|C11| in |C| contributes to the  term in A().

(c) Note that the constant term of A() is A(0) = |0I −A| = |−A| = (−1)|A|.
(d) Use induction on .

Base Step ( = 1): Now A() = − 11. The degree 0 term is −11 = − trace(A).
Inductive Step: Assume that the statement is true for all (− 1)× (− 1) matrices, and prove
it is true for an ×  matrix A. We know that A() is a polynomial of degree  from part (b).

Then, let C = I−A as in part (b). Then, arguing as in part (b), only the term (−11)|C11| in
|C| contributes to the  and −1 terms in A(), because all of the terms of the form ±1 |C1 |
are polynomials of degree ≤ (− 2), for  ≥ 2 (using Exercise 22). Also, since |C11| = A11(),
the inductive hypothesis and part (b) imply that

|C11| = −1 − trace(A11)
−2 + (terms of degree ≤ (− 3))

Hence,

(− 11)|C11| = (− 11)(
−1 − trace(A11)

−2 + (terms of degree ≤ (− 3)))
=  − 11

−1 − trace(A11)
−1 + (terms of degree ≤ (− 2))

=  − trace(A)−1 + (terms of degree ≤ (− 2))

since 11 + trace(A11) = trace(A). This completes the proof.

(24) (a) T (b) F (c) T (d) T (e) F (f) T (g) T (h) F

Chapter 3 Review Exercises

(1) (a) (3 4) minor = |A34| = −30
(b) (3 4) cofactor = A34 = −|A34| = 30

(c) |A| = −830
(d) |A| = −830

(2) |A| = −262
(3) |A| = −42
(4) Volume = 45

(5) (a) |B| = 60 (b) |B| = −15 (c) |B| = 15

(6) (a) Yes (b) 4 (c) Yes (d) Yes

(7) 378
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(8) (a) |A| = 0 (b) No. A nontrivial solution is

∙
1
−8

¸


(9) From Exercise 17 in Section 3.3, AB = |A| I. Hence, A
³

1
|A|B


´
= I. Therefore, by Theorem

2.10,
³

1
|A|B


´
A = I, and so B

A = |A| I = AB .

(10) 1 = −4, 2 = −3, 3 = 5
(11) (a) The determinant of the given matrix is −289. Thus, we would need |A|4 = −289. But no real

number raised to the fourth power is negative.

(b) The determinant of the given matrix is zero, making the given matrix singular. Hence it can not

be the inverse of any matrix.

(12) B similar to A implies there is a matrix P such that B = P−1AP.

(a) We will prove that B = P−1AP by induction on .
Base Step:  = 1. B = P−1AP is given.
Inductive Step: Assume that B = P−1AP for some . Then

B+1 = BB = (P−1AP)(P−1AP) = P−1A(PP−1)AP

= P−1A(I)AP = P−1AAP = P−1A+1P

so B+1 is similar to A+1.

(b) |B | = |B| = |P−1AP| = |P−1||A||P| = 1
|P| |A||P| = |A| = |A |

(c) If A is nonsingular,

B−1 = (P−1AP)−1 = P−1A−1(P−1)−1 = P−1A−1P

so B is nonsingular.

Note that A = PBP−1. So, if B is nonsingular,

A−1 = (PBP−1)−1 = (P−1)−1B−1P−1 = PB−1P−1

so A is nonsingular.

(d) By part (c), A−1 = (P−1)−1B−1(P−1), proving that A−1 is similar to B−1.

(e) B+ I = P
−1AP+ I = P−1AP+P−1IP = P−1(A+ I)P.

(f) Exercise 28(c) in Section 1.5 states that trace(AB) = trace(BA) for any two  ×  matrices A
and B. In this particular case,

trace(B) = trace(P−1(AP)) = trace((AP)P−1) = trace(A(PP−1))
= trace(AI) = trace(A)

(g) If B is diagonalizable, then there is a matrix Q such that D = Q−1BQ is diagonal. Thus,

D = Q−1(P−1AP)Q = (Q−1P−1)A(PQ) = (PQ)−1A(PQ), and so A is diagonalizable. Since

A is similar to B if and only if B is similar to A (see Exercise 13(d) in Section 3.3), an analogous

argument shows that A is diagonalizable =⇒ B is diagonalizable.
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(13) A (X+ Y) = AX+ AY = X+ Y =  (X+ Y). This, and the given fact that X+ Y is

nonzero, prove that X+ Y is an eigenvector for A corresponding to the eigenvalue .

(14) (a) A() = 3 − 2 − 10− 8 = (+ 2)(+ 1)(− 4);
Eigenvalues: 1 = −2, 2 = −1, 3 = 4;
Eigenspaces: −2 = {[−1 3 3] |  ∈ R}, −1 = {[−2 7 7] |  ∈ R},

4 = {[−3 10 11] |  ∈ R};

P =

⎡⎣ −1 −2 −3
3 7 10
3 7 11

⎤⎦; D =

⎡⎣ −2 0 0
0 −1 0
0 0 4

⎤⎦
(b) A() = 3 + 2 − 21− 45 = (+ 3)2(− 5);

Eigenvalues: 1 = 5, 2 = −3;
Eigenspaces: 5 = {[−1 4 4] |  ∈ R}; −3 = {[−2 1 0] + [2 0 1] |   ∈ R};

P =

⎡⎣ −1 −2 2
4 1 0
4 0 1

⎤⎦; D =

⎡⎣ 5 0 0
0 −3 0
0 0 −3

⎤⎦
(15) (a) A() = 3−1 = (−1)(2++1).  = 1 is the only eigenvalue, having algebraic multiplicity 1.

Thus, at most 1 fundamental eigenvector will be produced, which is insufficient for diagonalization
by Step 4 of the Diagonalization Method.

(b) A() = 4+63+92 = 2(+3)2. Even though the eigenvalue  = −3 has algebraic multiplicity
2, only 1 fundamental eigenvector is produced for  because (−3I4 −A) has rank 3. In fact, we
get only 3 fundamental eigenvectors overall, which is insufficient for diagonalization by Step 4 of
the Diagonalization Method.

(16) A13 =

⎡⎣ −9565941 9565942 4782976
−12754588 12754589 6377300
3188648 −3188648 −1594325

⎤⎦
(17) (a) 1 = 2, 2 = −1, 3 = 3

(b) 2 = {[1−2 1 1] |  ∈ R}, −1 = {[1 0 0 1] + [3 7−3 2] |   ∈ R},
3 = {[2 8−4 3] |  ∈ R}

(c) |A| = 6

(18) (a) F

(b) F

(c) F

(d) F

(e) T

(f) T

(g) T

(h) T

(i) F

(j) T

(k) F

(l) F

(m) T

(n) F

(o) F

(p) F

(q) F

(r) T

(s) T

(t) F

(u) F

(v) T

(w) T

(x) T

(y) F

(z) F
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Chapter 4

Section 4.1

(1) Property (2): ⊕ ( ⊕ ) = (⊕ )⊕ 
Property (5): ¯ (⊕ ) = (¯ )⊕ (¯ )
Property (6): (+ )¯  = (¯ )⊕ (¯ )
Property (7): ()¯  = ¯ (¯ )

(2) Let W = {[1 3 2] |  ∈ R}. First, W is closed under addition because

[1 3 2] + [1 3 2] = (+ )[1 3 2]

which has the correct form. Similarly, ([1 3 2]) = ()[1 3 2], proving closure under scalar multipli-
cation. Now, Properties (1), (2), (5), (6), (7), and (8) are true for all vectors in R3 by Theorem 1.3,

and hence are true in W. Property (3) is satisfied because [0 0 0] = 0[1 3 2] ∈W, and
[0 0 0] + [1 3 2] = [1 3 2] + [0 0 0] = [0 0 0]

Finally, Property (4) follows from the equation ([1 3 2]) + ((−)[1 3 2]) = [0 0 0].
(3) Let W = {f ∈ P3 | f(2) = 0}. First, W is closed under addition since the sum of polynomials of degree

≤ 3 has degree ≤ 3, and because if f g ∈ W, then (f + g)(2) = f(2) + g(2) = 0 + 0 = 0, and so
(f +g) ∈W. Similarly, if f ∈W and  ∈ R, then f has the proper degree, and (f)(2) = f(2) = 0 =
0, thus establishing closure under scalar multiplication. Now Properties (2), (5), (6), (7), and (8) are
true for all real-valued functions on R, as shown in Example 6 in Section 4.1 of the text. Property (1)
holds because for every  ∈ R, f() and g() are both real numbers, and so f() + g() = g() + f()
by the commutative law of addition for real numbers, which means f + g = g + f . Also, Property
(3) holds because the zero function z is a polynomial of degree 0, and z(2) = 0 so z ∈ W. Finally,
Property (4) is true since −f is the additive inverse of f , −f has the correct degree, and (−f)(2) =
−f(2) = −0 = 0 so −f ∈W.

(4) Clearly the operation ⊕ is commutative. Also, ⊕ is associative because
(x⊕ y)⊕ z = (3 + 3)13 ⊕ z = (((3 + 3)13)3 + 3)13 = ((3 + 3) + 3)13

= (3 + (3 + 3))13 = (3 + ((3 + 3)13)3)13 = x⊕ (3 + 3)13

= x⊕ (y⊕ z)

Clearly, the real number 0 acts as the additive identity, and, for any real number , the additive inverse
of  is −, because (3 + (−)3)13 = 013 = 0, the additive identity.
The first distributive law holds because

¯ (x⊕ y) = ¯ (3 + 3)13 = 13(3 + 3)13 = ((3 + 3))13

= (3 + 3)13 = ((13)3 + (13)3)13 = (13)⊕ (13)
= (¯ x)⊕ (¯ y)

Similarly, the other distributive law holds because

(+ )¯ x = (+ )13 = (+ )13(3)13 = (3 + 3)13

= ((13)3 + (13)3)13 = (13)⊕ (13)
= (¯ x)⊕ (¯ x)
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Associativity of scalar multiplication holds since

()¯ x = ()13 = 1313 = 13(13) = ¯ (13) = ¯ (¯ x)

Finally, 1¯ x = 113 = 1 = x.

(5) The set is not closed under addition. For example,

∙
1 1
1 1

¸
+

∙
1 2
2 4

¸
=

∙
2 3
3 5

¸
.

(6) The set does not contain the zero vector.

(7) Property (8) is not satisfied. For example, 1¯ 5 = 0 6= 5.
(8) Properties (2), (3), and (6) are not satisfied. Property (4) makes no sense without Property (3). The

following is a counterexample for Property (2):

3⊕ (4⊕ 5) = 3⊕ 18 = 42 but (3⊕ 4)⊕ 5 = 14⊕ 5 = 38

(9) Properties (3) and (6) are not satisfied. Property (4) makes no sense without Property (3). The

following is a counterexample for Property (6):

(1 + 2)¯ [3 4] = 3¯ [3 4] = [9 12] but (1¯ [3 4])⊕ (2¯ [3 4]) = [3 4]⊕ [6 8] = [9 0]

(10) Not a vector space. Property (6) is not satisfied. For example, (1 + 2)¯ 3 = 3¯ 3 = 9, but
(1¯ 3)⊕ (2¯ 4) = 3⊕ 8 = (35 + 85)15 = 3301115 ≈ 801183

(11) Suppose 01 and 02 are both zero vectors. Then, 01 = 01 + 02 = 02.

(12) Zero vector = [2−3]; additive inverse of [ ] = [4− −6− ]

(13) (a) Add −v to both sides.
(b) v = v =⇒ v + (−(v)) = v + (−(v)) =⇒ v + (−1)(v) = 0 (by Theorem 4.1, part (3),

and Property (4)) =⇒ v + (−)v = 0 (by Property (7)) =⇒ ( − )v = 0 (by Property (6))
=⇒ −  = 0 (by Theorem 4.1, part (4)) =⇒  = .

(c) Multiply both sides by the scalar 1

 and use Property (7).

(14) For the Closure Properties, and Properties (2), (5), (6), (7), (8), mimic the steps in Example 6 in

Section 4.1 in the text, restricting the proof to polynomial functions only. For Property (1), mimic

the step for Property (1) in the answer to Exercise 3 above. Also, Property (3) holds because the zero

polynomial z (of degree zero) in P serves as an additive identity since z + p = p + z = p for any
polynomial p. Finally, Property (4) is true since, for any polynomial p, −p is a polynomial that has
the property p+ (−p) = (−p) + p = z (the additive identity), and so −p ∈ P serves as the additive
inverse of p.

(15) For the Closure Properties, and Properties (2), (5), (6), (7), (8), mimic the steps in Example 6 in

Section 4.1 in the text, generalizing the proofs to allow the domain of the functions to be the set 
rather than R. For Property (1), mimic the step for Property (1) in the answer to Exercise 3 above.
Also, Property (3) holds because the zero function z with domain  serves as an additive identity

since z + f = f + z = f  for any function f ∈ V. Finally, Property (4) is true since, for any function
f ∈ V, −f is a function with domain  that has the property f + (−f) = (−f) + f = z (the additive
identity), and so −f ∈ V serves as the additive inverse of f .
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(16) Base Step:  = 1. Then 1v1 ∈ V since V is closed under scalar multiplication.
Inductive Step: Assume 1v1+ · · ·+ v ∈ V if v1    v ∈ V,
1      ∈ R Prove 1v1+ · · ·+ v + +1v+1 ∈ V
if v1    vv+1 ∈ V, 1      +1 ∈ R But,

1v1 + · · ·+ v + +1v+1 = (1v1 + · · ·+ v) + +1v+1

= w + +1v+1 (by the inductive hypothesis).

Also, +1v+1 ∈ V since V is closed under scalar multiplication. Finally, w + +1v+1 ∈ V since V
is closed under addition.

(17) 0v = 0v+ 0 = 0v+ (0v+ (−(0v))) = (0v+ 0v) + (−(0v)) = (0 + 0)v+ (−(0v)) = 0v+ (−(0v)) = 0.
(18) Let V be a nontrivial vector space, and let v ∈ V with v 6= 0. Then the set  = {v |  ∈ R} is

a subset of V, because V is closed under scalar multiplication. Also, if  6=  then v 6= v, since
v = v⇒ v− v = 0⇒ (− )v = 0⇒  =  (by part (4) of Theorem 4.1). Hence, the elements of

 are distinct, making  an infinite set, since R is infinite. Thus, V has an infinite number of elements
because it has an infinite subset.

(19) (a) F (b) F (c) T (d) T (e) F (f) T (g) T

Section 4.2

(1) In what follows, V represents the given subset.

(a) Not a subspace; no zero vector.

(b) Not a subspace; not closed under either operation.

Counterexample for scalar multiplication: 2[1 1] = [2 2] ∈ V
(c) Subspace. Nonempty: [0 0] ∈ V

The vectors in V are precisely those of the form [1 2], where  is a scalar.
Addition: V is closed under addition because 1[1 2] + 2[1 2] = (1 + 2)[1 2], which has the
required form since 1 + 2 is a scalar.
Scalar multiplication: V is closed under scalar multiplication because ([1 2]) = ()[1 2] which
has the required form since  is a scalar.

(d) Not a subspace; not closed under addition.

Counterexample: [1 0] + [0 1] = [1 1] ∈ V
(e) Not a subspace; no zero vector.

(f) Subspace. Nonempty: [0 0] ∈ V.
The vectors in V are precisely those of the form [ 0] = [1 0]
Addition: V is closed under addition since 1[1 0]+2[1 0] = (1+2)[1 0], which has the required
form since 1 + 2 is a scalar.
Scalar multiplication: V is closed under scalar multiplication since ([1 0]) = ()[1 0], which
has the required form since  is a scalar.

(g) Not a subspace; not closed under addition.

Counterexample: [1 1] + [1−1] = [2 0] ∈ V.

Copyright c° 2016 Elsevier Ltd. All rights reserved. 54



Answers to Exercises Section 4.2

(h) Subspace. Nonempty: [0 0] ∈ V since 0 = −3(0).
The vectors in V are precisely those of the form [−3] = [1−3]
Addition: V is closed under addition since 1[1−3] + 2[1−3] = (1 + 2)[1−3], which has the
required form since 1 + 2 is a scalar.
Scalar multiplication: V is closed under scalar multiplication since ([1−3]) = ()[1−3] which
has the required form since  is a scalar.

(i) Not a subspace; no zero vector since 0 6= 7(0)− 5.
(j) Not a subspace; not closed under either operation.

Counterexample for addition: [1 1] + [2 4] = [3 5] ∈ V, since 5 6= 32.
(k) Not a subspace; not closed under either operation.

Counterexample for scalar multiplication: 2[0−4] = [0−8] ∈ V, since −8  2(0)− 5.
(l) Not a subspace; not closed under either operation.

Counterexample for scalar multiplication: 2[075 0] = [15 0] ∈ V.
(2) In what follows, V represents the given subset.

(a) Subspace. Nonempty: O22 ∈ V
The matrices in V are precisely those of the form

∙
 −
 0

¸
= 

∙
1 −1
0 0

¸
+ 

∙
0 0
1 0

¸


Addition: V is closed under matrix addition sinceµ
1

∙
1 −1
0 0

¸
+ 1

∙
0 0
1 0

¸¶
+

µ
2

∙
1 −1
0 0

¸
+ 2

∙
0 0
1 0

¸¶
= (1 + 2)

∙
1 −1
0 0

¸
+ (1 + 2)

∙
0 0
1 0

¸


which is of the required form since 1 + 2 and 1 + 2 are scalars.
Scalar multiplication: V is closed under scalar multiplication because



µ


∙
1 −1
0 0

¸
+ 

∙
0 0
1 0

¸¶
= ()

∙
1 −1
0 0

¸
+ ()

∙
0 0
1 0

¸


which is of the required form since  and  are scalars.

(b) Not a subspace; not closed under addition.

Counterexample:

∙
1 1
0 0

¸
+

∙
0 0
1 1

¸
=

∙
1 1
1 1

¸
∈ V.

(c) Subspace. Nonempty: O22 ∈ V.
The matrices in V are precisely those of the form∙

 
 

¸
= 

∙
1 0
0 0

¸
+ 

∙
0 1
1 0

¸
+ 

∙
0 0
0 1

¸


Addition: V is closed under matrix addition sinceµ
1

∙
1 0
0 0

¸
+ 1

∙
0 1
1 0

¸
+ 1

∙
0 0
0 1

¸¶
+

µ
2

∙
1 0
0 0

¸
+ 2

∙
0 1
1 0

¸
+ 2

∙
0 0
0 1

¸¶
= (1 + 2)

∙
1 0
0 0

¸
+ (1 + 2)

∙
0 1
1 0

¸
+ (1 + 2)

∙
0 0
0 1

¸
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which is of the required form, since 1 + 2 1 + 2 and 1 + 2 are scalars.
Scalar multiplication: V is closed under scalar multiplication because



µ


∙
1 0
0 0

¸
+ 

∙
0 1
1 0

¸
+ 

∙
0 0
0 1

¸¶
= (1)

∙
1 0
0 0

¸
+ (1)

∙
0 1
1 0

¸
+ (1)

∙
0 0
0 1

¸


which is of the required form, since 1, 1, and 1 are scalars.

(d) Not a subspace; no zero vector since O22 is singular.

(e) Subspace. Nonempty: O22 ∈ V.
A typical element of V has the form

∙
 
 

¸
, where  = −(+ + ). Therefore, the matrices

in V are precisely those of the form∙
 
 −(+ + )

¸
= 

∙
1 0
0 −1

¸
+ 

∙
0 1
0 −1

¸
+ 

∙
0 0
1 −1

¸


Addition: V is closed under addition becauseµ
1

∙
1 0
0 −1

¸
+ 1

∙
0 1
0 −1

¸
+ 1

∙
0 0
1 −1

¸¶
+

µ
2

∙
1 0
0 −1

¸
+ 2

∙
0 1
0 −1

¸
+ 2

∙
0 0
1 −1

¸¶
= (1 + 2)

∙
1 0
0 −1

¸
+ (1 + 2)

∙
0 1
0 −1

¸
+ (1 + 2)

∙
0 0
1 −1

¸


which is of the required form, since 1 + 2 1 + 2 and 1 + 2 are scalars.
Scalar multiplication: V is closed under scalar multiplication since



µ


∙
1 0
0 −1

¸
+ 

∙
0 1
0 −1

¸
+ 

∙
0 0
1 −1

¸¶
= ()

∙
1 0
0 −1

¸
+ ()

∙
0 1
0 −1

¸
+ ()

∙
0 0
1 −1

¸


which is of the required form, since , , and  are scalars.

(f) Subspace. Nonempty: O22 ∈ V.
The matrices in V are precisely those of the form∙

 
 −

¸
= 

∙
1 0
0 −1

¸
+ 

∙
0 1
0 0

¸
+ 

∙
0 0
1 0

¸


Addition: V is closed under addition sinceµ
1

∙
1 0
0 −1

¸
+ 1

∙
0 1
0 0

¸
+ 1

∙
0 0
1 0

¸¶
+

µ
2

∙
1 0
0 −1

¸
+ 2

∙
0 1
0 0

¸
+ 2

∙
0 0
1 0

¸¶
= (1 + 2)

∙
1 0
0 −1

¸
+ (1 + 2)

∙
0 1
0 0

¸
+ (1 + 2)

∙
0 0
1 0

¸
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which is of the required form, since 1 + 2 1 + 2 and 1 + 2 are scalars.
Scalar multiplication: V is closed under scalar multiplication since



µ


∙
1 0
0 −1

¸
+ 

∙
0 1
0 0

¸
+ 

∙
0 0
1 0

¸¶
= ()

∙
1 0
0 −1

¸
+ ()

∙
0 1
0 0

¸
+ ()

∙
0 0
1 0

¸


which is of the required form, since , , and  are scalars.

(g) Subspace. Let B =

∙
1 3
−2 −6

¸
. Nonempty: O22 ∈ V because O22B = O22.

Addition: If AC ∈ V, then (A+C)B = AB+CB = O22 +O22 = O22. Hence, (A+C) ∈ V.
Scalar multiplication: If A ∈ V, then (A)B = (AB) = O22 = O22, and so (A) ∈ V.

(h) Not a subspace; not closed under addition.

Counterexample:

∙
1 1
0 0

¸
+

∙
0 0
1 1

¸
=

∙
1 1
1 1

¸
∈ V.

(3) In what follows, V represents the given subset, and z represents the zero polynomial.
(a) Subspace. Nonempty: Clearly, z ∈ V.

Addition:

(5 + 4 + 3 + 2 + + ) + (5 + 4 + 3 + 2 + + )

= (+ )5 + (+ )4 + (+ )3 + (+ )2 + (+ )+ (+ ) ∈ V;
Scalar multiplication:

(5 + 4 + 3 + 2 + + )

= ()5 + ()4 + ()3 + ()2 + ()+ () ∈ V
(b) Subspace. Nonempty: z ∈ V. Suppose pq ∈ V.

Addition: (p+ q)(3) = p(3) + q(3) = 0 + 0 = 0. Hence (p+ q) ∈ V.
Scalar multiplication: (p)(3) = p(3) = (0) = 0. Thus (p) ∈ V.

(c) Subspace. Nonempty: z ∈ V.
Addition:

(5 + 4 + 3 + 2 + − (+ + + + ))

+ (5 + 4 + 3 + 2 + − ( + + + + ))

= (+ )5 + (+ )4 + (+ )3 + (+ )2 + (+ )

+ (−(+ + + + )− ( + + + + ))

= (+ )5 + (+ )4 + (+ )3 + (+ )2 + (+ )

+ (−((+ ) + (+ ) + (+ ) + (+ ) + (+ )))

which is in V
Scalar multiplication:

(5 + 4 + 3 + 2 + − (+ + + + ))

= ()5 + ()4 + ()3 + ()2 + ()− (() + () + () + () + ())
which is in V.
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(d) Subspace. Nonempty: z ∈ V. Suppose pq ∈ V.
Addition: (p+ q)(3) = p(3) + q(3) = p(5) + q(5) = (p+ q)(5). Hence (p+ q) ∈ V.
Scalar multiplication: (p)(3) = p(3) = p(5) = (p)(5). Thus (p) ∈ V.

(e) Not a subspace; z ∈ V.
(f) Not a subspace; not closed under scalar multiplication.

Counterexample: −2 has a relative maximum at  = 0, but (−1)(−2) = 2 does not
(it has a relative minimum instead).

(g) Subspace. Nonempty: z ∈ V. Suppose pq ∈ V.
Addition: (p+ q)0(4) = p0(4) + q0(4) = 0 + 0 = 0. Hence (p+ q) ∈ V.
Scalar multiplication: (p)0(4) = p0(4) = (0) = 0. Thus (p) ∈ V.

(h) Not a subspace; z ∈ V.

(4) Let V be the given set of vectors. Setting  =  =  = 0 shows that 0 ∈ V. Hence V is nonempty. Note
that the vectors in V have the form [  0  − 2+ ] = [1 1 0 0 1]+ [0 1 0 0−2]+ [0 0 0 1 1]
For closure under addition, note that

(1[1 1 0 0 1] + 1[0 1 0 0−2] + 1[0 0 0 1 1])

+ (2[1 1 0 0 1] + 2[0 1 0 0−2] + 2[0 0 0 1 1])

= (1 + 2)[1 1 0 0 1] + (1 + 2)[0 1 0 0−2] + (1 + 2)[0 0 0 1 1]

which is clearly another vector of this same form, since 1+2, 1+2, and 1+2 are scalars. Similarly,
for closure under scalar multiplication, note that

([1 1 0 0 1] + [0 1 0 0−2] + [0 0 0 1 1])

= ()[1 1 0 0 1] + ()[0 1 0 0−2] + ()[0 0 0 1 1]

which also has the correct form since , , and  are scalars. Thus V is a subspace by Theorem 4.2.

(5) Let V be the given set of vectors. Setting  =  =  = 0 shows that 0 ∈ V. Hence V is nonempty. Note
that the vectors in V have the form [2 − 3  − 5  4 −  ] = [2 1 1 0 1] + [−3 0 0−1 0] +
[0−5 0 4 1] For closure under addition, note that

(1[2 1 1 0 1] + 1[−3 0 0−1 0] + 1[0−5 0 4 1])
+ (2[2 1 1 0 1] + 2[−3 0 0−1 0] + 2[0−5 0 4 1])

= (1 + 2)[2 1 1 0 1] + (1 + 2)[−3 0 0−1 0] + (1 + 2)[0−5 0 4 1]

which is clearly another vector of this same form, since 1+2, 1+2, and 1+2 are scalars. Similarly,
for closure under scalar multiplication,

([2 1 1 0 1] + [−3 0 0−1 0] + [0−5 0 4 1])
= ()[2 1 1 0 1] + ()[−3 0 0−1 0] + ()[0−5 0 4 1]

which also has the correct form since , , and  are scalars. Thus V is a subspace by Theorem 4.2.

(6) (a) Let V = {x ∈ R3 |x · [1−1 4] = 0}. Clearly [0 0 0] ∈ V since [0 0 0] · [1−1 4] = 0. Hence V is
nonempty. Next, if xy ∈ V, then

(x+ y) · [1−1 4] = x · [1−1 4] + y · [1−1 4] = 0 + 0 = 0
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Thus, (x+ y) ∈ V, and so V is closed under addition. Also, if x ∈ V and  ∈ R, then
(x) · [1−1 4] = (x · [1−1 4]) = (0) = 0

Therefore (x) ∈ V, so V is closed under scalar multiplication. Hence, by Theorem 4.2, V is a
subspace of R3.

(b) Plane, since it contains the nonparallel vectors [0 4 1] and [1 1 0].

(7) (a) The zero function z() = 0 is continuous, and so the set is nonempty. Also, from calculus, we

know that the sum of continuous functions is continuous, as is any scalar multiple of a continuous

function. Hence, both closure properties hold. Apply Theorem 4.2.

(b) Replace the word “continuous” everywhere in part (a) with the word “differentiable.”

(c) Let V be the given set. The zero function z() = 0 satisfies z( 12) = 0, and so V is nonempty.
Furthermore, if f g ∈ V and  ∈ R, then

(f + g)(
1

2
) = f(

1

2
) + g(

1

2
) = 0 + 0 = 0

and

(f)(
1

2
) = f(

1

2
) = 0 = 0

Hence, both closure properties hold. Now use Theorem 4.2.

(d) Let V be the given set. The zero function z() = 0 is continuous and satisfies
R 1
0
z()  = 0,

and so V is nonempty. Also, from calculus, we know that the sum of continuous functions is

continuous, as is any scalar multiple of a continuous function. Furthermore, if f g ∈ V and  ∈ R,
then Z 1

0

(f + g)()  =

Z 1

0

(f() + g())  =

Z 1

0

f() +

Z 1

0

g()  = 0 + 0 = 0

and Z 1

0

(f)()  =

Z 1

0

f()  = 

Z 1

0

f()  = 0 = 0

Hence, both closure properties hold. Finally, apply Theorem 4.2.

(8) The zero function z() = 0 is differentiable and satisfies 3(z) − 2z = 0, and so V is nonempty.
Also, from calculus, we know that the sum of differentiable functions is differentiable, as is any scalar

multiple of a differentiable function. Furthermore, if f g ∈ V and  ∈ R, then
3(f + g)0 − 2(f + g) = (3f 0 − 2f) + (3g0 − 2g) = 0 + 0 = 0

and

3(f)0 − 2(f) = 3f 0 − 2f = (3f 0 − 2f) = 0 = 0

Hence, both closure properties hold. Now use Theorem 4.2.

(9) Let V be the given set. The zero function z() = 0 is twice-differentiable and satisfies z00+2z0−9z = 0,
and so V is nonempty. From calculus, sums and scalar multiples of twice-differentiable functions are

twice-differentiable. Furthermore, if f g ∈ V and  ∈ R, then
(f + g)00 + 2(f + g)0 − 9(f + g) = (f 00 + 2f 0 − 9f) + (g00 + 2g0 − 9g) = 0 + 0 = 0

and

(f)00 + 2(f)0 − 9(f) = f 00 + 2f 0 − 9f = (f 00 + 2f 0 − 9f) = 0 = 0

Hence, both closure properties hold. Theorem 4.2 finishes the proof.
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(10) The given subset does not contain the zero function.

(11) First note that AO = OA, and so O ∈W. Thus W is nonempty. Next, let B1B2 ∈W. Then

A(B1 +B2) = AB1 +AB2 = B1A+B2A = (B1 +B2)A

and

A(B1) = (AB1) = (B1A) = (B1)A

(12) (a) Closure under addition is a required property of every vector space.

(b) Let A be a singular  ×  matrix. Then |A| = 0. But then |A| = |A| = 0, so A is also

singular.

(c) All 8 properties hold.

(d) For  = 2,

∙
1 0
0 0

¸
+

∙
0 0
0 1

¸
=

∙
1 0
0 1

¸
.

(e) No; if |A| 6= 0 and  = 0, then |A| = |O| = 0.
(13) (a) Since the given line goes through the origin, it must have either the form  = , or  = 0. In the

first case, all vectors on the line have the form [] = [1]. Notice that 1[1]+2[1] =
(1+2)[1], which also lies on  = , and ([1]) = ()[1], which also lies on  = .
Thus, both closure properties hold in this case. On the other hand, if the line has the form  = 0,
then all vectors on the line have the form [0 ] and these vectors clearly form a subspace of R2.

(b) The given subset does not contain the zero vector.

(14) Let A be an × matrix, and let V be the set of solutions of the homogeneous system AX = 0. Now,
V is nonempty since the zero -vector is a solution of AX = 0 For closure under addition, notice that
if X1 and X2 are solutions of AX = 0, then A(X1 +X2) = AX1 +AX2 = 0+ 0 = 0, so X1 +X2 is

also a solution of AX = 0. For closure under scalar multiplication, notice that if X1 is a solution of

AX = 0, then A(X1) = (AX1) = 0 = 0, so X1 is also a solution of AX = 0 Thus, by Theorem
4.2, V is a subspace of R.

(15)  = {0}, the trivial subspace of R.
(16) Let a ∈ V with a 6= 0, and let b ∈ R. Then ( 


)a = b ∈ V. (We have used bold-faced variables when

we are considering objects as vectors rather than scalars. However, a and  have the same value as
real numbers; similarly for b and .)

(17) The given subset does not contain the zero vector.

(18) Note that 0 ∈W1 and 0 ∈W2. Hence 0 ∈W1∩W2, and soW1∩W2 is nonempty. Let xy ∈W1∩W2.

Then x+y ∈W1 sinceW1 is a subspace, and x+y ∈W2 sinceW2 is a subspace. Hence, x+y ∈W1∩W2.

Similarly, if  ∈ R, then x ∈W1 and x ∈W2 since W1 and W2 are subspaces. Thus x ∈W1 ∩W2.

Now apply Theorem 4.2.

(19) If W is a subspace, then w1 w2 ∈W by closure under scalar multiplication.

Hence w1 + w2 ∈W by closure under addition.

Conversely, setting  = 0 shows that w1 ∈ W for all w1 ∈ W. This establishes closure under scalar
multiplication. Use  = 1 and  = 1 to get closure under addition.
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(20) (a) Suppose that W is a subspace of a vector space V. We give a proof by induction on .
Base Step: If  = 1, then we must show that if v1 ∈ W and 1 is a scalar, then 1v1 ∈ W

But this is certainly true since the subspace W is closed under scalar multiplication.

Inductive Step: Assume that the theorem is true for any linear combination of  vectors
in W. We must prove the theorem holds for a linear combination of  + 1 vectors. Suppose
v1v2    vv+1 are vectors in W, and 1 2      +1 are scalars. We must show that

1v1 + 2v2 + · · ·+ v + +1v+1 ∈W. However, by the inductive hypothesis, we know that
1v1+2v2+· · ·+v ∈W. Also, +1v+1 ∈W, sinceW is closed under scalar multiplication.

But since W is also closed under addition, the sum of any two vectors in W is again in W, so
(1v1 + 2v2 + · · ·+ v) + (+1v+1) ∈W.

(b) Suppose w1w2 ∈W Then w1 +w2 = 1w1 + 1w2 is a finite linear combination of vectors of W,
so w1 +w2 ∈W. Also, 1w1 (for 1 ∈ R) is a finite linear combination in W, so 1w1 ∈W. Now
apply Theorem 4.2.

(21) Apply Theorems 4.4 and 4.3.

(22) (a) F (b) T (c) F (d) T (e) T (f) F (g) T (h) T

Section 4.3

(1) (a) {[ −+ ] |   ∈ R}
(b) {[1 13 −23 ] |  ∈ R}
(c) {[ −] |   ∈ R}

(d) Span() = R3

(e) {[  −2+ + ] |    ∈ R}
(f) {[  2+  + ] |   ∈ R}

(2) (a) {3 + 2 + − (+ + ) |    ∈ R}

(b) {3 + 2 +  |    ∈ R} (c) {3 − +  |   ∈ R}

(3) (a)

½∙
 
 −− − 

¸ ¯̄̄̄
   ∈ R

¾
(b)

½∙
 

−  −8+ 3
¸ ¯̄̄̄

  ∈ R
¾ (c)

½∙
 
 

¸ ¯̄̄̄
    ∈ R

¾
=M22

(4) (a) W = row space of A = row space of

⎡⎣ 1 1 0 0
1 0 1 0
0 1 1 1

⎤⎦
= {[1 1 0 0] + [1 0 1 0] +[0 1 1 1] |    ∈ R}

(b) B =

⎡⎢⎢⎢⎣
1 0 0 −12
0 1 0 1

2

0 0 1 1
2

⎤⎥⎥⎥⎦
(c) Row space of B = {[1 0 0−12 ] + [0 1 0 12 ] + [0 0 1 12 ] |    ∈ R}

= {[  −12+ 1
2+

1
2] |    ∈ R}
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(5) (a) W = row space of A = row space of

⎡⎣ 2 1 0 3 4
3 1 −1 4 2
−4 −1 7 0 0

⎤⎦
= {[2 1 0 3 4] + [3 1−1 4 2] + [−4−1 7 0 0]}

(b) B =

⎡⎣ 1 0 0 2 −2
0 1 0 −1 8
0 0 1 1 0

⎤⎦
(c) Row space of B = {[   2− + −2+ 8] |    ∈ R}

(6)  spans R3 by the Simplified Span Method since⎡⎣ 1 3 −1
2 7 −3
4 8 −7

⎤⎦ row reduces to
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦.
(7)  does not span R3 by the Simplified Span Method since

⎡⎢⎢⎣
1 −2 2
3 −4 −1
1 −4 9
0 2 −7

⎤⎥⎥⎦ row reduces to
⎡⎢⎢⎢⎢⎢⎣
1 0 −5
0 1 −72
0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦.
Thus, span() = {[5 72 ]} so, for example, [0 0 1] is not in span().

(8) 2 + +  = (2 + + 1) + (− )(+ 1) + (− )1.

(9) The set does not span P2 by the Simplified Span Method since⎡⎣ 1 4 −3
2 1 5
0 7 −11

⎤⎦ row reduces to
⎡⎢⎢⎣
1 0 23

7

0 1 −117
0 0 0

⎤⎥⎥⎦.
Thus, span() = {−237 2 + 11

7 + } so, for example, 02 + 0+ 1 is not in the span of the set.
(10) (a) [−4 5−13] = 5[1−2−2]− 3[3−5 1] + 0[−1 1−5].

(b)  does not span R3 by the Simplified Span Method since⎡⎣ 1 −2 −2
3 −5 1
−1 1 −5

⎤⎦ row reduces to
⎡⎣ 1 0 12
0 1 7
0 0 0

⎤⎦.
Thus, span() = {[−12−7 ]}, so, for example, [0 0 1] is not in span().

(11) One answer is

−1(3 − 22 + − 3) + 2(23 − 32 + 2+ 5)− 1(42 + − 3) + 0(43 − 72 + 4− 1)

(12) Let 1 = {[1 1 0 0] [1 0 1 0] [1 0 0 1] [0 0 1 1]}. The Simplified Span Method shows that 1 spans
R4. Thus, since 1 ⊆ ,  also spans R4.
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(13) Let b ∈ R. Then b = ( 

)a ∈ span({a}). (We have used bold-faced variables when we are considering

objects as vectors rather than scalars. However, a and  have the same value as real numbers; similarly
for b and .)

(14) Apply the Simplified Span Method to . The matrix

⎡⎣ 0 1 0 1
1 0 1 0

−12 3 −2 3

⎤⎦ represents the vectors in .
Then

⎡⎣ 1 0 0 0
0 1 0 1
0 0 1 0

⎤⎦ is the corresponding reduced row echelon form matrix, which clearly indicates

the desired result.

(15) (a) {[−3 2 0] [4 0 5]}
(b) 1 = {[−32+ 4

5  ]} = {[− 32  1 0] + [45  0 1]} = { 2 [−3 2 0] + 
5 [4 0 5]} so the set in part (a)

spans 1.

(16) Span(1) ⊆ span(2), since 1v1 + · · ·+ v = (−1)(−v1) + · · ·+ (−)(−v)
Span(2) ⊆ span(1), since 1(−v1) + · · ·+ (−v) = (−1)v1 + · · ·+ (−)v

(17) If u = v, then all vectors in span() are scalar multiples of v 6= 0 Hence, span() is a line through
the origin. If u 6= v then span() is the set of all linear combinations of the vectors uv and since
these vectors point in different directions, span() is a plane through the origin.

(18) First, suppose that span() = R3. Let x be a solution to Ax = 0. Then u ·x = v · x = w ·x = 0, since
these are the three entries of Ax. Because span() = R3, there exist    such that u+v+w = x.
Hence, x · x = (u + v + w) · x = u · x + v · x + w · x = 0. Therefore, by part (3) of Theorem
1.5, x = 0. Thus, Ax = 0 has only the trivial solution. Theorem 2.7 and Corollary 3.6 then show that

|A| 6= 0.
Next, suppose that |A| 6= 0. Then Corollary 3.6 implies that rank(A) = 3. This means that the
reduced row echelon form for A has three nonzero rows. This can only occur if A row reduces to I3.
Thus, A is row equivalent to I3. By Theorem 2.9, A and I3 have the same row space. Hence, span()
= row space of A = row space of I3 = R3.

(19) Choose  = max(degree(p1),  , degree(p)).

(20) This follows immediately from Theorem 1.15.

(21) Consider the set {Ψ} of ×  matrices, where each Ψ has 1 as its ( ) entry, and every remaining
entry equal to 0. Any × matrix A can be expressed as a linear combination of the matrices in {Ψ}
by letting the coefficient of Ψ be  , the ( ) entry of A. Therefore, the set {Ψ} spansM But
since each Ψ is upper triangular or lower triangular (or both),M is spanned by U ∪ L

(22) 1 ⊆ 2 ⊆ span(2), by Theorem 4.5, part (1). Then, since span(2) is a subspace of V containing 1
(by Theorem 4.5, part (2)), span(1) ⊆ span(2) (by Theorem 4.5, part (3)).

(23) (a) Suppose  is a subspace. Then  ⊆ span() by Theorem 4.5, part (1). Also,  is a subspace
containing , so span() ⊆  by Theorem 4.5, part (3). Hence,  = span().

Conversely, if span() = , then  is a subspace by Theorem 4.5, part (2).

(b) span({skew-symmetric 3× 3 matrices}) = {skew-symmetric 3× 3 matrices}
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(24) If span(1) = span(2), then 1 ⊆ span(1) = span(2) and 2 ⊆ span(2) = span(1).
Conversely, since span(1) and span(2) are subspaces, part (3) of Theorem 4.5 shows that

if 1 ⊆ span(2) and 2 ⊆ span(1), then span(1) ⊆ span(2) and span(2) ⊆ span(1), and so
span(1) = span(2).

(25) (a) Clearly 1 ∩ 2 ⊆ 1 and 1 ∩ 2 ⊆ 2. Corollary 4.6 then implies span(1 ∩ 2) ⊆ span(1) and
span(1 ∩ 2) ⊆ span(2). The desired result easily follows.

(b) 1 = {[1 0 0] [0 1 0]}, 2 = {[0 1 0] [0 0 1]}
(c) 1 = {[1 0 0] [0 1 0]}, 2 = {[1 0 0] [1 1 0]}

(26) (a) Clearly 1 ⊆ 1 ∪2 and 2 ⊆ 1 ∪ 2. Corollary 4.6 then implies span(1) ⊆ span(1 ∪ 2) and
span(2) ⊆ span(1 ∪ 2). The desired result easily follows.

(b) If 1 ⊆ 2 then span(1) ⊆ span(2), so span(1) ∪ span(2) = span(2). Also 1 ∪ 2 = 2

(c) 1 = {5}, 2 = {4}
(27) Step 3 of the Diagonalization Method creates a set  = {X1    X} of fundamental eigenvectors

where each X is the particular solution of I − A = 0 obtained by letting the th independent
variable equal 1 while letting all other independent variables equal 0. Now, let X ∈  Then X is a

solution of I −A = 0 Suppose X is obtained by setting the th independent variable equal to 
for each  with 1 ≤  ≤  Then X = 1X1 +    + X Hence X is a linear combination of the

X’s, and thus  spans 

(28) (a) Let v1 and v2 be two vectors in span(). By the definition of span(), both v1 and v2 can be
expressed as finite linear combinations of vectors from . That is, there are finite subsets 1 =
{w1   w} and 2 = {x1   x} of  such that v1 = 1w1+· · ·+w and v2 = 1x1+· · ·+x
for some real numbers 1     1     

(b) The natural thing to do at this point would be to combine the expressions for v1 and v2 by adding
corresponding coefficients. However, each of the subsets {w1   w} or {x1   x} may contain
elements not found in the other. Therefore, we create a larger set 3 = 1 ∪ 2 containing all of
the vectors in both subsets. We rename the elements of the finite subset 3 as {z1    z}. Then
v1 = 1w1 + · · · + w can be expressed as 1z1 + · · · + z, where  =  if z = w , and

 = 0 if z ∈ {w1   w} Similarly, v2 = 1x1+ · · ·+x can be expressed as 1z1+ · · ·+z,
where  =  if z = x , and  = 0 if z ∈ {x1   x} In this way, both v1 and v2 can be
expressed as linear combinations of the vectors in 3.

(c) From parts (a) and (b), we have

v1 + v2 =
X
=1

z +
X
=1

z =
X
=1

( + ) z

a linear combination of the vectors z in the subset 3 of . Thus, v1 + v2 ∈ span().
(29) If  contains a nonzero vector v, then span() contains v, for every scalar . Now, if  and  are

different scalars, we have v 6= v (or else (− )v = 0, and then v = 0 by part (4) of Theorem 4.1).

That is, distinct scalar multiples of v form distinct vectors. Because the number of scalars is infinite,

the set of scalar multiples of v forms an infinite set of vectors, and so span() is infinite.
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(30) (a) F (b) T (c) F (d) F (e) F (f) T

Section 4.4

(1) (a) Linearly independent ([0 1 1] is not the zero vector)

(b) Linearly independent (neither vector is a multiple of the other)

(c) Linearly dependent (each vector is a multiple of the other)

(d) Linearly dependent (contains [0 0 0])

(e) Linearly dependent (Theorem 4.7)

(2) Linearly independent: (b), (c), (f). The others are linearly dependent, and the appropriate reduced

row echelon form matrix for each is given.

(a)

⎡⎣ 1 0 1
0 1 −1
0 0 0

⎤⎦ (d)

⎡⎣ 1 0 3
0 1 2
0 0 0

⎤⎦
(e)

⎡⎢⎢⎢⎣
1 0 −12
0 1 1

2

0 0 0
0 0 0

⎤⎥⎥⎥⎦
(3) Linearly independent: (a), (b). The others are linearly dependent, and the appropriate reduced row

echelon form matrix for each is given.

(c)

∙
4 60 −24
−2 −25 9

¸
row reduces to

"
1 0 3

0 1 −35

#


(d)

⎡⎣ 1 1 1 1
1 1 −1 −1
1 −1 1 −1

⎤⎦ row reduces to
⎡⎣ 1 0 0 −1
0 1 0 1
0 0 1 1

⎤⎦ 

(4) (a) Linearly independent:

⎡⎣ 1 1 1
0 0 1
−1 1 0

⎤⎦ row reduces to I3.
(b) Linearly independent:⎡⎢⎢⎣

−1 0 1
1 0 0
0 2 1
1 −1 0

⎤⎥⎥⎦ row reduces to
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎦.
(c) Consider the polynomials in P2 as corresponding vectors in R3. Then, the set is linearly dependent

by Theorem 4.7.

(d) Linearly dependent:⎡⎢⎢⎣
3 1 0 1
0 0 0 0
2 1 1 1
1 0 −5 −10

⎤⎥⎥⎦ row reduces to

⎡⎢⎢⎢⎢⎣
1 0 0 5

2

0 1 0 −132
0 0 1 5

2

0 0 0 0

⎤⎥⎥⎥⎥⎦, although row reduction really is not

necessary since the original matrix clearly has rank ≤ 3 due to the row of zeroes.
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(e) Linearly independent. See the remarks just before Example 13 in the textbook. No polynomial

in the set can be expressed as a finite linear combination of the others since no single power of 
can be expressed as a combination of other powers of .

(f) Linearly independent. Use an argument similar to that in Example 13 in the textbook.

(5) Solving the appropriate linear system yields

21

∙
1 −2
0 1

¸
+ 15

∙
3 2
−6 1

¸
− 18

∙
4 −1
−5 2

¸
+ 2

∙
3 −3
0 0

¸
=

∙
0 0
0 0

¸
.

(6)

⎡⎢⎢⎢⎢⎢⎢⎣
1 4 0 0
2 2 1 7
−1 −6 1 5
1 1 −1 2
3 0 2 −1
0 1 2 6

⎤⎥⎥⎥⎥⎥⎥⎦ row reduces to

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦, so the set is linearly independent by the
Independence Test Method.

(7) (a) [−2 0 1] is not a scalar multiple of [1 1 0].
(b) [0 1 0] [0 0 1]

(c) Any nonzero linear combination of [1 1 0] and [−2 0 1], other than [1 1 0] and [−2 0 1] them-
selves, will work. One possibility is u = [1 1 0] + [−2 0 1] = [−1 1 1].

(8) (a) Applying the Independence Test Method, we obtain a pivot in every column.

(b) [−2 0 3−4] = −1[2−1 0 5] + 1[1−1 2 0] + 1[−1 0 1 1].
(c) No, because  is linearly independent (see Theorem 4.9).

(9) (a) 3 − 4 + 8 = 2(23 −  + 3) − (33 + 2 − 2). (Coefficients were obtained using Independence
Test Method.)

(b) See part (a). Also, solving appropriate systems yields:

43 + 5− 7 = −1(23 − + 3) + 2(33 + 2− 2);
23 − + 3 = 2

3(
3 − 4+ 8) + 1

3(4
3 + 5− 7);

33 + 2− 2 = 1
3(

3 − 4+ 8) + 2
3(4

3 + 5− 7)
(c) No polynomial in  is a scalar multiple of any other polynomial in .

(10) Following the hint in the textbook, let A be the matrix whose rows are the vectors u, v, and w. By
the Independence Test Method,  is linearly independent iff A row reduces to a matrix with a pivot

in every column iff A has rank 3 iff |A | 6= 0 iff |A| 6= 0.
(11) In each part, there are many different correct answers. Only one possibility is given here.

(a) {e1 e2 e3 e4} (b) {e1 e2 e3 e4} (c) {1  2 3}

(d)

½∙
1 0 0
0 0 0

¸


∙
0 1 0
0 0 0

¸


∙
0 0 1
0 0 0

¸


∙
0 0 0
1 0 0

¸¾

(e)

⎧⎨⎩
⎡⎣ 1 0 0
0 0 0
0 0 0

⎤⎦ 
⎡⎣ 0 1 0
1 0 0
0 0 0

⎤⎦ 
⎡⎣ 0 0 1
0 0 0
1 0 0

⎤⎦ 
⎡⎣ 0 0 0
0 1 0
0 0 0

⎤⎦⎫⎬⎭
(Notice that each matrix is symmetric.)
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(12) (a) If  is linearly dependent, then 1v1+· · ·+v = 0 for some {v1    v} ⊆  and 1      ∈ R,
with some  6= 0. Then

v = −1

v1 − · · ·− −1


v−1 − +1


v+1 − · · ·− 


v

So, if w ∈ span(), then w = v + 1w1 + · · · + w, for some {w1    w} ⊆  − {v} and
 1      ∈ R. Hence,

w = −1

v1− · · ·− −1


v−1− +1


v+1− · · ·− 


v+ 1w1+ · · ·+ w ∈ span(− {v})

So, span() ⊆ span( − {v}). Also, span( − {v}) ⊆ span() by Corollary 4.6. Thus, we have
span( − {v}) = span()
Conversely, if span(−{v}) = span() for some v ∈ , then by Theorem 4.5, part (1), we have

v ∈ span() = span( − {v}), and so  is linearly dependent by the Alternate Characterization
of linear dependence in Table 4.1.

(b) Suppose v ∈  is redundant. Then, v ∈ span() = span(−{v}), and so v is a linear combination
of vectors in  − {v}.
Conversely, suppose v is a linear combination of vectors in  − {v}. Then v = 1v1 + · · · +

v, for some v1    v ∈  − {v}. We need to show that span() = span( − {v}). Now,
span( − {v}) ⊆ span() by Corollary 4.6. So, we need to show that span() ⊆ span( − {v}).
Suppose w ∈ span(). Then w = v+ 1w1 + · · ·+ w, for some {w1    w} ⊆  − {v} and
 1      ∈ R. Hence,

w = 1v1 + · · ·+ v + 1w1 + · · ·+ w ∈ span( − {v})

completing the proof.

(13) In each part, you can prove that the indicated vector is redundant by creating a matrix using the given

vectors as rows, and showing that the Simplified Span Method leads to the same reduced row echelon

form (except, perhaps, with an extra row of zeroes) with or without the indicated vector as one of the

rows.

(a) Let v = [0 0 0 0]. Any linear combination of the other three vectors becomes a linear combination
of all four vectors when 1[0 0 0 0] is added to it.

(b) Let v = [0 0−6 0] Let  be the given set of three vectors. To prove that v = [0 0−6 0] is
redundant, we need to show that span(−{v}) = span(). We apply the Simplified Span Method
to both  − {v} and .

For span( − {v}):∙
1 1 0 0
1 1 1 0

¸
row reduces to

∙
1 1 0 0
0 0 1 0

¸
.

For span():⎡⎣ 1 1 0 0
1 1 1 0
0 0 −6 0

⎤⎦ row reduces to
⎡⎣ 1 1 0 0
0 0 1 0
0 0 0 0

⎤⎦.
Since the reduced row echelon form matrices are the same, except for the extra row of zeroes, the

two spans are equal, and v = [0 0−6 0] is a redundant vector.
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For an alternate approach to proving that span(− {v}) = span(), first note that − {v} ⊆ ,
and so span( − {v}) ⊆ span() by Corollary 4.6. Next, [1 1 0 0] and [1 1 1 0] are clearly in
span( − {v}) by part (1) of Theorem 4.5. But v ∈ span( − {v}) as well, because

[0 0−6 0] = (6)[1 1 0 0] + (−6)[1 1 1 0]
Hence,  is a subset of the subspace span( − {v}). Therefore, by part (3) of Theorem 4.5,

span() ⊆ span( − {v})
Thus, since we have proven subset inclusion in both directions, span( − {v}) = span().

(c) Let  be the given set of vectors. Any of the given 16 vectors in  can be considered as the

redundant vector. One clever way to see this is to consider the matrix

A =

⎡⎢⎢⎣
1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤⎥⎥⎦ 
whose rows are 4 of the vectors in . Now, A row reduces to I4. Thus, the four rows of A span

R4, by the Simplified Span Method. Hence, any of the remaining 12 vectors in  are redundant
since they are in the span of these 4 rows. Now, repeat this argument using −A to show that the

four rows in A are also individually redundant. (Note that A and −A are row equivalent, so we

do not have to perform a second row reduction.)

(14) Assume 1 is linearly independent. Suppose 1(v1) + 2(v2) + · · · + (v) = 0 Divide both
sides by  and use the fact that {v1v2    v} is linearly independent to obtain 1 = 2 = · · · =
 = 0 Thus 2 is linearly independent. Conversely, assume 2 is linearly independent. Suppose
1v1 + 2v2 + · · · + v = 0 Multiply both sides by  and use the fact that {v1 v2     v} is
linearly independent to obtain 1 = 2 = · · · =  = 0 Thus 1 is linearly independent.

(15) Notice that f 0() is not a scalar multiple of f(). For if the terms of f() are written in order
of descending degree, and the first two nonzero terms are, respectively, 

 and 
, then the

corresponding terms of f 0() are  and 
, which are different multiples of 

 and 
,

respectively, since  6= .

(16) Theorem 4.5, part (3) shows that span() ⊆ W. Thus v 6∈ span(). Now if  ∪ {v} is linearly
dependent, then there exists {w1    w} ⊆  so that 1w1 + · · · + w + v = 0, with not all of
1       equal to zero. Also,  6= 0 since  is linearly independent. Hence,

v = −1

w1 − · · ·− 


w ∈ span()

a contradiction.

(17) (a) Suppose 1v1 + · · ·+ v = 0. Then 1Av1 + · · ·+ Av = 0 =⇒ 1 = · · · =  = 0, since 
is linearly independent.

(b) The converse to the statement is: If  = {v1    v} is a linearly independent subset of R,
then  = {Av1    Av} is a linearly independent subset of R with Av1    Av distinct.
We can construct specific counterexamples that contradict either (or both) of the conclusions of

the converse. For a specific counterexample in which Av1    Av are distinct but  is linearly
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dependent, let A =

∙
1 1
1 1

¸
and  = {[1 0] [1 2]}. Then  = {[1 1] [3 3]}. Note that  is

linearly independent, but the vectors Av1 and Av2 are distinct and  is linearly dependent. For
a specific counterexample in which Av1    Av are not distinct but  is linearly independent,

use A =

∙
1 1
1 1

¸
and  = {[1 2] [2 1]}. Then  = {[3 3]}. Note that Av1 and Av2 both equal

[3 3], and that both  and  are linearly independent. For a final counterexample in which both
parts of the conclusion are false, let A = O22 and  = {e1 e2}. Then Av1 and Av2 both equal
0,  is linearly independent, but  = {0} is linearly dependent.

(c) The converse to the statement is: If  = {v1    v} is a linearly independent subset of R,
then  = {Av1    Av} is a linearly independent subset of R with Av1    Av distinct.
To prove that Av1    Av are distinct, we assume Av = Av , with  6= , and then multiply
both sides by A−1 to obtain v = v , a contradiction. To prove {Av1    Av} is linearly
independent, suppose 1Av1 + · · · + Av = 0. Then 1A

−1Av1 + · · · + A
−1Av = 0 =⇒

1v1 + · · ·+ v = 0 =⇒ 1 = · · · =  = 0, since  is linearly independent.

(18) Case 1:  is empty. This case is obvious, since the empty set is the only subset of .
Case 2: Suppose  = {v1    v} is a finite nonempty linearly independent set in V, and let 1
be a subset of . If 1 is empty, it is linearly independent by definition. Suppose 1 is nonempty.
After renumbering the subscripts if necessary, we can assume 1 = {v1    v}, with  ≤ . If
1v1 + · · ·+ v = 0, then 1v1 + · · ·+ v + 0v+1 + · · · 0v = 0, and so 1 = · · · =  = 0, since
 is linearly independent. Hence, 1 is linearly independent.
Case 3: Suppose  is an infinite linearly independent subset of V. Then any finite subset of  is linearly
independent by the definition of linear independence for infinite subsets. If 1 is an infinite subset,
then any finite subset 2 of 1 is also a finite subset of . Hence 2 is linearly independent because 
is. Thus, 1 is linearly independent, by definition.

(19) First, suppose that v1 6= 0 and that for every , with 2 ≤  ≤ , we have v 6∈ span({v1    v−1}). It
is enough to show that  is linearly independent by assuming that  is linearly dependent and showing
that this leads to a contradiction. If  is linearly dependent, then there real numbers 1     , not
all zero, such that

0 = 1v1 + · · ·+ v + · · ·+ v

Suppose  is the largest subscript such that  6= 0. Then

0 = 1v1 + · · ·+ v

If  = 1, then 1v1 = 0 with 1 6= 0. This implies that v1 = 0, a contradiction. If  ≥ 2, then solving
for v yields

v =

µ
−1


¶
v1 + · · · +

µ
−−1



¶
v−1

where v is expressed as a linear combination of v1    v−1, contradicting the fact that
v 6∈ span({v1    v−1}).
Conversely, suppose  is linearly independent. Notice that v1 6= 0 since any finite subset of V

containing 0 is linearly dependent. We must prove that for each  with 1 ≤  ≤ ,
v 6∈ span({v1    v−1}). Now, by Corollary 4.6, span({v1    v−1}) ⊆ span( − {v}) since
{v1    v−1} ⊆ −{v}. But, by the first “boxed” alternate characterization of linear independence
following Example 10 in the textbook, v 6∈ span( − {v}). Therefore, v 6∈ span({v1    v−1}).
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(20) (a) Reversing the order of the elements gives {72 72 362−30 123−152+4 34−53+4−8}.
Each polynomial in the set now has a higher degree than those preceding it, and hence is not

a linear combination of those preceding polynomials. So, by Exercise 19 this set is linearly

independent.

(b) Reversing the order of the elements gives
©
f ()     f (2) f (1) f

ª
. But each f () 6= +1f

(+1) +

· · ·+ f
(), for any +1     , because all polynomials on the right side of the equation have

lower degrees than f (). Thus, by Exercise 19 this set is linearly independent.

(21) (a) If  is linearly independent, then the zero vector has a unique expression by Theorem 4.9.

Conversely, suppose v ∈ span() has a unique expression of the form v = 1v1+ · · ·+v, where
v1    v are in . To show that  is linearly independent, it is enough to show that any finite
subset 1 = {w1    w} of  is linearly independent. Suppose 1w1 + · · · + w = 0. Now
1w1 + · · ·+ w + 1v1 + · · ·+ v = 0+ v = v. If w = v for some , then the uniqueness
of the expression for v implies that  +  =  , yielding  = 0. If, instead, w does not equal

any v , then  = 0, again by the uniqueness assumption. Thus each  must equal zero. Hence,
1 is linearly independent by the definition of linear independence.

(b)  is linearly dependent iff every vector v in span() can be expressed in more than one way as a
linear combination of vectors in  (ignoring zero coefficients).

(22) Follow the hint in the text. The fundamental eigenvectors are found by solving the homogeneous system

(I −A)v = 0. Each v has a “1” in the position corresponding to the th independent variable for
the system and a “0” in the position corresponding to every other independent variable. Hence, any
linear combination 1v1 + · · ·+ v is an -vector having the value  in the position corresponding
to the th independent variable for the system, for each . So if this linear combination equals 0, then
each  must equal 0, proving linear independence.

(23) (a) Since  ∪ {v} is linearly dependent, by the definition of linear independence, there is some finite
subset {t1     t} of  such that 1t1 + · · · + t + v = 0 with not all coefficients equal to
zero. But if  = 0, then 1t1 + · · ·+ t = 0 with not all  = 0, contradicting the fact that  is
linearly independent. Hence,  6= 0 and thus v = (−1


)t1 + · · ·+ (−


)t Hence, v ∈ span( ).

(b) The statement in part (b) is merely the contrapositive of the statement in part (a).

(24) Suppose that  is linearly independent, and suppose v ∈ span() can be expressed both as
v = 1u1 + · · ·+ u and v = 1v1 + · · ·+ v for distinct u1   u ∈  and distinct
v1   v ∈ , where these expressions differ in at least one nonzero term. Since the u’s might not
be distinct from the v’s, we consider the set  = {u1    u} ∪ {v1    v} and label the distinct
vectors in  as {w1   w} Then we can express v = 1u1+ · · ·+ u as v = 1w1+ · · ·+ w
and also v = 1v1 + · · · + v as v = 1w1 + · · · + w choosing the scalars   1 ≤  ≤ 
with  =  if w = u ,  = 0 otherwise, and  =  if w = v ,  = 0 otherwise. Since the
original linear combinations for v are distinct, we know that  6=  for some . Now, v − v =
0 = (1 − 1)w1 + · · · + ( − )w Since {w1   w} ⊆  a linearly independent set, each
 −  = 0 for every  with 1 ≤  ≤ . But this is a contradiction since  6= 
Conversely, assume every vector in span() can be uniquely expressed as a linear combination of

elements of  Since 0 ∈ span(), there is exactly one linear combination of elements of  that equals 0.
Now, if {v1    v} is any finite subset of , we have 0 = 0v1+ · · ·+0v. Because this representation
is unique, it means that in any linear combination of {v1    v} that equals 0, the only possible
coefficients are zeroes. Thus, by definition,  is linearly independent.
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(25) (a) F (b) T (c) T (d) F (e) T (f) T (g) F (h) T (i) T

Section 4.5

(1) For each part, row reduce the matrix whose rows are the given vectors. The result will be I4. Hence,
by the Simplified Span Method, the set of vectors spans R4. Row reducing the matrix whose columns
are the given vectors also results in I4. Therefore, by the Independence Test Method, the set of vectors
is linearly independent. (After the first row reduction, you could just apply part (1) of Theorem 4.12,

and then skip the second row reduction.)

(2) Follow the procedure in the answer to Exercise 1.

(3) Follow the procedure in the answer to Exercise 1, except that row reduction results in I5 instead of I4.

(4) (a) Not a basis: ||  dim(R4). (linearly independent but does not span)
(b) Not a basis: ||  dim(R4). (linearly dependent and does not span)
(c) Basis: Follow the procedure in the answer to Exercise 1.

(d) Not a basis:

⎡⎢⎢⎣
1 3 2 −1
−2 0 6 −10
0 6 10 −12
2 10 −3 31

⎤⎥⎥⎦ row reduces to
⎡⎢⎢⎣
1 0 0 −4
0 1 0 3
0 0 1 −3
0 0 0 0

⎤⎥⎥⎦, and so does not span.
⎡⎢⎢⎣

1 −2 0 2
3 0 6 10
2 6 10 −3
−1 −10 −12 31

⎤⎥⎥⎦ row reduces to
⎡⎢⎢⎣
1 0 2 0
0 1 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦, and so is linearly dependent.
(e) Not a basis: ||  dim(R4). (linearly dependent but spans)

(5) (a) W is nonempty, since 0 ∈ W Let X1X2 ∈ W  ∈ R Then A(X1 + X2) = AX1 + AX2 =
0 + 0 = 0 Also, A(X1) = (AX1) = 0 = 0 Hence W is closed under addition and scalar

multiplication, and so is a subspace by Theorem 4.2.

(b) A row reduces to

⎡⎢⎢⎢⎢⎢⎣
1 0 1

5
2
5 1

0 1 2
5 −15 −1

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦.
Thus, a basis for W is {[−1−2 5 0 0] [−2 1 0 5 0] [−1 1 0 0 1]}.

(c) dim(W) = 3; rank(A) = 2; 3 + 2 = 5
(6) (a) W is nonempty, since 0 ∈ W Let X1X2 ∈ W  ∈ R Then A(X1 + X2) = AX1 + AX2 =

0 + 0 = 0 Also, A(X1) = (AX1) = 0 = 0 Hence W is closed under addition and scalar

multiplication, and so is a subspace by Theorem 4.2.

(b) A row reduces to

⎡⎢⎢⎢⎢⎣
1 0 −2 0
0 1 3 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦.
Thus, a basis for W is {[2−3 1 0]}.
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(c) dim(W) = 1; rank(A) = 3; 1 + 3 = 4
(7) These vectors are linearly independent by part (b) of Exercise 20 in Section 4.4. The given set has

+ 1 distinct elements, and dim(P) = + 1. Hence, by part (2) of Theorem 4.12, the set is a basis

for P.
(8) (a) Let  = {I2AA2A3A4}. If  is linearly independent, then  is a basis for

W = span() ⊆M22, and since dim(W) = 5 and dim(M22) = 4, this contradicts Theorem 4.13.

Hence  is linearly dependent. Now use the definition of linear dependence.

(b) Generalize the proof in part (a).

(9) (a)  is easily seen to be linearly independent using Exercise 19, Section 4.4. To show  spans V,
note that every f ∈ V can be expressed as f = (− 2)g, for some g ∈ P4.

(b) 5

(c) {(− 2)(− 3) (− 2)(− 3) 2(− 2)(− 3) 3(− 2)(− 3)}
(d) 4

(10) (a) [−1 1 1−1] is not a scalar multiple of [2 3 0−1]. Also,
[1 4 1−2] = 1[2 3 0−1] + 1[−1 1 1−1], and [3 2−1 0] = 1[2 3 0−1]− 1[−1 1 1−1].

(b) We illustrate two approaches:

First approach: We check that  and  both span the same subspace of R4 by using the
Simplified Span Method and showing that both  and  produce the same bases for their spans.

For : ⎡⎢⎢⎣
1 4 1 −2
−1 1 1 −1
3 2 −1 0
2 3 0 −1

⎤⎥⎥⎦ row reduces to

⎡⎢⎢⎢⎣
1 0 −35 2

5

0 1 2
5 −35

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ .
For : ∙

2 3 0 −1
−1 1 1 −1

¸
row reduces to

"
1 0 −35 2

5

0 1 2
5 −35

#
.

Since both row reduced matrices have identical nonzero rows, span() and span() have identical
bases (the set of nonzero rows of the row reduced matrices). Hence, they must be the same

subspaces. Also, since the basis produced for span() contains two vectors, dim(span()) = 2.
Finally, because  is a linearly independent subset of span() with || = dim(span()), part (2)
of Theorem 4.12 implies that  is a basis for span().
Second approach: In part (a) we showed that no larger subset of  containing  is linearly

independent; that is, each of the remaining vectors in  can be expressed as a linear combination of
the vectors in . Therefore,  ⊆ span(). Then, part (3) of Theorem 4.5 implies that span() ⊆
span(). We also know that  ⊆ , and so Corollary 4.6 implies that span() ⊆ span().
Therefore, span() = span(). Since  was shown to be linearly independent in part (a),  is a

basis for span(). Hence, dim(span()) = || = 2.
(c) No; dim(span()) = 2 6= 4 = dim(R4)

(11) (a) Solving an appropriate homogeneous system shows that  is linearly independent. Also,

− 1 = 1
12(

3 − 2 + 2+ 1) + 1
12(2

3 + 4− 7)− 1
12(3

3 − 2 − 6+ 6)
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and

3 − 32 − 22+ 34 = 1(3 − 2 + 2+ 1)− 3(23 + 4− 7) + 2(33 − 2 − 6+ 6)

(b) We illustrate two approaches:

First approach: We check that  and  both span the same subspace of P3 by using the
Simplified Span Method and showing that both  and  produce the same bases for their spans.

For : ⎡⎢⎢⎢⎢⎣
1 −1 2 1
0 0 1 −1
2 0 4 −7
1 −3 −22 34
3 −1 −6 6

⎤⎥⎥⎥⎥⎦ row reduces to

⎡⎢⎢⎢⎢⎢⎣
1 0 0 −32
0 1 0 −92
0 0 1 −1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .
For : ⎡⎣ 1 −1 2 1

2 0 4 −7
3 −1 −6 6

⎤⎦ row reduces to

⎡⎢⎣ 1 0 0 −32
0 1 0 −92
0 0 1 −1

⎤⎥⎦ .
Since both row reduced matrices have identical nonzero rows, span() and span() have identical
bases (the set of nonzero rows of the row reduced matrices). Hence, they must be the same

subspaces. Also, since the basis produced for span() contains three vectors, dim(span()) = 3.
Finally, because  is a linearly independent subset of span() with || = dim(span()), part (2)
of Theorem 4.12 implies that  is a basis for span().
Second approach: In part (a) we showed that no larger subset of  containing  is linearly

independent; that is, each of the remaining vectors in  can be expressed as a linear combination of
the vectors in . Therefore,  ⊆ span(). Then, part (3) of Theorem 4.5 implies that span() ⊆
span(). We also know that  ⊆ , and so Corollary 4.6 implies that span() ⊆ span().
Therefore, span() = span(). Since  was shown to be linearly independent in part (a),  is a

basis for span(). Hence, dim(span()) = || = 3.
(c) No; dim(span()) = 3 6= 4 = dim(P3)

(12) (a) Let V = R3, and let  = {[1 0 0] [2 0 0] [3 0 0]}.
(b) Let V = R3, and let  = {[1 0 0] [2 0 0] [3 0 0]}.

(13) If  spans V, then  is a basis by part (1) of Theorem 4.12. If  is linearly independent, then  is a
basis by part (2) of Theorem 4.12.

(14) By part (1) of Theorem 4.12, if  spans V, then  is a basis for V, so  is linearly independent.

Similarly, by part (2) of Theorem 4.12, if  is linearly independent, then  is a basis for V, so  spans
V.

(15) (a) Suppose  = {v1    v}.
Linear independence of 1: 1Av1 + · · ·+ Av = 0
=⇒ A−1(1Av1 + · · ·+ Av) = A

−10 =⇒ 1v1 + · · ·+ v = 0
=⇒ 1 = · · · =  = 0, since  is linearly independent.

1 is a basis by part (2) of Theorem 4.12.
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(b) Similar to part (a).

(c) Note that Ae = (th column of A).

(d) Note that eA = (th row of A).

(16) The dimension of a proper nontrivial subspace must be 1 or 2, by Theorem 4.13. If the basis for the

subspace contains one [two] element(s), then the subspace is a line [plane] through the origin as in

Exercise 17 of Section 4.3.

(17) (a) If  = {f1     f}, let  = max(degree(f1)   , degree(f)). Then  ⊆ P.

(b) Apply Theorem 4.5, part (3). (c) +1 6∈ span().

(18) (a) Suppose V is finite dimensional. Since V has an infinite linearly independent subset, part (2) of
Theorem 4.12 is contradicted.

(b) {1  2   } is a linearly independent subset of P, and hence, of any vector space containing P.
Apply part (a).

(19) Suppose  is a basis for V and that  is a subset of V containing  with  6= . Let v ∈  with

v ∈ . Then v ∈ span() because  spans V. Thus, v is a linear combination of vectors in , which
means that v is a linear combination of vectors in  other than v itself. Hence,  is linearly dependent
by Theorem 4.8.

(20) Suppose  is a basis for V. Suppose that  is a subset of  with  6= . Let v ∈  with v ∈ .
Now  is linearly independent, so by the Alternate Characterization of linear independence in Table

4.1, v ∈ span(− {v}). But  ⊆ − {v}, implying span() ⊆ span(− {v}) (Corollary 4.6). Hence
v ∈ span(). Therefore,  does not span V.

(21) Let V be a finite dimensional vector space and let W be a subspace of V. Consider the set  of

nonnegative integers defined by

 = { | a set  exists with  ⊆W | | =  and  linearly independent}

(a) The empty set is linearly independent and is a subset of W. Hence 0 ∈ . Therefore,  is not

the empty set.

(b) Since V and W share the same operations, every linearly independent subset  of W is also a

linearly independent subset of V (by the definition of linear independence). Hence, using part (2)
of Theorem 4.12 on  in V shows that  = | | ≤ dim(V). Therefore,  contains no numbers

larger than dim(V), and so has a finite number of elements.
(c) Because  is a finite nonempty set of numbers, it has a largest number . Therefore, because

 ∈ , the definition of the set  implies that there must exist some set  such that  ⊆ W,
| | = , and  is linearly independent. Let  = {v1    v} be such a set.
Now, we are given that  ⊆W, and so span( ) ⊆W by part (3) of Theorem 4.5.

(d) Suppose w ∈ W with w ∈ span( ). Then w ∈  , and so  ∪ {w} is a subset of W containing

+ 1 vectors. But since  is the largest element of , + 1 is not in . Hence, the set  ∪ {w}
must fail to satisfy at least one of the conditions in the description of . Since  ∪ {w} ⊆W, we
must have that  ∪ {w} is not linearly independent. Therefore,  ∪ {w} is linearly dependent.
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(e) Suppose w ∈W, but w ∈ span( ) as in part (d). Because  ∪ {w} = {v1    vw} is linearly
dependent (by part (d)), there exist scalars 1       such that 1v1 + · · · + v + w = 0
with not all coefficients equal to zero. But if  = 0, then 1v1 + · · · + v = 0 with not all
 = 0, contradicting the fact that  is linearly independent. Hence,  6= 0 and thus

w = (−1

)v1 + · · ·+ (−


)v

(f) We assumed that w ∈ span( ). However, the conclusion of part (e) shows that w ∈ span( ).
Since both clearly can not be true, we have a contradiction. Hence, our assumption that there is

a w ∈W with w ∈ span( ) is false. That is, there are no vectors in W outside of span( ). Thus,
W ⊆ span( ).

(g) From the conclusions of parts (c) and (f), W = span( ). Now,  is a basis for W, since it is
linearly independent by assumption (part (c)), and spans W. Hence, W is finite dimensional

because  is a finite basis (containing  elements). Also, using part (b),

dim(W) = | | =  ≤ dim(V)
(h) Suppose dim(W) = dim(V), and let  be a basis for W. Then  is a linearly independent subset

of V (see the discussion in part (b)) with || = dim(W) = dim(V). Part (2) of Theorem 4.12

then shows that  is a basis for V. Hence, W = span() = V.
(i) The converse of part (h) is “If W = V, then dim(W) = dim(V).” This is obviously true, since the

dimension of a finite dimensional vector space is unique.

(22) We need to find a finite basis for V. If  itself is linearly independent, then  is a finite basis, and we
are finished. If  is linearly dependent, then part (a) of Exercise 12 in Section 4.4 shows that there is
a redundant vector v ∈  such that span( − {v}) = span() = V. Let 1 =  − {v}.
If 1 is linearly independent, we are finished, since it is a finite basis for V. Otherwise, repeat the
above process, producing a subset 2 of 1 with span(2) = V. Continue in a similar manner until a
linearly independent subset  is produced with span() = V. Then  is a finite basis for V. This
will take a finite number of steps because there are at most || vectors overall that can be removed.
(This solution can be expressed more formally using induction.)

(23) Let  = {v1    v−1} ⊆ R be a basis for V. Let A be the (− 1) ×  matrix whose rows are the
vectors in , and consider the homogeneous system AX = 0. Now, by Corollary 2.3, the system has

a nontrivial solution x. Therefore, Ax = 0. That is, x · v = 0 for each 1 ≤  ≤ − 1. Now, suppose
v ∈ V. Then there are 1     −1 ∈ R such that v = 1v1 + · · · + −1v−1. Hence,

x · v = x · 1v1 + · · ·+ x · −1v−1 = 0 + · · ·+ 0 = 0
Therefore V ⊆ {v ∈ R |x · v = 0}. Let W = {v ∈ R |x · v = 0}. So, V ⊆ W. Now, it is easy to
see that W is a subspace of R. (Clearly 0 ∈ W since x · 0 = 0. Hence W is nonempty. Next, if

w1w2 ∈W, then
x · (w1 +w2) = x ·w1 + x ·w2 = 0 + 0 = 0

Thus, (w1 +w2) ∈W, and so W is closed under addition. Also, if w ∈W and  ∈ R, then
x · (w) = (x ·w) = (0) = 0

Therefore (w) ∈ W, and W is closed under scalar multiplication. Hence, by Theorem 4.2, W is a

subspace of R.) If V =W, we are done. Suppose, then, that V 6=W. Then, by Theorem 4.13,

− 1 = dim(V)  dim(W) ≤ dim(R) = 

Hence, dim(W) = , and so W = R, by Theorem 4.13. But x ∈ W, since x · x 6= 0, because x is
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nontrivial. This contradiction completes the proof.

(24) (a) T (b) F (c) F (d) F (e) F (f) T (g) F (h) F (i) T

Section 4.6

Problems 1 through 12 ask you to construct a basis for some vector space. The answers here are those you

will most likely get using the techniques in the textbook. However, other answers are possible.

(1) (a) {[1 0 0 2−2] [0 1 0 0 1] [0 0 1−1 0]}
(b) {[1 0−15  65  35 ] [0 1−15 −95 −25 ]}
(c) {e1 e2 e3 e4 e5}
(d) {[1 0 0−2−134 ] [0 1 0 3 92 ] [0 0 1 0−14 ]}

(2) {3 − 3 2 −  1}

(3)

⎧⎨⎩
⎡⎣ 1 0

4
3

1
3

2 0

⎤⎦ 
⎡⎣ 0 1
− 13 −13
0 0

⎤⎦ 
⎡⎣ 0 0
0 0
0 1

⎤⎦⎫⎬⎭
(4) (a) {[1 3−2] [2 1 4] [0 1−1]}

(b) {[1 4−2] [2−8 5] [0−7 2]}
(c) {[3−2 2] [1 2−1] [3−2 7]}
(d) {[3 1 0] [2−1 7] [1 5 7]}

(5) (a) {3 − 82 + 1 33 − 22 +  43 + 2− 10 3 − 202 − + 12}
(b) {−23 + + 2 33 − 2 + 4+ 6 83 + 2 + 6+ 10}

(6) (a) {[3 1−2] [6 2−3]}
(b) {[4 7 1] [1 0 0]}

(c) {e1 e3}
(d) {[1−3 0] [0 1 1]}

(7) (a) {3 2 }
(b) {1  2}

(c) {3 + 2  1}
(d) {83 83 + 2 83 +  83 + 1}

(8) (a) One answer is {Ψ | 1 ≤   ≤ 3}, where Ψ is the 3 × 3 matrix with ( ) entry = 1 and all
other entries 0.

(b)

⎧⎨⎩
⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ ,
⎡⎣ −1 1 1

1 1 1
1 1 1

⎤⎦,
⎡⎣ 1 −1 1
1 1 1
1 1 1

⎤⎦,
⎡⎣ 1 1 −1
1 1 1
1 1 1

⎤⎦,
⎡⎣ 1 1 1
−1 1 1
1 1 1

⎤⎦,
⎡⎣ 1 1 1
1 −1 1
1 1 1

⎤⎦,
⎡⎣ 1 1 1
1 1 −1
1 1 1

⎤⎦,
⎡⎣ 1 1 1

1 1 1
−1 1 1

⎤⎦,
⎡⎣ 1 1 1
1 1 1
1 −1 1

⎤⎦⎫⎬⎭
(c)

⎧⎨⎩
⎡⎣ 1 0 0
0 0 0
0 0 0

⎤⎦ 
⎡⎣ 0 1 0
1 0 0
0 0 0

⎤⎦ 
⎡⎣ 0 0 1
0 0 0
1 0 0

⎤⎦ 
⎡⎣ 0 0 0
0 1 0
0 0 0

⎤⎦ 
⎡⎣ 0 0 0
0 0 1
0 1 0

⎤⎦ 
⎡⎣ 0 0 0
0 0 0
0 0 1

⎤⎦⎫⎬⎭
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(d)

⎧⎨⎩
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ ,
⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦,
⎡⎣ 1 0 1
0 1 0
0 0 1

⎤⎦,
⎡⎣ 1 0 0
1 1 0
0 0 1

⎤⎦,
⎡⎣ 1 0 0
0 1 1
0 0 1

⎤⎦,
⎡⎣ 1 0 0
0 1 0
1 0 1

⎤⎦,
⎡⎣ 1 0 0
0 1 0
0 1 1

⎤⎦,
⎡⎣ 1 0 0
0 2 0
0 0 1

⎤⎦,
⎡⎣ 1 0 0
0 1 0
0 0 2

⎤⎦⎫⎬⎭
(9) Let V be the subspace ofM22 consisting of all 2×2 symmetric matrices. Let  be the set of nonsingular

matrices in V, and let W = span() = span({nonsingular, symmetric 2 × 2 matrices}). Using the
strategy from Exercise 7, we reduce  to a basis for W using the Independence Test Method, even

though  is infinite.
The strategy is to guess a finite subset  of  that spans W. We then use the Independence Test

Method on  to find the desired basis. We try to pick vectors for  whose forms are as simple as

possible to make computation easier. In this case, we choose the set of all nonsingular symmetric 2× 2
matrices having only zeroes and ones as entries. That is,

 =

½∙
1 0
0 1

¸


∙
1 1
1 0

¸


∙
0 1
1 0

¸


∙
0 1
1 1

¸¾


Now, before continuing, we must ensure that span( ) =W. That is, we must show every nonsin-
gular symmetric 2 × 2 matrix is in span( ). In fact, we will show every symmetric 2 × 2 matrix is in
span( ) by finding real numbers    and  so that∙

 
 

¸
= 

∙
1 0
0 1

¸
+ 

∙
1 1
1 0

¸
+ 

∙
0 1
1 0

¸
+ 

∙
0 1
1 1

¸


Thus, we must prove that the system⎧⎪⎪⎨⎪⎪⎩
 +  = 

 +  +  = 
 +  +  = 

 +  = 

has solutions for    and  in terms of   and . But  = 0  =   = −−   =  certainly
satisfies the system. Hence, V ⊆ span( ). Since span( ) ⊆ V we have span( ) = V =W

We can now use the Independence Test Method on  . We express the matrices in  as corre-

sponding vectors in R4 and create the matrix with these vectors as columns, as follows:

A =

⎡⎢⎢⎣
1 1 0 0
0 1 1 1
0 1 1 1
1 0 0 1

⎤⎥⎥⎦  which reduces to C =

⎡⎢⎢⎣
1 0 0 1
0 1 0 −1
0 0 1 2
0 0 0 0

⎤⎥⎥⎦ 
Then, the desired basis is

 =

½∙
1 0
0 1

¸


∙
1 1
1 0

¸


∙
0 1
1 0

¸¾


the elements of  corresponding to the pivot columns of .

(10) (a) {[1−3 0 1 4] [2 2 1−3 1] [1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0]}
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(b) {[1 1 1 1 1] [0 1 1 1 1] [0 0 1 1 1] [0 0 1 0 0] [0 0 0 1 0]}
(c) {[1 0−1 0 0] [0 1−1 1 0] [2 3−8−1 0] [1 0 0 0 0] [0 0 0 0 1]}

(11) (a) {3 − 2 4 − 33 + 52 −  4 3 1}
(b) {3− 2 3 − 6+ 4 4 2 }
(c) {4 − 3 + 2 − + 1 3 − 2 + − 1 2 − + 1 2 }

(12) (a)

⎧⎨⎩
⎡⎣ 1 −1
−1 1
0 0

⎤⎦ 
⎡⎣ 0 0

1 −1
−1 1

⎤⎦ 
⎡⎣ 1 0
0 0
0 0

⎤⎦ ,
⎡⎣ 0 1
0 0
0 0

⎤⎦ 
⎡⎣ 0 0
1 0
0 0

⎤⎦ 
⎡⎣ 0 0
0 0
1 0

⎤⎦⎫⎬⎭
(b)

⎧⎨⎩
⎡⎣ 0 −2

1 0
−1 2

⎤⎦ 
⎡⎣ 1 −3
0 1
3 −6

⎤⎦ 
⎡⎣ 4 −13
2 3
7 −14

⎤⎦ ,
⎡⎣ 0 1
0 0
0 0

⎤⎦ 
⎡⎣ 0 0
1 0
0 0

⎤⎦ 
⎡⎣ 0 0
0 0
1 0

⎤⎦⎫⎬⎭
(c)

⎧⎨⎩
⎡⎣ 3 −1
2 −6
5 1

⎤⎦ 
⎡⎣ −1 2
−4 2
0 0

⎤⎦ 
⎡⎣ 6 2
−2 −9
10 2

⎤⎦ 

⎡⎣ 3 −4
8 −9
5 1

⎤⎦ 
⎡⎣ 0 0
1 0
0 0

⎤⎦ 
⎡⎣ 0 0
0 0
1 0

⎤⎦⎫⎬⎭
(13) (a) 2 (b) 8 (c) 4 (d) 3

(14) (a) A basis for U is {Ψ | 1 ≤  ≤  ≤ }, where Ψ is the  ×  matrix having a zero in every
entry, except for the ( )th entry, which equals 1. Since there are − +1 entries in the th row
of an ×  matrix on or above the main diagonal, this basis contains

X
=1

(− + 1) =
X
=1

−
X
=1

+
X
=1

1 = 2 − (+ 1)

2
+  =

2 + 

2

elements.

Similarly, a basis for L is {Ψ | 1 ≤  ≤  ≤ }, and a basis for the symmetric × matrices
is {Ψ +Ψ


 | 1 ≤  ≤  ≤ }.

(b) (2 − )2

(15) Let B be the reduced row echelon form of A. Each basis element of A is found by setting one

independent variable of the system AX = O equal to 1 and the remaining independent variables equal
to zero. (The values of the dependent variables are then determined from these values.) Since there is

one independent variable for each nonpivot column in B, dim(A) = number of nonpivot columns of

B. But, clearly, rank(A) = number of pivot columns in B.
So, dim(A) + rank(A) = total number of columns in B = .

(16) Let V and  be as given in the statement of the theorem. Let
 = { | a set  exists with  ⊆ , | | = , and  linearly independent}.
The empty set is linearly independent and is a subset of . Hence 0 ∈ , and  is nonempty.

Suppose  ∈ . Then, every linearly independent subset  of  is also a linearly independent subset
of V. Hence, using part (2) of Theorem 4.12 on  shows that  = | | ≤ dim(V).
Suppose  is the largest number in , which must exist, since  is nonempty and all its elements

are ≤ dim(V). Let  be a linearly independent subset of  with || = , which exists because  ∈ .
We want to show that  is a basis for V = span(). Now,  is given as linearly independent. We must

show that  spans V.
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Now,  ⊆ , and so span() ⊆ span() (by Corollary 4.6). We need to show that span() ⊆
span(). To do this, we will prove that  ⊆ span(), for then, parts (2) and (3) of Theorem 4.5 will

give us that span() ⊆ span().
We prove that  ⊆ span(): Suppose  = {v1    v} and v ∈ . If v ∈ , then, clearly

v ∈ span(), and we are finished. So, suppose that v ∈ . Then  ∪ {v} is a subset of  containing
 + 1 elements. Therefore, since  is the largest number in ,  ∪ {v} must be linearly dependent.
Hence, there exist scalars 1       such that 1v1 + · · ·+ v + v = 0 with not all coefficients
equal to zero. But if  = 0, then 1v1+ · · ·+v = 0 with not all  = 0, contradicting the fact that
 is linearly independent. Hence,  6= 0 and thus

v = (−1

)v1 + · · ·+ (−


)v

This shows that v ∈ span(), completing the proof that  spans V. Hence, the subset  of  is the
desired basis for V, finishing the proof of Theorem 4.14.

(17) (a) Let 0 be a basis for W. Expand 0 to a basis  for V (using Theorem 4.15).

(b) No; consider the subspace W of R3 given by W = {[ 0 0] |  ∈ R}. No subset of
 = {[1 1 0] [1−1 0] [0 0 1]} (a basis for R3) is a basis for W.

(c) Yes; consider Y = span(0).

(18) (a) Let 1 be a basis for W. Expand 1 to a basis for V (using Theorem 4.15). Let 2 =  − 1,
and let W 0 = span(2). Suppose 1 = {v1   v} and 2 = {u1    u}. Since  is a basis for

V, all v ∈ V can be written as v = w +w0 with w = 1v1 + · · ·+ v ∈W and

w0 = 1u1 + · · ·+ u ∈W 0.
For uniqueness, suppose v = w1 +w

0
1 = w2 +w

0
2, with w1w2 ∈W and w0

1w
0
2 ∈W 0. Then

w1 −w2 = w02 −w01 ∈W ∩W 0 = {0}. Hence, w1 = w2 and w01 = w02.
(b) In R3, consider W = {[  0] |   ∈ R}. We could let

W 0 = {[0 0 ] |  ∈ R} or W 0 = {[0  ] |  ∈ R}.
(19) (a) Let A be the matrix whose rows are the -vectors in . Let C be the reduced row echelon form

matrix for A. If the nonzero rows of C form the standard basis for R then
span() = span({e1     e}) = R
Conversely, if span() = R then there must be at least  nonzero rows of C by part (1) of

Theorem 4.12. But this means there are at least  rows with pivots, and hence all  columns have
pivots. Thus the nonzero rows of C are e1     e which form the standard basis for R.

(b) Let A and C be as in the answer to part (a). Note that A and C are ×  matrices. Now, since
|| = ,  is a basis for R ⇐⇒ span() = R (by Theorem 4.12) ⇐⇒ the rows of C form the

standard basis for R (from part (a)) ⇐⇒ C = I ⇐⇒ |A| 6= 0
(20) Let A be an ×  matrix and let  ⊆ R be the set of the  rows of A.

(a) Suppose C is the reduced row echelon form of A. Then the Simplified Span Method shows that
the nonzero rows of C form a basis for span(). But the number of such rows is rank(A). Hence,
dim(span()) = rank(A).

(b) Let D be the reduced row echelon form of A . By the Independence Test Method, the pivot

columns of D correspond to the columns of A which make up a basis for span(). Hence, the
number of pivot columns of D equals dim(span()). However, the number of pivot columns of D
equals the number of nonzero rows of D (each pivot column shares the single pivot element with

a unique pivot row, and vice-versa), which equals rank(A ).
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(c) Both ranks equal dim(span()), and so they must be equal.

(21) Use the fact that sin( + ) = (cos) sin + (sin) cos  Note that the th row of A is then

(cos)x1 + (sin)x2 Hence each row of A is a linear combination of {x1x2} and so
dim(span({rows of A})) ≤ 2  . Hence, A has less than  pivots when row reduced, and so |A| = 0.

(22) (a) T (b) T (c) F (d) T (e) F (f) F (g) F

Section 4.7

(1) (a) [v] = [7−1−5]
(b) [v] = [3−2−1−2]
(c) [v] = [−2 4−5]
(d) [v] = [10 3 2−1]

(e) [v] = [4−5 3]
(f) [v] = [−3 2 3]
(g) [v] = [−1 4−2]
(h) [v] = [2−3 1]

(i) [v] = [5 2−6]
(j) [v] = [5−2]

(2) (a)

⎡⎣ −102 20 3
67 −13 −2
36 −7 −1

⎤⎦

(b)

⎡⎣ −2 −6 −1
3 6 1
−6 −7 −1

⎤⎦

(c)

⎡⎣ 20 −30 −69
24 −24 −80
−9 11 31

⎤⎦

(d)

⎡⎢⎢⎣
−1 −4 2 −9
4 5 1 3
0 2 −3 1
−4 −13 13 −15

⎤⎥⎥⎦
(e)

∙
3 2
−2 −3

¸

(f)

⎡⎣ 6 1 2
1 1 2
−1 −1 −3

⎤⎦
(g)

⎡⎣ −3 −2 4
2 3 −5
2 1 3

⎤⎦
(3) [(2 6)] = (2 2) (see Figure 11)

(4) (a) P =

∙
13 31
−18 −43

¸
, Q =

∙ −11 −8
29 21

¸
, T =

∙
1 3
−1 −4

¸

(b) P =

⎡⎣ 0 1 0
0 0 1
1 0 0

⎤⎦, Q =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦, T =
⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦
(c) P =

⎡⎣ 2 8 13
−6 −25 −43
11 45 76

⎤⎦, Q =

⎡⎣ −24 −2 1
30 3 −1
139 13 −5

⎤⎦, T =
⎡⎣ −25 −97 −150

31 120 185
145 562 868

⎤⎦

(d) P =

⎡⎢⎢⎣
−3 −45 −77 −38
−41 −250 −420 −205
19 113 191 93
−4 −22 −37 −18

⎤⎥⎥⎦, Q =

⎡⎢⎢⎣
1 0 1 3
0 1 2 −1
1 2 6 6
3 −1 6 36

⎤⎥⎥⎦, T =
⎡⎢⎢⎣
4 2 3 1
1 −2 −1 −1
5 1 7 2
2 1 3 1

⎤⎥⎥⎦
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Figure 11: (2 6) in -coordinates

(5) (a)  = ([1−4 0−2 0] [0 0 1 4 0] [0 0 0 0 1]); P =
⎡⎣ 1 6 3
1 5 3
1 3 2

⎤⎦;
Q = P−1 =

⎡⎣ 1 −3 3
1 −1 0
−2 3 −1

⎤⎦; [v] = [17 4−13]; [v] = [2−2 3]
(b)  = ([1 0 17 0 21] [0 1 3 0 5] [0 0 0 1 2]); P =

⎡⎣ 1 3 1
−5 −14 −4
0 2 3

⎤⎦;
Q = P−1 =

⎡⎣ −34 −7 2
15 3 −1
−10 −2 1

⎤⎦; [v] = [5−2 3]; [v] = [2−9 5]
(c)  = ([1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]);
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P =

⎡⎢⎢⎣
3 6 −4 −2
−1 7 −3 0
4 −3 3 1
6 −2 4 2

⎤⎥⎥⎦; Q = P−1 =

⎡⎢⎢⎢⎢⎢⎣
1 −4 −12 7

− 2 9 27 −312
− 5 22 67 −772
5 −23 −71 41

⎤⎥⎥⎥⎥⎥⎦;
[v] = [2 1−3 7]; [v] = [10 14 3 12]

(6) For each , v = 0v1 + 0v2 + · · ·+ 1v + · · ·+ 0v and so [v] = [0 0     1    0] = e
(7) (a) Transition matrices to 1, 2, 3, 4, and 5, respectively:⎡⎣ 0 1 0

0 0 1
1 0 0

⎤⎦,
⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦,
⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦,
⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦,
⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦
(b) Let  = (v1    v) and  = (v1     v), where 1 2 · · ·   is a rearrangement of the

numbers 1 2 · · ·  . Let P be the transition matrix from  to . The goal is to show, for
1 ≤  ≤ , that the th row of P equals e . This is true iff (for 1 ≤  ≤ ) the th column of P
equals e. Now the th column of P is, by definition, [v ] . But since v is the th vector in
, [v ] = e, completing the proof.

(8) (a) Following the Transition Matrix Method, it is necessary to row reduce⎡⎢⎢⎣
First Second th
vector vector · · · vector

in in in

  

¯̄̄̄
¯̄̄̄ I

⎤⎥⎥⎦ 
The algorithm from Section 2.4 for calculating inverses shows that the result obtained in the last

 columns is the desired inverse.

(b) Following the Transition Matrix Method, it is necessary to row reduce⎡⎢⎢⎣ I

¯̄̄̄
¯̄̄̄ First Second th
vector vector · · · vector

in in in

  

⎤⎥⎥⎦ 
Clearly this is already in row reduced form, and so the result is as desired.

(9) Let  be the standard basis for R. Exercise 8(b) shows that P is the transition matrix from  to

, and Exercise 8(a) shows that Q−1 is the transition matrix from  to . Theorem 4.18 finishes the

proof.

(10)  = ([−142 64 167] [−53 24 63] [−246 111 290])
(11) (a) Easily verified with straightforward computations.

(b) [v] = [1 2−3]; Av = [14 2 5]; D[v] = [Av] = [2−2 3]
(12) (a) 1 = 2, v1 = [2 1 5]; 2 = −1, v2 = [19 2 31]; 3 = −3, v3 = [6−2 5]
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(b) D =

⎡⎣ 2 0 0
0 −1 0
0 0 −3

⎤⎦ (c)

⎡⎣ 2 19 6
1 2 −2
5 31 5

⎤⎦
(13) Let V, , and the ’s and w’s be as given in the statement of the theorem.

Proof of Part (1): Suppose that [w1] = [1     ] and [w2] = [1     ]. Then,

w1 = 1v1 + · · ·+ v and w2 = 1v1 + · · ·+ v

Hence,

w1 +w2 = 1v1 + · · ·+ v + 1v1 + · · ·+ v = (1 + 1)v1 + · · ·+ ( + )v

implying

[w1 +w2] = [(1 + 1)     ( + )]

which equals [w1] + [w2].
Proof of Part (2): Suppose that [w1] = [1     ]. Then, w1 = 1v1 + · · · + v. Hence,

1w1 = 1(1v1 + · · ·+ v) = 11v1 + · · ·+ 1v

implying [1w1] = [11     1], which equals 1[1     ] = 1[w].
Proof of Part (3): Use induction on .
Base Step ( = 1): This is just part (2).
Inductive Step: Assume true for any linear combination of  vectors, and prove true for a linear
combination of  + 1 vectors. Now,

[1w1 + · · ·+ w + +1w+1] = [1w1 + · · ·+ w] + [+1w+1] (by part (1))

= [1w1 + · · ·+ w] + +1[w+1] (by part (2))

= 1[w1] + · · ·+ [w] + +1[w+1]

(by the inductive hypothesis).

(14) Let v ∈ V. Then, using Theorem 4.17, (QP)[v] = Q[v] = [v]. Hence, by Theorem 4.17, QP is

the (unique) transition matrix from  to .

(15) Let , , V, and P be as given in the statement of the theorem. Let Q be the transition matrix from

 to . Then, by Theorem 4.18, QP is the transition matrix from  to . But, clearly, since for all
v ∈ V, I[v] = [v], Theorem 4.17 implies that I must be the transition matrix from  to . Hence,
QP = I, finishing the proof of the theorem.

(16) Let , V, and P be as given in the statement of the problem. Let  = (v1    v), where v is the
vector in V such that [v] = th column of P−1. Then  is a basis for V because it has  linearly
independent vectors, since the columns of P−1 are linearly independent. By definition, P−1 is the
transition matrix from  to . Hence, by Theorem 4.19, P is the transition matrix from  to .

(17) (a) F (b) T (c) T (d) F (e) F (f) T (g) F
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Chapter 4 Review Exercises

(1) This is a vector space. To prove this, modify the proof in Example 7 in Section 4.1.

(2) Zero vector = [−4 5]; additive inverse of [ ] is [−− 8− + 10]
(3) (a), (b), (d), (f) and (g) are not subspaces; (c) and (e) are subspaces

(4) (a) span() = {[   5− 3+ ] |    ∈ R} 6= R4
(b) Basis = {[1 0 0 5] [0 1 0−3] [0 0 1 1]}; dim(span()) = 3

(5) (a) span() = {3 + 2 + (−3+ 2)+  |    ∈ R} 6= P3
(b) Basis = {3 − 3 2 + 2 1}; dim(span()) = 3

(6) (a) span() =

½∙
  4− 3
 −2+ −  

¸ ¯̄̄̄
    ∈ R

¾
6=M23

(b) Basis =

½∙
1 0 4
0 −2 0

¸


∙
0 1 −3
0 1 0

¸


∙
0 0 0
1 −1 0

¸


∙
0 0 0
0 0 1

¸¾
; dim(span()) = 4

(7) (a)  is linearly independent

(b)  itself is a basis for span().  spans R3.
(c) No, by Theorem 4.9

(8) (a)  is linearly dependent; 3 − 22 − + 2 = 3(−53 + 22 + 5− 2) + 8(23 − 2 − 2+ 1)
(b) The subset

{−53 + 22 + 5− 2 23 − 2 − 2+ 1 − 23 + 22 + 3− 5}
of  is a basis for span().  does not span P3.

(c) Yes, by part (b) of Exercise 21 in Section 4.4. One such alternate linear combination is

−5 ¡−53 + 22 + 5− 2¢−5 ¡23 − 2 − 2+ 1¢+1 ¡3 − 22 − + 2
¢−1 ¡−23 + 22 + 3− 5¢ 

(9) (a) Linearly dependent;⎡⎣ 4 6
3 4
2 5

⎤⎦ = −
⎡⎣ −10 −14
−10 −8
−6 −12

⎤⎦− 2
⎡⎣ 7 12
5 7
3 10

⎤⎦+
⎡⎣ 8 16
3 10
2 13

⎤⎦
(b)

⎧⎨⎩
⎡⎣ 4 0
11 −2
6 −1

⎤⎦ 
⎡⎣ −10 −14
−10 −8
−6 −12

⎤⎦ 
⎡⎣ 7 12
5 7
3 10

⎤⎦ 
⎡⎣ 8 16
3 10
2 13

⎤⎦ 
⎡⎣ 6 11
4 7
3 9

⎤⎦⎫⎬⎭;  does not spanM32

(c) Yes, by part (b) of Exercise 21 in Section 4.4. One such alternate linear combination is

2

⎡⎣ 4 0
11 −2
6 −1

⎤⎦+
⎡⎣ −10 −14
−10 −8
−6 −12

⎤⎦−
⎡⎣ 7 12
5 7
3 10

⎤⎦−
⎡⎣ 8 16
3 10
2 13

⎤⎦+
⎡⎣ 4 6
3 4
2 5

⎤⎦+
⎡⎣ 6 11
4 7
3 9

⎤⎦ 
(10) v = 1v. Also, since v ∈ span(), v = 1v1 + · · · + v, for some 1     . These are 2 different

ways to express v as a linear combination of vectors in  .

(11) Use the same technique as in Example 13 in Section 4.4.
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(12) (a) The matrix whose rows are the given vectors row reduces to I4, so the Simplified Span Method
shows that the given set spans R4. Since the set has 4 vectors and dim(R4) = 4, part (1) of
Theorem 4.12 shows that the given set is a basis for R4.

(b) Similar to part (a). The matrix

⎡⎣ 2 2 13
1 0 3
4 1 16

⎤⎦ row reduces to I3

(c) Similar to part (a). The matrix

⎡⎢⎢⎣
1 5 0 3
6 −1 4 3
7 −4 7 −1
−3 7 −2 4

⎤⎥⎥⎦ row reduces to I4
(13) (a) W nonempty: 0 ∈W because A0 = O.

Closure under addition: If X1X2 ∈W, then A(X1 +X2) = AX1 +AX2 = O+O = O.
Closure under scalar multiplication: If X ∈W, then A(X) = AX = O = O.

(b) Basis = {[3 1 0 0] [−2 0 1 1]}
(c) dim(W) = 2, rank(A) = 2; 2 + 2 = 4

(14) (a) First, we use direct computation to check that every polynomial in  is in V:
If p() = 3 − 3, then p0() = 32 − 3, and so p0(1) = 3− 3 = 0.
If p() = 2 − 2, then p0() = 2− 2, and so p0(1) = 2− 2 = 0.
If p() = 1, then p0() = 0, and so p0(1) = 0.
Thus, every polynomial in  is actually in V.
Next, we convert the polynomials in  to 4-vectors, and use the Independence Test Method. Now,⎡⎢⎢⎣

1 0 0
0 1 0
−3 −2 0
0 0 1

⎤⎥⎥⎦ clearly row reduces to
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎦, so  is linearly independent. Finally, since

the polynomial  ∈ V, dim(V)  dim(P3) = 4 by Theorem 4.13. But, part (2) of Theorem 4.12

shows that || ≤ dim(V). Hence, 3 = || ≤ dim(V)  dim(P3) = 4, and so dim(V) = 3. Part (2)
of Theorem 4.12 then implies that  is a basis for V.

(b)  = {1 3 − 32 + 3} is a basis for W and dim(W) = 2.
(15)  = {[2−3 0 1] [4 3 0 4] [1 0 2 1]}
(16)  = {2 − 2 3 −  23 − 22 + 1}
(17) {[2 1−1 2] [1−2 2−4] [0 1 0 0] [0 0 1 0]}

(18)

⎧⎨⎩
⎡⎣ 3 −1
0 2
1 0

⎤⎦ 
⎡⎣ −1 2

0 −1
3 0

⎤⎦ 
⎡⎣ 2 −1
0 1
4 0

⎤⎦ 
⎡⎣ 1 0
0 0
0 0

⎤⎦ 
⎡⎣ 0 0
1 0
0 0

⎤⎦ 
⎡⎣ 0 0
0 0
0 1

⎤⎦⎫⎬⎭
(19) {4 + 32 + 1 3 − 22 − 1 + 3}
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(20) (a) [v] = [−3−1−2] (b) [v] = [4 2−3] (c) [v] = [−3 5−1]

(21) (a) [v] = [27−62 6]; P =
⎡⎣ 4 2 5
−1 0 1
3 1 −2

⎤⎦; [v] = [14−21 7]
(b) [v] = [−4−1 3]; P =

⎡⎣ 4 1 −2
1 2 0
−1 1 1

⎤⎦; [v] = [−23−6 6]

(c) [v] = [4−2 1−3]; P =

⎡⎢⎢⎣
6 2 2 −1
5 0 1 −1
−3 1 −1 0
−5 2 0 1

⎤⎥⎥⎦; [v] = [25 24−15−27]

(22) (a) P =

⎡⎢⎢⎣
0 0 1 0
1 0 1 1
1 −1 1 1
0 1 0 1

⎤⎥⎥⎦

(b) Q =

⎡⎢⎢⎣
0 1 0 1
1 0 1 1
1 1 0 1
0 0 1 0

⎤⎥⎥⎦

(c) R = QP =

⎡⎢⎢⎣
1 1 1 2
1 0 2 2
1 1 2 2
1 −1 1 1

⎤⎥⎥⎦

(d) R−1 =

⎡⎢⎢⎣
0 −3 2 2
0 −1 1 0
−1 0 1 0
1 2 −2 −1

⎤⎥⎥⎦
(23) (a) 1 = 0, v1 = [4 4 13]; 2 = 2, v2 = [−3 2 0] v3 = [3 0 4]

(b) D =

⎡⎣ 0 0 0
0 2 0
0 0 2

⎤⎦ (c)

⎡⎣ 4 −3 3
4 2 0
13 0 4

⎤⎦
(24) (a)  = {[1 0 0−7] [0 1 0 6] [0 0 1 4]}

(b) P =

⎡⎣ 1 −1 3
−2 −1 −5
1 1 2

⎤⎦
(c) [v] = [25−2−10]; (Note: P−1 =

⎡⎣ 3 5 8
−1 −1 −1
−1 −2 −3

⎤⎦ )
(d) v = [−3 2 3 45]

(25) By part (b) of Exercise 8 in Section 4.7, the matrix C is the transition matrix from -coordinates to
standard coordinates. Hence, by Theorem 4.18, CP is the transition matrix from -coordinates to
standard coordinates. However, again by part (b) of Exercise 8 in Section 4.7, this transition matrix

is the matrix whose columns are the vectors in .

(26) (a) T

(b) T

(c) F

(d) T

(e) F

(f) T

(g) T

(h) F

(i) F

(j) T

(k) F

(l) F

(m) T

(n) T

(o) F

(p) F

(q) T

(r) F

(s) T

(t) T

(u) T

(v) T

(w) F

(x) T

(y) T

(z) F
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Chapter 5

Section 5.1

(1) (a) Linear operator:

([ ] + [ ]) = ([+   + ])

= [3(+ )− 4( + )−(+ ) + 2( + )]

= [(3− 4) + (3 − 4) (−+ 2) + (− + 2)]
= [3− 4−+ 2] + [3 − 4− + 2] = ([ ]) + ([ ])

Also,

([ ]) = ([ ]) = [3()− 4()−() + 2()]
= [(3− 4) (−+ 2)]
= [3− 4−+ 2] = ([ ])

(b) Not a linear transformation: ([0 0 0 0]) = [2−1 0−3] 6= 0.
(c) Linear operator:

([  ] + [   ]) = ([+  +  +  ])

= [+  +  + ]

= [  ] + [  ] = ([  ]) + ([   ])

Also,

([  ]) = ([  ]) = [  ]

= [  ] = ([  ])

(d) Linear operator:



µ∙
 
 

¸
+

∙
 
 

¸¶
= 

µ∙
+  + 
+  + 

¸¶
=

∙
(+ )− 2(+ ) + (+ ) 3(+ )

−4(+ ) (+ ) + (+ )− 3(+ )

¸
=

∙
(− 2+ ) + (− 2 + ) 3+ 3

−4− 4 (+ − 3) + ( +  − 3)
¸

=

∙
− 2+  3
−4 + − 3

¸
+

∙
− 2 +  3
−4  +  − 3

¸
= 

µ∙
 
 

¸¶
+ 

µ∙
 
 

¸¶
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Also,



µ


∙
 
 

¸¶
= 

µ∙
 
 

¸¶
=

∙
()− 2() + () 3()

−4() () + ()− 3()
¸

=

∙
(− 2+ ) (3)

(−4) (+ − 3)
¸

= 

∙
− 2+  3
−4 + − 3

¸
= 

µ∙
 
 

¸¶


(e) Not a linear transformation: 

µ
2

∙
1 2
0 1

¸¶
= 

µ∙
2 4
0 2

¸¶
= 4, but 2

µ∙
1 2
0 1

¸¶
=

2(1) = 2.

(f) Not a linear transformation: (83) = 22, but 8 (3) = 8(2).

(g) Not a linear transformation: (0) = [1 0 1] 6= 0.
(h) Linear transformation:



µ
(3 + 2 + + )

+ (3 + 2 + + )

¶
= ((+ )3 + (+ )2 + (+ )+ (+ ))

= (+ ) + (+ ) + (+ ) + (+ )

= (+ + + ) + (+  +  + )

= (3 + 2 + + ) + (3 + 2 + + )

Also,

((3 + 2 + + )) = (()3 + ()2 + ()+ ())

= () + () + () + ()

= (+ + + )

= (3 + 2 + + )

(i) Not a linear transformation: ((−1)[0 1 0 0]) = ([0−1 0 0]) = 1, but (−1) ([0 1 0 0]) =
(−1)(1) = −1.

(j) Not a linear transformation: (2+(+1)) = (2++1) = 1, but (2)+(+1) = 0+0 = 0.

(k) Linear transformation:



⎛⎝⎡⎣  
 
 

⎤⎦+
⎡⎣  

 
 

⎤⎦⎞⎠ = 

⎛⎝⎡⎣ +  + 
+  + 
+   + 

⎤⎦⎞⎠
= (+ )4 − (+ )2 + (+ )

= (4 − 2 + ) + (4 − 2 + )

= 

⎛⎝⎡⎣  
 
 

⎤⎦⎞⎠+ 

⎛⎝⎡⎣  
 
 

⎤⎦⎞⎠ 
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Also,



⎛⎝

⎡⎣  
 
 

⎤⎦⎞⎠ = 

⎛⎝⎡⎣  
 
 

⎤⎦⎞⎠
= ()4 − ()2 + ()
= (4 − 2 + )

= 

⎛⎝⎡⎣  
 
 

⎤⎦⎞⎠ 

(l) Not a linear transformation: ([3 0] + [0 4]) = ([3 4]) =
√
32 + 42 = 5, but ([3 0]) + ([0 4])

=
√
32 + 02 +

√
02 + 42 = 3 + 4 = 7.

(2) (a) (v +w) = v+w = (v) + (w); also, (v) = v =  (v).

(b) (v+w) = 0 = 0+ 0 = (v) + (w); also, (v) = 0 = 0 =  (v).

(3) (v+w) = (v+w) = v+ w = (v) + (w); (v) = v = (v) = (v).

(4) (a) For addition:

([  ] + [  ]) = ([+   +   + ])

= [−(+ )  +   + ]

= [(−) + (−)  +   + ]

= [−  ] + [−  ] = ([  ]) + ([  ])

For scalar multiplication:

([  ]) = ([  ]) = [−()  ]
= [(−)  ] = [−  ] = ([  ])

(b) ([  ]) = [− ]. It is a linear operator.
(c) Through the -axis: ([ ]) = [− ]; Through the -axis: ([ ]) = [−]; both are linear

operators.

(5) First,  is a linear operator because

([1 2 3] + [1 2 3]) = ([1 + 1 2 + 2 3 + 3])

= [1 + 1 2 + 2 0]

= [1 2 0] + [1 2 0] = ([1 2 3]) + ([1 2 3]) and

([1 2 3]) = ([1 2 3]) = [1 2 0] = [1 2 0] = ([1 2 3])

Also,  is a linear operator because

([1 2 3 4] + [1 2 3 4]) = ([1 + 1 2 + 2 3 + 3 4 + 4])

= [0 2 + 2 0 4 + 4]

= [0 2 0 4] + [0 2 0 4]

= ([1 2 3 4]) + ([1 2 3 4]) and
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([1 2 3 4]) = ([1 2 3 4]) = [0 2 0 4]

= [0 2 0 4] = ([1 2 3 4])

(6) For addition:



µ
[1 2          ]
+ [1 2          ]

¶
= ([1 + 1 2 + 2      +       + ])

=  + 

= ([1 2          ]) + ([1 2          ])

For scalar multiplication:

([1 2          ]) = ([1 2          ])

=  = ([1 2          ])

(7) For addition:

(y+ z) = projx(y + z) =
x·(y+ z)
kxk2 x =

(x·y) + (x·z)
kxk2 x

=
(x·y)
kxk2 x+

(x·z)
kxk2 x = (y) + (z)

For scalar multiplication:

(y) =
x·(y)
kxk2 x = 

µ
x·y
kxk2

¶
x = (y)

(8) (y1 + y2) = x · (y1 + y2) = (x · y1) + (x · y2) = (y1) + (y2);
(y1) = x · (y1) = (x · y1) = (y1)

(9) Follow the hint in the text, and use the sum of angle identities for sine and cosine.

(10) (a) Use Example 10.

(b) Use the hint in Exercise 9.
(c)

⎡⎣ sin  0 cos 
0 1 0
cos  0 − sin 

⎤⎦
(11) The proofs follow the proof in Example 10, but with the matrix A replaced by the specific matrices of

this exercise.

(12) (A+B) = trace(A+B) =
P

=1(+) =
P

=1 +
P

=1  = trace(A)+trace(B) = (A)+(B);

(A) = trace(A) =
P

=1  = 
P

=1  =  trace(A) = (A).

(13) (A1 +A2) = (A1 +A2) + (A1 +A2)
 = (A1 +A


1 ) + (A2 +A


2 ) = (A1) + (A2);

(A) = A+ (A) = (A+A ) = (A) The proof for  is done similarly.

(14) (a) (p1+p2) =
R
(p1+p2)  =

R
p1 +

R
p2  = (p1)+(p2) (since the constant of integration

is assumed to be zero for all these indefinite integrals);

(p) =
R
(p)  = 

R
p  = (p) (since the constant of integration is assumed to be zero for

these indefinite integrals).
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(b) (p1 + p2) =
R 

(p1 + p2)  =

R 

p1 +

R 

p2  = (p1) + (p2);

(p) =
R 

(p)  = 

R 

p  = (p)

(15) Base Step:  = 1: An argument similar to that in Example 3 in Section 5.1 shows that  : V −→ V
given by () =  0 is a linear operator.
Inductive Step: Assume that  : V −→ V given by () =  () is a linear operator. We need to
show that +1 : V −→ V given by +1() =  (+1) is a linear operator. But since +1 =  ◦
Theorem 5.2 assures us that +1 is a linear operator.

(16) (A1 +A2) = B(A1 +A2) = BA1 +BA2 = (A1) + (A2);
(A) = B(A) = (BA) = (A)

(17) (A1 +A2) = B
−1(A1 +A2)B = B

−1A1B+B
−1A2B = (A1) + (A2);

(A) = B−1(A)B = (B−1AB) = (A)

(18) (a) (p+ q) = (p+ q)() = p() + q() = (p) + (q).
Similarly, (p) = (p)() = (p()) = (p).

(b) For all  ∈ R, ((p+ q)()) = (p+ q)(+ ) = p(+ ) + q(+ ) = (p()) + (q()).
Also, ((p)()) = (p)(+ ) = (p(+ )) = (p()).

(19) Let p = 
 + · · ·+ 1+ 0 and let q = 

 + · · ·+ 1+ 0. Then

(p+ q) = (
 + · · ·+ 1+ 0 + 

 + · · ·+ 1+ 0)

= (( + )
 + · · ·+ (1 + 1)+ (0 + 0))

= ( + )A
 + · · ·+ (1 + 1)A+ (0 + 0)I

= (A
 + · · ·+ 1A+ 0I) + (A

 + · · ·+ 1A+ 0I)

= (p) + (q)

Similarly,

(p) = ((
 + · · ·+ 1+ 0))

= (
 + · · ·+ 1+ 0)

= A
 + · · ·+ 1A+ 0I

= (A
 + · · ·+ 1A+ 0I)

= (p)

(20) (⊕ ) = () = ln() = ln() + ln() = () + ();
(¯ ) = () = ln() =  ln() = ()

(21) (0) = 0+ x = x 6= 0, contradicting Theorem 5.1, part (1).

(22) (0) = A0+ y = y 6= 0, contradicting Theorem 5.1, part (1).

(23) 

⎛⎝⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦⎞⎠ = 1, but 

⎛⎝⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦⎞⎠ + 

⎛⎝⎡⎣ 0 0 0
0 0 0
0 0 1

⎤⎦⎞⎠ = 0 + 0 = 0. (Note: For any

  1, (2I) = 2
, but 2(I) = 2(1) = 2.)
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(24) 2(v +w) = 1(2(v+w)) = 21(v +w) = 2(1(v) + 1(w)) = 21(v) + 21(w) = 2(v) + 2(w);
2(v) = 1(2v) = 21(v) = (21(v)) = 2(v).

(25) ([−3 2 4]) = [12−11 14];



⎛⎝⎡⎣ 



⎤⎦⎞⎠ =

⎡⎣ −2 3 0
1 −2 −1
0 1 3

⎤⎦⎡⎣ 



⎤⎦ =
⎡⎣ −2+ 3− 2 − 

 + 3

⎤⎦
(26) (i) = 7

5 i− 11
5 j; (j) = −25 i− 4

5 j

(27) (x− y) = (x+ (−y)) = (x) + ((−1)y) = (x) + (−1)(y) = (x)− (y).

(28) Follow the hint in the text. Letting  =  = 0 proves property (1) of a linear transformation. Letting
 = 0 proves property (2).

(29) Suppose part (3) of Theorem 5.1 is true for some . We prove it true for + 1.

(1v1 + · · ·+ v + +1v+1) = (1v1 + · · ·+ v) + (+1v+1)

(by property (1) of a linear transformation)

= (1(v1) + · · ·+ (v)) + (+1v+1)

(by the inductive hypothesis)

= 1(v1) + · · ·+ (v) + +1(v+1)

(by property (2) of a linear transformation),

and we are done.

(30) (a) 1v1 + · · ·+ v = 0V =⇒ (1v1 + · · ·+ v) = (0V)
=⇒ 1(v1) + · · ·+ (v) = 0W =⇒ 1 = 2 = · · · =  = 0.

(b) Consider the zero linear transformation.

(31) (2 ◦ 1)(v) = 2(1(v)) = 2(1(v)) = 2(1(v)) = (2 ◦ 1)(v).
(32) Let  = (1). Then () = (1) = (1) =  = .

(33) 0W ∈W 0, so 0V ∈ −1({0W}) ⊆ −1(W 0). Hence, −1(W 0) is nonempty.
Also, xy ∈ −1(W 0) =⇒ (x) (y) ∈W 0 =⇒ (x) + (y) ∈W 0

=⇒ (x+ y) ∈W 0 =⇒ x+ y ∈ −1(W 0)
Finally, x ∈ −1(W 0) =⇒ (x) ∈W 0 =⇒ (x) ∈W 0 (for any  ∈ R)

=⇒ (x) ∈W 0 =⇒ x ∈ −1(W 0).
Hence −1(W 0) is a subspace by Theorem 4.2.

(34) (a) For 1 ⊕ 2 :

1 ⊕ 2(x+ y) = 1(x+ y) + 2(x+ y)

= (1(x) + 1(y)) + (2(x) + 2(y))

= (1(x) + 2(x)) + (1(y) + 2(y))

= 1 ⊕ 2(x) + 1 ⊕ 2(y)
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Also,

1 ⊕ 2(x) = 1(x) + 2(x)

= 1(x) + 2(x)

= (1(x) + 2(x))

= 1 ⊕ 2(x)

For ¯ 1:

¯ 1(x+ y) = (1(x+ y))

= (1(x) + 1(y))

= 1(x) + 2(y)

= ¯ 1(x) + ¯ 1()

Also,

¯ 1(x) = 1(x)

= (1(x))

= (1(x))

= (¯ 1(x))

(b) Use Theorem 4.2: the existence of the zero linear transformation shows that the set is nonempty,

while part (a) proves closure under addition and scalar multiplication.

(35) Define a line  parametrically by {x + y |  ∈ R}, for some fixed xy ∈ R2. Since (x + y) =
(x) + (y),  maps  to the set {(x) + (y) |  ∈ R}. If (x) 6= 0 this set represents a line;
otherwise, it represents a point.

(36) (a) F (b) T (c) F (d) F (e) T (f) F (g) T (h) T

Section 5.2

(1) For each operator, check that the th column of the given matrix (for 1 ≤  ≤ 3) is the image of e.
This is easily done by inspection.

(2) (a)

⎡⎣ −6 4 −1
−2 3 −5
3 −1 7

⎤⎦
(b)

∙
3 −5 1 −2
5 1 −2 8

¸
(c)

⎡⎣ 4 −1 3 3
1 3 −1 5
−2 −7 5 −1

⎤⎦
(d)

⎡⎢⎢⎣
−3 0 −2 0
0 −1 0 4
0 4 −1 3
−6 −1 0 2

⎤⎥⎥⎦

(3) (a)

∙ −47 128 −288
−18 51 −104

¸

(b)

⎡⎣ −3 5
2 −1
4 −2

⎤⎦
(c)

⎡⎣ 22 14
62 39
68 43

⎤⎦
(d)

⎡⎣ −32 16 24 15
−10 7 12 6
−121 63 96 58

⎤⎦
(e)

⎡⎢⎢⎢⎢⎢⎢⎣
5 6 0

−11 −26 −6
−14 −19 −1
6 3 −2
−1 1 1
11 13 0

⎤⎥⎥⎥⎥⎥⎥⎦
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(4) (a)

⎡⎣ −202 −32 −43
−146 −23 −31
83 14 18

⎤⎦ (b)

∙
21 7 21 16
−51 −13 −51 −38

¸
(c)

⎡⎣ 98 −91 60 −76
28 −25 17 −21
135 −125 82 −104

⎤⎦
(5) See the answer for Exercise 3(d).

(6) (a)

∙
67 −123
37 −68

¸
(b)

⎡⎣ −7 2 10
5 −2 −9
−6 1 8

⎤⎦
(c)

⎡⎢⎢⎣
8 −9 9 −14
8 −8 5 −7
6 −6 −1 6
1 −1 −2 5

⎤⎥⎥⎦

(7) (a)

⎡⎣ 3 0 0 0
0 2 0 0
0 0 1 0

⎤⎦; 122 − 10+ 6
(b)

⎡⎢⎢⎢⎢⎣
1
3 0 0

0 1
2 0

0 0 1
0 0 0

⎤⎥⎥⎥⎥⎦; 233 − 1
2

2 + 5

(8) (a)

" √
3
2 − 12
1
2

√
3
2

#
(b)

"
1
2

√
3− 9 −132
25
2

1
2

√
3 + 9

#

(9) (a)

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (b) 1
2

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 −1 0 0
1 0 0 1 0 0
0 1 1 0 −1 0
0 1 1 0 1 0
0 −1 0 0 −1 1
0 −1 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦

(10)

⎡⎣ −12 12 −2
−4 6 −2
−10 −3 7

⎤⎦

(11) (a) Matrix for 1:

⎡⎢⎢⎣
1 −1 −1
0 2 3
1 3 0
−2 0 1

⎤⎥⎥⎦; matrix for 2: ∙ 0 2 −2 3
1 0 −1 1

¸

(b) Matrix for 2 ◦ 1:
∙ −8 −2 9
−2 −4 0

¸
(c) Easily verified with straightforward computations.

(12) (a) A2 represents a rotation through the angle  twice, which corresponds to a rotation through the
angle 2.

(b) Generalize the argument in part (a).

(13) (a) I (b) O (c) I

(d) The ×  matrix whose columns are e2 e3     e e1, respectively

(e) The ×  matrix whose columns are e, e1, e2,   , e−1, respectively
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(14) LetA be the matrix for  (with respect to the standard bases). Then A is a 1× matrix (an -vector).
If we let x = A, then Ay = x · y for all y ∈ R

(15) [(2 ◦ 1)(v)] = [2(1(v))] = A[1(v)] = A(A [v]) = (AA)[v]. Now apply
the uniqueness condition in Theorem 5.5.

(16) (a)

⎡⎣ 0 −4 −13
−6 5 6
2 −2 −3

⎤⎦ (b)

⎡⎣ 2 0 0
0 −1 0
0 0 1

⎤⎦
(c) The vectors in  are eigenvectors for the matrix from part (a) corresponding to the eigenvalues,

2, −1, and 1, respectively.
(17) Easily verified with straightforward computations.

(18) (a) A () = (− 1)2
(b) 1 = {[2 1 0] + [2 0 1]}; basis for 1 = {[2 1 0] [2 0 1]};

0 = {[−1 2 2]}; basis for 0 = {[−1 2 2]};
 = ([2 1 0] [2 0 1] [−1 2 2])
(Note: The remaining answers will vary if the vectors in  are ordered differently.)

(c) Using the basis  ordered as ([2 1 0] [2 0 1] [−1 2 2]), the answer is P =
⎡⎣ 2 2 −1
1 0 2
0 1 2

⎤⎦, with
P−1 = 1

9

⎡⎣ 2 5 −4
2 −4 5
−1 2 2

⎤⎦. Another possible answer, using  = ([−1 2 2] [2 1 0] [2 0 1]), is
P =

⎡⎣ −1 2 2
2 1 0
2 0 1

⎤⎦, with P−1 = 1
9

⎡⎣ −1 2 2
2 5 4
2 −4 5

⎤⎦ 
(d) Using  = ([2 1 0] [2 0 1] [−1 2 2]) produces A =

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦.
Using  = ([−1 2 2] [2 1 0] [2 0 1]) yields A = P

−1AP =

⎡⎣ 0 0 0
0 1 0
0 0 1

⎤⎦ instead.
(e)  is a projection onto the plane formed by [2 1 0] and [2 0 1] while [−1 2 2] is orthogonal to

this plane.

(19) [(v)] =
1

[(v)] =

1

A [v] =

1

A([v]) = A[v] . By Theorem 5.5, A = A.

(20) Find the matrix for  with respect to , and then apply Theorem 5.6.

(21) Let A =

∙
1 0
0 −1

¸
and P = 1√

1+2

∙
1 −
 1

¸
. Then A represents a reflection through the -axis,

and P represents a counterclockwise rotation putting the -axis on the line  =  (using Example 9,
Section 5.1). Thus, the desired matrix is PAP−1.
An alternate solution is obtained by finding the images of the standard basis vectors using Exercise

21 in Section 1.2. A vector in the direction of the line  =  is [1]. Then for any vector x,

p = proj[1]x =
[1] · x
1 +2
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and so by Exercise 21 in Section 1.2, the reflection of x through  =  is

2p− x = 2
µ
[1] · x
1 +2

¶
[1]− x

Therefore,

([1 0]) = 2

µ
[1] · [1 0]
1 +2

¶
[1]− [1 0] which simplifies to

∙
1−2

1 +2

2

1 +2

¸


the first column of the desired matrix Similarly,

([0 1]) = 2

µ
[1] · [0 1]
1 +2

¶
[1]− [0 1] which simplifies to

∙
2

1 +2

2 − 1
1 +2

¸


the second column of the desired matrix

(22) Let {v1    v} be a basis for Y. Extend this to a basis  = {v1    v} for V. By Theorem 5.4,

there is a unique linear transformation

0 : V −→ W such that 0(v) =
½

(v) if  ≤ 
0 if   



Clearly, 0 agrees with  on Y.
(23) Let  : V −→ W be a linear transformation such that (v1) = w1 (v2) = w2   , (v) = w with

{v1v2    v} a basis for V. If v ∈ V, then v = 1v1+2v2+ · · ·+v for unique 1 2      ∈ R
(by Theorem 4.9). But then

(v) = (1v1 + 2v2 + · · ·+ v)

= 1(v1) + 2(v2) + · · ·+ (v)

= 1w1 + 2w2 + · · ·+ w

Hence (v) is determined uniquely, for each v ∈ V, and so  is uniquely determined.

(24) (a) T (b) T (c) F (d) F (e) T (f) F (g) T (h) T (i) T (j) F

Section 5.3

(1) (a) Yes, because ([1−2 3]) = [0 0 0]
(b) No, because ([2−1 4]) = [5−2−1]

(c) No; the system

⎧⎨⎩ 51 + 2 − 3 = 2
−31 + 3 = −1

1 − 2 − 3 = 4
has no solutions.

Note:

⎡⎣ 5 1 −1
−3 0 1
1 −1 −1

¯̄̄̄
¯̄ 2
−1
4

⎤⎦ row reduces to
⎡⎢⎣ 1 0 −13
0 1 2

3

0 0 0

¯̄̄̄
¯̄̄
1
3
1
3

4

⎤⎥⎦,
where we have not row reduced beyond the augmentation bar.
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(d) Yes, because ([−4 4 0]) = [−16 12−8]
(2) (a) No, since (3 − 52 + 3− 6) = 63 + 4− 9 6= 0

(b) Yes, because (43 − 42) = 0
(c) Yes, because, for example, (3 + 4+ 3) = 83 − − 1
(d) No, since every element of range() has a zero coefficient for its 2 term.

(3) In each part, we give the reduced row echelon form for the matrix for the linear transformation as well.

(a)

⎡⎣ 1 0 2
0 1 −3
0 0 0

⎤⎦; dim(ker()) = 1, basis for ker() = {[−2 3 1]},
dim(range()) = 2, basis for range() = {[1−2 3] [−1 3−3]}

(b)

⎡⎢⎢⎣
1 0 1
0 1 −2
0 0 0
0 0 0

⎤⎥⎥⎦; dim(ker()) = 1, basis for ker() = {[−1 2 1]},
dim(range()) = 2, basis for range() = {[4 7−2 3] [−2 1−1−2]}

(c)

∙
1 0 5
0 1 −2

¸
; dim(ker()) = 1, basis for ker() = {[−5 2 1]},

dim(range()) = 2, basis for range() = {[3 2] [2 1]}

(d)

⎡⎢⎢⎢⎢⎣
1 0 −1 1
0 1 3 −2
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦; dim(ker()) = 2, basis for ker() = {[1−3 1 0] [−1 2 0 1]},
dim(range()) = 2, basis for range() = {[−14−4−6 3 4] [−8−1 2−7 2]}

(4) Students can generally solve these problems by inspection.

(a) dim(ker()) = 2, basis for ker() = {[1 0 0], [0 0 1]},
dim(range()) = 1, basis for range() = {[0 1]}

(b) dim(ker()) = 0, basis for ker() = {},
dim(range()) = 2, basis for range() = {[1 1 0] [0 1 1]}

(c) dim(ker()) = 2, basis for ker() =

½∙
1 0
0 0

¸


∙
0 0
0 1

¸¾
,

dim(range()) = 2, basis for range() =

⎧⎨⎩
⎡⎣ 0 1
0 0
0 0

⎤⎦ 
⎡⎣ 0 0
1 0
0 0

⎤⎦⎫⎬⎭
(d) dim(ker()) = 2, basis for ker() = {4 3},

dim(range()) = 3, basis for range() = {2  1}
(e) dim(ker()) = 0, basis for ker() = {},

dim(range()) = 3, basis for range() = {3 2 }
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(f) dim(ker()) = 1, basis for ker() = {[0 1 1]},
dim(range()) = 2, basis for range() = {[1 0 1] [0 0−1]}
(A simpler basis for range() = {[1 0 0] [0 0 1]}.)

(g) dim(ker()) = 0, basis for ker() = {} (empty set),
dim(range()) = 4, basis for range() = standard basis forM22

(h) dim(ker()) = 6, basis for ker()

=

⎧⎨⎩
⎡⎣ 1 0 0
0 0 0
0 0 0

⎤⎦ ,
⎡⎣ 0 1 0
1 0 0
0 0 0

⎤⎦,
⎡⎣ 0 0 1
0 0 0
1 0 0

⎤⎦,
⎡⎣ 0 0 0
0 1 0
0 0 0

⎤⎦,
⎡⎣ 0 0 0
0 0 1
0 1 0

⎤⎦,
⎡⎣ 0 0 0
0 0 0
0 0 1

⎤⎦⎫⎬⎭,
dim(range()) = 3, basis for range() =

⎧⎨⎩
⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ ,
⎡⎣ 0 0 1

0 0 0
−1 0 0

⎤⎦,
⎡⎣ 0 0 0
0 0 1
0 −1 0

⎤⎦⎫⎬⎭
(i) dim(ker()) = 1, basis for ker() = {2 − 2+ 1},

dim(range()) = 2, basis for range() = {[1 2] [1 1]}
(A simpler basis for range() = standard basis for R2.)

(j) dim(ker()) = 2, basis for ker() = {(+ 1)(− 1) 2(+ 1)(− 1)},
dim(range()) = 3, basis for range() = {e1 e2 e3}

(5) (a) ker() = V, range() = {0W} (b) ker() = {0V}, range() = V

(6) (A+B) = trace(A+B) =
P3

=1(+) =
P3

=1 +
P3

=1  = trace(A)+trace(B) = (A)+(B);

(A) = trace(A) =
P3

=1  = 
P3

=1  = (trace(A)) = (A);

ker() =

⎧⎨⎩
⎡⎣   

  
  −− 

⎤⎦ ¯̄̄̄¯̄         ∈ R
⎫⎬⎭,

dim(ker()) = 8, range() = R, dim(range()) = 1

(7) range() = V, ker() = {0V}
(8) ker() = {0}, range() = {4 + 3 + 2}, dim(ker()) = 0, dim(range()) = 3
(9) ker() = {+  |   ∈ R}, range() = P2, dim(ker()) = 2, dim(range()) = 3
(10) When  ≤ , ker() = all polynomials of degree less than , dim(ker()) = , range() = P−, and

dim(range()) =  −  + 1. When   , ker() = P, dim(ker()) =  + 1, range() = {0}, and
dim(range()) = 0.

(11) Since range() = R, dim(range()) = 1. By the Dimension Theorem, dim(ker()) = . Since the
given set is clearly a linearly independent subset of ker() containing  distinct elements, it must be
a basis for ker() by part (2) of Theorem 4.12.

(12) ker() = {[0 0     0]}, range() = R
(Note: Every vector X is in the range since (A−1X) = A(A−1X) = X.)

(13) ker() = {0V} iff dim(ker()) = 0 iff dim(range()) = dim(V) − 0 = dim(V) iff range() = V.
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(14) For ker(): 0V ∈ ker(), so ker() 6= {}. If v1v2 ∈ ker(), then
(v1 + v2) = (v1) + (v2) = 0V + 0V = 0V 

and so v1 + v2 ∈ ker(). Similarly, (v1) = 0V , and so v1 ∈ ker().
For range(): 0W ∈ range() since 0W = (0V). If w1w2 ∈ range(), then there exist v1v2 ∈ V
such that (v1) = w1 and (v2) = w2. Hence,

(v1 + v2) = (v1) + (v2) = w1 +w2

Thus w1 +w2 ∈ range(). Similarly, (v1) = (v1) = w1, so w1 ∈ range().
(15) (a) If v ∈ ker(1), then (2 ◦ 1)(v) = 2(1(v)) = 2(0W) = 0X .

(b) If x ∈ range(2 ◦ 1), then there is a v such that (2 ◦ 1)(v) = x. Hence 2(1(v)) = x, so x
∈ range(2).

(c) dim(range(2 ◦ 1)) = dim(V) − dim(ker(2 ◦ 1)) ≤ dim(V) − dim(ker(1)) (by part (a)) =
dim(range(1))

(16) Consider 

µ∙



¸¶
=

∙
1 −1
1 −1

¸ ∙



¸
. Then, ker() = range() = {[ ] |  ∈ R}.

(17) (a) Let P be the transition matrix from the standard basis to , and let Q be the transition matrix

from the standard basis to . Note that both P and Q are nonsingular by Theorem 4.19. Then,

by Theorem 5.6, B = QAP−1. Hence, rank(B) = rank(QAP−1) = rank(AP−1) (by part (a) of
Review Exercise 16 in Chapter 2) = rank(A) (by part (b) of Review Exercise 16 in Chapter 2).

(b) The comments prior to Theorem 5.9 in the text show that parts (a) and (b) of the theorem are

true if A is the matrix for  with respect to the standard bases. However, part (a) of this exercise
shows that if B is the matrix for  with respect to any bases, rank(B) = rank(A). Hence, rank(B)
can be substituted for any occurrence of rank(A) in the statement of Theorem 5.9. Thus, parts

(a) and (b) of Theorem 5.9 hold when the matrix for  with respect to any bases is used. Part
(c) of Theorem 5.9 follows immediately from parts (a) and (b).

(18) (a) By Theorem 4.15, there are vectors q1    q in V such that  = {k1    kq1    q} is a
basis for V. Hence, dim(V) = + .

(b) If v ∈ V then v = 1k1+ · · ·+ k+ 1q1+ · · ·+ q for some 1      1      ∈ R Hence,
(v) = (1k1 + · · ·+ k + 1q1 + · · ·+ q)

= 1(k1) + · · ·+ (k) + 1(q1) + · · ·+ (q)

= 10+ · · ·+ 0+ 1(q1) + · · ·+ (q)

= 1(q1) + · · ·+ (q)

(c) By part (b), any element of range() is a linear combination of (q1)     (q), so range() is
spanned by {(q1)     (q)}. Hence, by part (1) of Theorem 4.12, range() is finite dimensional
and dim(range()) ≤ .

(d) Suppose 1(q1) + · · ·+ (q) = 0W . Then (1q1 + · · ·+ q) = 0W ,
and so 1q1 + · · ·+ q ∈ ker().

(e) Every element of ker() can be expressed as a linear combination of the basis vectors k1    k
for ker().
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(f) The fact that 1q1 + · · ·+ q = 1k1 + · · ·+ k implies that

1k1 + · · ·+ k − 1q1 − · · ·− q = 0W 

But since  = {k1    kq1    q} is linearly independent,
1 = · · · =  = 1 = · · · =  = 0

by the definition of linear independence.

(g) In part (d) we assumed that 1(q1) + · · ·+ (q) = 0W . This led to the conclusion in part (f)
that 1 = · · · =  = 0. Hence {(q1)     (q)} is linearly independent by definition.

(h) Part (c) proved that {(q1)     (q)} spans range() and part (g) shows that {(q1)     (q)}
is linearly independent. Hence, {(q1)     (q)} is a basis for range().

(i) We assumed that dim(ker()) = . Part (h) shows that dim(range()) = .
Therefore, dim(ker()) + dim(range()) = +  = dim(V) (by part (a)).

(19) From Theorem 4.13, we have dim(ker())≤ dim(V). The Dimension Theorem states that dim(range())
is finite and dim(ker()) + dim(range()) = dim(V). Since dim(ker()) is nonnegative, it follows that
dim(range()) ≤ dim(V).

(20) (a) F (b) F (c) T (d) F (e) T (f) F (g) F (h) F

Section 5.4

(1) (a) Not one-to-one, because ([1 0 0]) = ([0 0 0]) = [0 0 0 0];
not onto, because [0 0 0 1] is not in range()

(b) Not one-to-one, because ([1−1 1]) = [0 0]; onto, because ([ 0 ]) = [ ]
(c) One-to-one, because ([  ]) = [0 0 0] implies that [2 +  + −] = [0 0 0],

which gives  =  =  = 0;
onto, because every vector [  ] can be expressed as [2 +  + −],
where  = 

2 ,  = −, and  = − 
2 + 

(d) Not one-to-one, because (1) = 0; onto, because (3 + 2 + ) = 2 + + 

(e) One-to-one, because (2+ + ) = 0 implies that +  = +  = +  = 0, which gives  = 
and hence  =  =  = 0;
onto, because every polynomial 2 ++ can be expressed as (+ )2 + (+ )+ (+ ),
where  = (− + )2,  = (+ − )2, and  = (−+ + )2

(f) One-to-one, because 

µ∙
 
 

¸¶
=

∙
0 0
0 0

¸
=⇒

∙
 + 

−  

¸
=

∙
0 0
0 0

¸
=⇒  =  = +  = −  = 0 =⇒  =  =  =  = 0;

onto, because 

Ã"
 +

2

−
2 

#!
=

∙
 
 

¸
(g) Not one-to-one, because 

µ∙
0 1 0
1 0 −1

¸¶
= 

µ∙
0 0 0
0 0 0

¸¶
=

∙
0 0
0 0

¸
;

onto, because every 2× 2 matrix
∙
 
 

¸
can be expressed as

∙
 −
2 + 

¸
,

where  = ,  = −,  = 2,  = , and  = 0
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(h) One-to-one, because (2 +  + ) =

∙
0 0
0 0

¸
implies that  +  =  −  = −3 = 0, which

gives  =  =  = 0;

not onto, because

∙
0 1
0 0

¸
is not in range()

(2) (a) One-to-one; onto;

the matrix row reduces to I2, which means that dim(ker()) = 0 and dim(range()) = 2.

(b) One-to-one; not onto;

the matrix row reduces to

⎡⎣ 1 0
0 1
0 0

⎤⎦, which means that dim(ker()) = 0 and dim(range()) = 2.
(c) Not one-to-one; not onto;

the matrix row reduces to

⎡⎢⎢⎣
1 0 −25
0 1 −65
0 0 0

⎤⎥⎥⎦, which means that dim(ker()) = 1
and dim(range()) = 2.

(d) Not one-to-one; onto;

the matrix row reduces to

⎡⎣ 1 0 0 −2
0 1 0 3
0 0 1 −1

⎤⎦, which means that dim(ker()) = 1
and dim(range()) = 3.

(3) (a) One-to-one; onto;

the matrix row reduces to I3 which means that dim(ker()) = 0 and dim(range()) = 3.

(b) Not one-to-one; not onto;

the matrix row reduces to

⎡⎢⎢⎣
1 0 0 −2
0 1 0 −2
0 0 1 1
0 0 0 0

⎤⎥⎥⎦, which means that dim(ker()) = 1
and dim(range()) = 3.

(c) Not one-to-one; not onto;

the matrix row reduces to

⎡⎢⎢⎢⎢⎢⎣
1 0 −1011 19

11

0 1 3
11 − 9

11

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦, which means that dim(ker()) = 2
and dim(range()) = 2.

(4) (a) Let :R → R. Then dim(range()) =  − dim(ker()) ≤   , so  is not onto.

(b) Let :R → R. Then dim(ker()) =  − dim(range()) ≥ −   0, so  is not one-to-one.
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(5) (a) (I) = AI − IA = A−A = O. Hence I ∈ ker(), and so  is not one-to-one by part (1)
of Theorem 5.12.

(b) Use part (a) of this exercise, part (2) of Theorem 5.12, and the Dimension Theorem.

(6) If (A) = O3, then A
 = −A, so A is skew-symmetric. But since A is also upper triangular, A = O3.

Thus, ker() = {0} and  is one-to-one. By the Dimension Theorem, dim(range()) = dim(U3) = 6
(since dim(ker()) = 0). Hence, range() 6=M33, and  is not onto.

(7) (a) No, by Corollary 5.13, because dim(R6) = dim(P5).
(b) No, by Corollary 5.13, because dim(M22) = dim(P3).

(8) (a) Clearly, multiplying a nonzero polynomial by  produces another nonzero polynomial. Hence,
ker() = {0P}, and  is one-to-one. But, every nonzero element of range() has degree at least
1, since  multiplies by . Hence, the constant polynomial 1 is not in range(), and  is not onto.

(b) Corollary 5.13 requires that the domain and codomain of the linear transformation be finite

dimensional. However, P is infinite dimensional.
(9) (a) Consider : P2 → R3 given by (p) = [p(1)p(2)p(3)] Now, dim(P2) = dim(R3) = 3

Hence, by Corollary 5.13, if  is either one-to-one or onto, it has the other property as well.
We will show that  is one-to-one using part (1) of Theorem 5.12. If p ∈ ker(), then (p) = 0,

and so p(1) = p(2) = p(3) = 0. Hence p is a polynomial of degree ≤ 2 touching the -axis at
 = 1,  = 2, and  = 3. Since the graph of p must be either a parabola or a line, it cannot
touch the -axis at three distinct points unless its graph is the line  = 0. That is, p = 0 in P2.
Therefore, ker() = {0}, and  is one-to-one.
Now, by Corollary 5.13,  is onto. Thus, given any 3-vector [  ], there is some p ∈ P2 such

that p(1) = , p(2) = , and p(3) = .

(b) From part (a),  is an isomorphism. Hence, any [  ] ∈ R3 has a unique pre-image under  in
P2.

(c) Generalize parts (a) and (b) using : P → R+1 given by (p) = [p(1)    p()p(+1)]
Note that any polynomial in ker() has +1 distinct roots, and so must be trivial. Hence  is one-
to-one, and therefore by Corollary 5.13,  is onto. Thus, given any (+1)-vector [1      +1],
there is a unique p ∈ P such that p(1) = 1     p() = , and p(+1) = +1.

(10) Suppose  is not one-to-one. Then ker() is nontrivial. Let v ∈ ker() with v 6= 0 Then  = {v} is
linearly independent. But ( ) = {0W}, which is linearly dependent, a contradiction.

(11) (a) Suppose w ∈ (span()). Then there is a vector v ∈ span() such that (v) = w. There are
also vectors v1    v ∈  and scalars 1      such that 1v1 + · · ·+ v = v. Hence,

w = (v) = (1v1 + · · ·+ v)

= (1v1) + · · ·+ (v)

= 1(v1) + · · ·+ (v)

which shows that w ∈ span(()). Hence, (span()) ⊆ span(()).
Next,  ⊆ span() (by Theorem 4.5)

=⇒ () ⊆ (span())
=⇒ span(()) ⊆ (span()) (by part (3) of Theorem 4.5, since (span()) is a subspace

of W by part (1) of Theorem 5.3). Therefore, (span()) = span(()).
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(b) By part (a), () spans (span()) = (V) = range().
(c) W = span(()) = (span()) (by part (a)) ⊆ (V) (because span() ⊆ V) = range(). Thus,

 is onto.

(12) (a) F (b) F (c) T (d) T (e) T (f) T (g) T (h) F (i) F

Section 5.5

(1) In each part, let A represent the given matrix for 1 and let B represent the given matrix for 2. By
Theorem 5.16, 1 is an isomorphism if and only if A is nonsingular, and 2 is an isomorphism if and

only if B is nonsingular. In each part, we will give |A| and |B| to show that A and B are nonsingular.

(a) |A| = 1, |B| = 3, −11

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 0 0 1
0 −1 0
1 −2 0

⎤⎦⎡⎣ 1
2
3

⎤⎦,
−12

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 1 0 0
0 0 −13
2 1 0

⎤⎦⎡⎣ 1
2
3

⎤⎦, (2 ◦ 1)
⎛⎝⎡⎣ 1

2
3

⎤⎦⎞⎠ =

⎡⎣ 0 −2 1
1 4 −2
0 3 0

⎤⎦⎡⎣ 1
2
3

⎤⎦,

(2 ◦ 1)−1
⎛⎝⎡⎣ 1

2
3

⎤⎦⎞⎠ = (−11 ◦ −12 )
⎛⎝⎡⎣ 1

2
3

⎤⎦⎞⎠ =

⎡⎢⎢⎣
2 1 0

0 0 1
3

1 0 2
3

⎤⎥⎥⎦
⎡⎣ 1

2
3

⎤⎦

(b) |A| = −1, |B| = −1, −11

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 0 −2 1
0 1 0
1 −8 4

⎤⎦⎡⎣ 1
2
3

⎤⎦,
−12

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 0 1 0
1 0 1
2 0 3

⎤⎦⎡⎣ 1
2
3

⎤⎦, (2 ◦ 1)
⎛⎝⎡⎣ 1

2
3

⎤⎦⎞⎠ =

⎡⎣ −1 1 0
−4 0 1
1 0 0

⎤⎦⎡⎣ 1
2
3

⎤⎦,
(2 ◦ 1)−1

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ = (−11 ◦ −12 )
⎛⎝⎡⎣ 1

2
3

⎤⎦⎞⎠ =

⎡⎣ 0 0 1
1 0 1
0 1 4

⎤⎦⎡⎣ 1
2
3

⎤⎦
(c) |A| = −1, |B| = 1, −11

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 2 −4 −1
7 −13 −3
5 −10 −3

⎤⎦⎡⎣ 1
2
3

⎤⎦,
−12

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 1 0 −1
3 1 −3
−1 −2 2

⎤⎦⎡⎣ 1
2
3

⎤⎦,
(2 ◦ 1)

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 29 −6 −4
21 −5 −2
38 −8 −5

⎤⎦⎡⎣ 1
2
3

⎤⎦,
(2 ◦ 1)−1

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ = (−11 ◦ −12 )
⎛⎝⎡⎣ 1

2
3

⎤⎦⎞⎠ =

⎡⎣ −9 −2 8
−29 −7 26
−22 −4 19

⎤⎦⎡⎣ 1
2
3

⎤⎦
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(2)  is clearly a linear operator, and  is invertible (−1 = ). By Theorem 5.15,  is an isomorphism.

(3) (a) 1 is a linear operator:

1(B+C) = A(B+C) = AB+AC = 1(B) + 1(C);

1(B) = A(B) = (AB) = 1(B)

Note that 1 is invertible (
−1
1 (B) = A

−1B). Use Theorem 5.15.

(b) 2 is a linear operator:

2(B+C) = A(B+C)A−1 = (AB+AC)A−1

= ABA−1 +ACA−1 = 2(B) + 2(C);

2(B) = A(B)A−1 = (ABA−1) = 2(B)

Note that 2 is invertible (
−1
2 (B) = A

−1BA). Use Theorem 5.15.

(4)  is a linear operator:

(p+ q) = (p+ q) + (p+ q)0 = p+ q+ p0 + q0

= (p+ p0) + (q+ q0) = (p) + ();

(p) = (p) + (p)0 = p+ p0 = (p+ p0) = (p)

Now, if (p) = 0, then p + p0 = 0 =⇒ p = −p0 But if p is not a constant polynomial, then p and
p0 have different degrees, a contradiction. Hence, p0 = 0 and so p = 0. Thus, ker() = {0} and  is
one-to-one. Then, by Corollary 5.13,  is an isomorphism.

(5) (a)

∙
0 1
1 0

¸
(b) Use Theorem 5.16 (since the matrix in part (a) is nonsingular).

(c) If A is the matrix for  in part (a), then A2 = I2, so  = −1.
(d) Performing the reflection  twice in succession gives the identity mapping.

(6) The change of basis is performed by multiplying by a nonsingular transition matrix. Use Theorem

5.16. (Note that multiplication by a matrix is a linear transformation.)

(7) ( ◦ 1)(v) = ( ◦ 2)(v) =⇒ (−1 ◦ ◦ 1)(v) = (−1 ◦ ◦ 2)(v) =⇒ 1(v) = 2(v)

(8) Suppose dim(V) =   0 and dim(W) =   0.
SupposeA is nonsingular, thenA is square,  = ,A−1 exists, andA

−1
A = AA

−1
 =

I. Let  be the linear operator from W to V whose matrix with respect to  and  is A−1 . Then,
for all v ∈ V, [( ◦)(v)] = A−1A [v] = I[v] = [v]. Therefore, ( ◦)(v) = v for all v ∈ V,
since coordinatizations are unique.

Similarly, for all w ∈W, [( ◦)(w)] = AA
−1
 [w] = I[w] = [w] . Hence ( ◦)(w) = w

for all w ∈W. Therefore,  acts as an inverse for . Hence,  is an isomorphism by Theorem 5.15.

(9) In all parts, use Corollary 5.20. In part (c), the answer to the question is yes.

(10) If  is an isomorphism, ( ◦ )−1 = −1 ◦ −1, so  ◦  is an isomorphism by Theorem 5.15.

Conversely, if  ◦  is an isomorphism, it is easy to prove  is one-to-one and onto directly. Or, let
 =  ◦ ( ◦)−1 and  = ( ◦)−1 ◦. Then clearly,  ◦  =  (identity operator on V) =  ◦. But
 =  ◦  =  ◦  ◦  =  ◦  = , and so  =  = −1. Hence  is an isomorphism by Theorem 5.15.
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(11) (a) Let v ∈ V with v 6= 0V . Since ( ◦ )(v) = 0V , either (v) = 0V or ((v)) = 0V , with
(v) 6= 0V . Hence, ker() 6= {0V}, since one of the two vectors v or (v) is nonzero and is in
ker().

(b) Proof by contrapositive: The goal is to prove that if  is an isomorphism, then  ◦ 6=  or  is
the identity transformation. Assume  is an isomorphism and  ◦  =  (see “If  Then  or

 Proofs” in Section 1.3). Then  is the identity transformation because

( ◦ )(v) = (v) =⇒ (−1 ◦  ◦ )(v) = (−1 ◦ )(v) =⇒ (v) = v

(12) Range() = column space of A (see comments just before the Range Method in Section 5.3 of the

textbook).

Now,  is an isomorphism iff  is onto (by Corollary 5.13)
iff range() = R iff span({columns of A}) = R
iff the  columns of A are linearly independent (by part (2) of Theorem 4.12).

(13) (a) Use Theorem 5.14.

(b) By Exercise 11(c) in Section 5.4,  is onto. Now, if  is not one-to-one, then ker() is nontrivial.
Suppose v ∈ ker() with v 6= 0 If  = {v1    v} then there are 1      ∈ R such that v =
1v1 + · · ·+ v where not every  = 0 (since v 6= 0). Then

0W = (v) = (1v1 + · · ·+ v) = 1(v1) + · · ·+ (v)

But since each (v) is distinct, and some  6= 0 this contradicts the linear independence of
(). Hence  is one-to-one.

(c)  (e1) = [3 1]  (e2) = [5 2] and  (e3) = [3 1] Hence,  () = {[3 1] [5 2]} (because identical
elements of a set are not listed more than once). This set is clearly a basis for R2.  is not an

isomorphism or else we would contradict Theorem 5.18, since dim(R3) 6= dim(R2).
(d) Part (c) is not a counterexample to part (b) because in part (c) the images of the vectors in 

are not distinct.

(14) Let  = (v1    v) let v ∈ V, and let 1      ∈ R such that v = 1v1 + · · ·+ v
Then [v] = [1    ] But

(v) = (1v1 + · · ·+ v) = 1(v1) + · · ·+ (v)

From Exercise 13(a), {(v1)     (v)} is a basis for () =W (since  is onto).
Hence, [(v)]() = [1    ] as well.

(15) (Note: This exercise will be used as part of the proof of the Dimension Theorem, so we do not use the

Dimension Theorem in this proof. Notice that we can use both Theorem 5.14 and part (a) of Exercise

11 because they were previously proven without invoking the Dimension Theorem.)

Because Y is a subspace of the finite dimensional vector space V, Y is also finite dimensional (Theo-
rem 4.13). Suppose {y1    y} is a basis for Y. Because  is one-to-one, the vectors (y1)     (y)
are distinct. By part (1) of Theorem 5.14, {(y1)     (y)} = ({y1    y}) is linearly indepen-
dent. Part (a) of Exercise 11 in Section 5.4 shows that

span(({y1    y})) = (span({y1    y})) = (Y)
Therefore, {(y1)     (y)} is a -element basis for (Y). Hence,

dim((Y)) =  = dim(Y)
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(16) (a) Let v ∈ ker( ). Then
(2 ◦  )(v) = 2( (v)) = 2(0W) = 0Y 

and so v ∈ ker(2 ◦  ). Hence, ker( ) ⊆ ker(2 ◦  ).
Next, suppose v ∈ ker(2 ◦  ). Then

0Y = (2 ◦  )(v) = 2( (v))

which implies that  (v) ∈ ker(2). But 2 is one-to-one, and so ker(2) = {0W}. Therefore,
 (v) = 0W , implying that v ∈ ker( ). Hence, ker(2 ◦  ) ⊆ ker( ).
Therefore, ker( ) = ker(2 ◦  ).

(b) Suppose w ∈ range( ◦ 1) Then there is some x ∈ X such that ( ◦ 1)(x) = w implying
 (1(x)) = w Hence w is the image under  of 1(x) and so w ∈ range( ). Thus, range( ◦1)
⊆ range( ). Similarly, if w ∈ range( ) there is some v ∈ V such that  (v) = w Since −11
exists, ( ◦1)(−11 (v)) = w and so w ∈ range( ◦1) Thus, range( ) ⊆ range( ◦1) finishing
the proof.

(c) Let v ∈ 1(ker( ◦ 1)). Thus, there is an x ∈ ker( ◦ 1) such that 1(x) = v. Then,

 (v) =  (1(x)) = ( ◦ 1)(x) = 0W 

Thus, v ∈ ker( ). Therefore, 1(ker( ◦ 1)) ⊆ ker( ).
Now suppose that v ∈ ker( ). Then  (v) = 0W . Thus, ( ◦ 1)(−11 (v)) = 0W as well.

Hence, −11 (v) ∈ ker( ◦ 1). Therefore,

v = 1(
−1
1 (v)) ∈ 1(ker( ◦ 1))

implying ker( ) ⊆ 1(ker( ◦ 1)), completing the proof.
(d) From part (c), dim(ker( )) = dim(1(ker( ◦ 1))). Apply Exercise 15 using 1 as  and

Y = ker( ◦ 1) to show that

dim(1(ker( ◦ 1))) = dim(ker( ◦ 1))

(e) Suppose y ∈ range(2 ◦  ). Hence, there is a v ∈ V such that (2 ◦  )(v) = y. Thus,
y = 2( (v)). Clearly,  (v) ∈ range( ), and so y ∈ 2(range( )). This proves that

range(2 ◦  ) ⊆ 2(range( ))

Next, suppose that y ∈ 2(range( )). Then there is some w ∈ range( ) such that 2(w) = y.
Since w ∈ range( ), there is a v ∈ V such that  (v) = w. Therefore,

(2 ◦  )(v) = 2( (v)) = 2(w) = y

This establishes that 2(range( )) ⊆ range(2 ◦  ), finishing the proof.
(f) From part (e),

dim(range(2 ◦  )) = dim(2(range( )))
Apply Exercise 15 using 2 as  and Y = range( ) to show that

dim(2(range( ))) = dim(range( ))
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(17) (a) Part (c) of Exercise 16 states that 1 (ker ( ◦ 1)) = ker ( ). Substituting  = 2 ◦  and

1 = −11 yields

−11
¡
ker
¡
2 ◦  ◦ −11

¢¢
= ker (2 ◦ ) 

Now  = 2 ◦  ◦ −11 . Hence, −11 (ker ()) = ker (2 ◦ ).
(b) With 2 = 2 and  =  , part (a) of Exercise 16 shows that ker (2 ◦ ) = ker (). This,

combined with part (a) of this exercise, shows that −11 (ker ()) = ker ().

(c) From part (b),

dim(ker ()) = dim(−11 (ker ()))

Apply Exercise 15 with  replaced by −11 and Y = ker() to show that
dim(−11 (ker ())) = dim(ker())

completing the proof.

(d) Part (e) of Exercise 16 states that range (2 ◦  ) = 2 (range( )). Substituting ◦−11 for  and
2 for 2 yields

range
¡
2 ◦  ◦ −11

¢
= 2

¡
range( ◦ −11 )

¢


Apply −12 to both sides to produce

−12 (range
¡
2 ◦  ◦ −11

¢
) = range( ◦ −11 )

Using  = 2 ◦  ◦ −11 gives −12 (range ()) = range( ◦ −11 ), the desired result.
(e) Part (b) of Exercise 16 states that range ( ◦ 1) = range ( ). Substituting  for  and −11 for

1 produces range( ◦ −11 ) = range (). Combining this with

−12 (range ()) = range( ◦ −11 )
from part (d) of this exercise yields −12 (range()) = range().

(f) From part (e), dim(−12 (range())) = dim(range()). Apply Exercise 15 with  replaced by

−12 and Y = range() to show that
dim(−12 (range())) = dim(range())

completing the proof.

(18) (a) A nonsingular 2× 2 matrix must have at least one of its first column entries nonzero. Then, use
an appropriate equation from the two given in the problem.

(b)

∙
 0
0 1

¸ ∙



¸
=

∙



¸
, a contraction (if  ≤ 1) or dilation (if  ≥ 1) along the -coordinate.

Similarly,

∙
1 0
0 

¸ ∙



¸
=

∙



¸
, a contraction (if  ≤ 1) or dilation (if  ≥ 1) along the

-coordinate.

(c) By the hint, multiplying by

∙
 0
0 1

¸
first performs a dilation/contraction by part (a) followed by

a reflection about the -axis. Using

∙
1 0
0 

¸
=

∙
1 0
0 −1

¸ ∙
1 0
0 −

¸
shows that multiplying
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by

∙
1 0
0 

¸
first performs a dilation/contraction by part (a) followed by a reflection about the

-axis.

(d) These matrices are defined to represent shears in Exercise 11 in Section 5.1.

(e)

∙
0 1
1 0

¸ ∙



¸
=

∙



¸
; that is, this matrix multiplication switches the coordinates of a vector

in R2. That is precisely the result of a reflection through the line  = .

(f) This is merely a summary of parts (a) through (e).

(19)

" √
2
2 −

√
2
2√

2
2

√
2
2

#
=

" √
2
2 0

0 1

#"
1 0
√
2
2 1

# ∙
1 0

0
√
2

¸ ∙
1 −1
0 1

¸
,

where the matrices on the right side are, respectively, a contraction along the -coordinate, a shear in
the -direction, a dilation along the -coordinate, and a shear in the -direction.

(20) (a) T (b) T (c) F (d) F (e) F (f) T (g) T (h) T

Section 5.6

(1) (a)
Eigenvalue Basis for  Alg. Mult. Geom. Mult.

1 = 2 {[1 0]} 2 1

(b)

Eigenvalue Basis for  Alg. Mult. Geom. Mult.

1 = 3 {[1 4]} 1 1
2 = 2 {[0 1]} 1 1

(c)

Eigenvalue Basis for  Alg. Mult. Geom. Mult.

1 = 1 {[2 1 1]} 1 1
2 = −1 {[−1 0 1]} 1 1
3 = 2 {[1 1 1]} 1 1

(d)

Eigenvalue Basis for  Alg. Mult. Geom. Mult.

1 = 2 {[5 4 0] [3 0 2]} 2 2
2 = 3 {[0 1−1]} 1 1

(e)

Eigenvalue Basis for  Alg. Mult. Geom. Mult.

1 = −1 {[−1 2 3]} 2 1
2 = 0 {[−1 1 3]} 1 1

(f)

Eigenvalue Basis for  Alg. Mult. Geom. Mult.

1 = 0 {[6−1 1 4]} 2 1
2 = 2 {[7 1 0 5]} 2 1

(2) (a)  = (e1 e2 e3 e4);  = ([1 1 0 0] [0 0 1 1] [1−1 0 0] [0 0 1−1]);

A =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ ; D =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎦ ; P =
⎡⎢⎢⎣
1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

⎤⎥⎥⎦
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(b)  = (2  1);  = (2 − 2+ 1−+ 1 1);

A =

⎡⎣ 2 0 0
−2 1 0
0 −1 0

⎤⎦ ; D =

⎡⎣ 2 0 0
0 1 0
0 0 0

⎤⎦ ; P =
⎡⎣ 1 0 0
−2 −1 0
1 1 1

⎤⎦
(c) Not diagonalizable;  = (2  1); A =

⎡⎣ −1 0 0
2 −3 0
0 1 −3

⎤⎦;
Eigenvalue Basis for  Alg. Mult. Geom. Mult.

1 = −1 {22 + 2+ 1} 1 1
2 = −3 {1} 2 1

(d)  = (2  1);  = (22 − 8+ 9  1);

A =

⎡⎣ −1 0 0
−12 −4 0
18 0 −5

⎤⎦ ; D =

⎡⎣ −1 0 0
0 −4 0
0 0 −5

⎤⎦ ; P =
⎡⎣ 2 0 0
−8 1 0
9 0 1

⎤⎦
(e) Not diagonalizable; no eigenvalues; A =

"
1
2 −

√
3
2√

3
2

1
2

#

(f)  =

µ∙
1 0
0 0

¸


∙
0 1
0 0

¸


∙
0 0
1 0

¸


∙
0 0
0 1

¸¶
;

 =

µ∙
1 0
0 0

¸


∙
0 0
0 1

¸


∙
0 1
1 0

¸


∙
0 1
−1 0

¸¶
;

A =

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ ; D =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦ ; P =
⎡⎢⎢⎣
1 0 0 0
0 0 1 1
0 0 1 −1
0 1 0 0

⎤⎥⎥⎦
(g)  =

µ∙
1 0
0 0

¸


∙
0 1
0 0

¸


∙
0 0
1 0

¸


∙
0 0
0 1

¸¶
;

 =

µ∙
1 0
0 0

¸


∙
0 1
1 0

¸


∙
0 0
0 1

¸


∙
0 −1
1 0

¸¶
;

A =

⎡⎢⎢⎣
0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎤⎥⎥⎦ ; D =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

⎤⎥⎥⎦ ; P =
⎡⎢⎢⎣
1 0 0 0
0 1 0 −1
0 1 0 1
0 0 1 0

⎤⎥⎥⎦
(h)  =

µ∙
1 0
0 0

¸


∙
0 1
0 0

¸


∙
0 0
1 0

¸


∙
0 0
0 1

¸¶
;

 =

µ∙
3 0
5 0

¸


∙
0 3
0 5

¸


∙
1 0
2 0

¸


∙
0 1
0 2

¸¶
;

A =

⎡⎢⎢⎣
−4 0 3 0
0 −4 0 3

−10 0 7 0
0 −10 0 7

⎤⎥⎥⎦ ;D =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

⎤⎥⎥⎦ ; P =
⎡⎢⎢⎣
3 0 1 0
0 3 0 1
5 0 2 0
0 5 0 2

⎤⎥⎥⎦
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(3) (a) () =

¯̄̄̄
¯̄̄̄ (− 5) −2 0 −1

2 (− 1) 0 1
−4 −4 (− 3) −2
−16 0 8 (+ 5)

¯̄̄̄
¯̄̄̄

= (− 3)
¯̄̄̄
¯̄ (− 5) −2 −1

2 (− 1) 1
−16 0 + 5

¯̄̄̄
¯̄− 8

¯̄̄̄
¯̄ (− 5) −2 −1

2 (− 1) 1
−4 −4 −2

¯̄̄̄
¯̄

= (− 3)
µ
−16

¯̄̄̄ −2 −1
(− 1) 1

¯̄̄̄
+ (+ 5)

¯̄̄̄
(− 5) −2
2 (− 1)

¯̄̄̄¶
− 8

µ
(− 5)

¯̄̄̄
(− 1) 1
−4 −2

¯̄̄̄
− 2

¯̄̄̄ −2 −1
−4 −2

¯̄̄̄
− 4

¯̄̄̄ −2 −1
(− 1) 1

¯̄̄̄¶
= (− 3)(−16(− 3) + (+ 5)(2 − 6+ 9))− 8((− 5)(−2+ 6)− 2(0)− 4(− 3))
= (− 3)(−16(− 3) + (+ 5)(− 3)2)− 8((−2)(− 5)(− 3)− 4(− 3))
= (− 3)2(−16 + (+ 5)(− 3)) +16(− 3)((− 5) + 2)
= (− 3)2(2 + 2− 31) + 16(− 3)2
= (− 3)2(2 + 2− 15) = (− 3)3(+ 5).
You can check that this polynomial expands as claimed.

(b)

⎡⎢⎢⎣
−10 −2 0 −1
2 −6 0 1
−4 −4 −8 −2
−16 0 8 0

⎤⎥⎥⎦ becomes
⎡⎢⎢⎢⎢⎣
1 0 0 1

8

0 1 0 −18
0 0 1 1

4

0 0 0 0

⎤⎥⎥⎥⎥⎦ when put into reduced row echelon form.
(4) For both parts, the only eigenvalue is  = 1; 1 = {1}.
(5) Since A is upper triangular, so is I−A. Thus, by Theorem 3.2, |I−A| equals the product of the

main diagonal entries of I−A, which is (−), since 11 = 22 = · · · =  ThusA has exactly one
eigenvalue  with algebraic multiplicity . Hence A is diagonalizable⇐⇒  has geometric multiplicity
 ⇐⇒  = R ⇐⇒ Av = v for all v ∈ R ⇐⇒ Av = v for all v ∈ {e1     e} ⇐⇒ A = I
(using Exercise 14(b) in Section 1.5).

(6) In both cases, the given linear operator is diagonalizable, but there are fewer than  distinct eigenvalues.
This occurs because at least one of the eigenvalues has geometric multiplicity greater than 1.

(7) (a)

⎡⎣ 1 1 −1
0 1 0
0 0 1

⎤⎦ ; eigenvalue  = 1; basis for 1 = {[1 0 0] [0 1 1]};  has algebraic multiplicity 3
and geometric multiplicity 2

(b)

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦ ; eigenvalues 1 = 1 2 = 0; basis for 1 = {[1 0 0] [0 1 0]}; 1 has algebraic

multiplicity 2 and geometric multiplicity 2

(8) (a) Zero is not an eigenvalue for  iff ker() = {0}. Now apply part (1) of Theorem 5.12 and

Corollary 5.13.

(b) (v) = v =⇒ −1((v)) = −1(v) =⇒ v = −1(v) =⇒ 1

v = −1(v) (since  6= 0 by

part (a)).
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(9) Let P be such that P−1AP is diagonal. Let  = (v1    v), where [v] = th column of P. Then,
by definition, P is the transition matrix from  to . Then, for all v ∈ V,

P−1AP[v] = P−1A[v] = P−1[(v)] = [(v)] 

Hence, as in part (a), P−1AP is the matrix for  with respect to . But P−1AP is diagonal.

(10) If P is the matrix with columns v1    v, then P
−1AP = D is a diagonal matrix with 1      as

the main diagonal entries of D. Clearly |D| = 12 · · ·. But

|D| = |P−1AP| = |P−1||A||P| = |A||P−1||P| = |A|

(11) Clearly  ≥P
=1(algebraic multiplicity of ) ≥

P
=1(geometric multiplicity of ), by Theorem 5.26.

(12) Proof by contrapositive: If () has a nonreal root, then the sum of the algebraic multiplicities of the

eigenvalues of  is less than . Apply Theorem 5.28.

(13) (a) A(Bv) = (AB)v = (BA)v = B(Av) = B(v) = (Bv).

(b) The eigenspaces  for A are one-dimensional. Let v ∈ , with v 6= 0. Then Bv ∈ , by part

(a). Hence Bv = v for some  ∈ R, and so v is an eigenvector for B. Repeating this for each
eigenspace of A shows that B has  linearly independent eigenvectors. Now apply Theorem 5.22.

(14) (a) Suppose v1 and v2 are eigenvectors for A corresponding to 1 and 2, respectively. Let K1 be

the 2 × 2 matrix [v1 0] (where the vectors represent columns). Similarly, let K2 = [0 v1],
K3 = [v2 0], and K4 = [0 v2]. Then a little thought shows that {K1K2} is a basis for 1 in

M22, and {K3K4} is a basis for 2 inM22.

(b) Generalize the construction in part (a).

(15) Suppose v ∈ 1 ∩2 Then v ∈ 1 =⇒ v ∈ 1 =⇒ (v) = 1v
Similarly, v ∈ 2 =⇒ v ∈ 2 =⇒ (v) = 2v
Hence, 1v = 2v and so (1−2)v = 0 Since 1 6= 2v = 0
But 0 can not be an element of any basis, and so 1 ∩2 is empty.

(16) (a)  is a subspace, hence closed.

(b) First, substitute u for
P

=1 v in the given double sum equation. This proves
P

=1 u = 0.
Now, the set of all nonzero u’s is linearly independent by Theorem 5.23, since they are eigenvectors
corresponding to distinct eigenvalues. But then, the nonzero terms in

P
=1 u would give a

nontrivial linear combination from a linearly independent set equal to the zero vector. This

contradiction shows that all of the u’s must equal 0.

(c) Using part (b) and the definition of u, 0 =
P

=1 v for each . But {v1    v} is linearly
independent, since it is a basis for  . Hence, for each , 1 = · · · =  = 0.

(d) Apply the definition of linear independence to .
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(17) Example 7 states that A() = 3 − 42 + + 6. So,

A(A) = A3 − 4A2 +A+ 6I3

=

⎡⎣ −17 22 76
−374 214 1178
54 −27 −163

⎤⎦− 4
⎡⎣ 5 2 −4
−106 62 334
18 −9 −53

⎤⎦
+

⎡⎣ 31 −14 −92
−50 28 158
18 −9 −55

⎤⎦+ 6
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
=

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦ 
verifying the Cayley-Hamilton Theorem for this matrix.

(18) (a) F (b) T (c) T (d) F (e) T (f) T (g) T (h) F (i) F (j) T

Chapter 5 Review Exercises

(1) (a) Not a linear transformation: ([0 0 0]) 6= [0 0 0]
(b) Linear transformation:

((3 + 2 + + ) + (3 + 2 ++ ))

= ((+ )3 + (+ )2 + (+)+ (+ ))

=

⎡⎣ 4(+ )− (+) 3(+ )− (+ )
2(+ ) + 3(+ ) 4(+)

5(+ ) + (+) + 2(+ ) 2(+ )− 3(+ )

⎤⎦
=

⎡⎣ 4−  3− 
2+ 3 4

5+ + 2 2− 3

⎤⎦+
⎡⎣ 4 − 3− 

2+ 3 4
5 ++ 2 2 − 3

⎤⎦
= (3 + 2 + + ) + (3 + 2 ++ )

Also,

((3 + 2 + + )) = (()3 + ()2 + ()+ ())

=

⎡⎣ 4()− () 3()− ()
2() + 3() 4()

5() + () + 2() 2()− 3()

⎤⎦
= 

⎡⎣ 4−  3− 
2+ 3 4

5+ + 2 2− 3

⎤⎦
= ((3 + 2 + + ))

(c) Not a linear transformation: ([1 0] + [0 1]) 6= ([1 0]) + ([0 1]) since ([1 1]) = [2−3] and
([1 0]) + ([0 1]) = [0 0] + [0 0] = [0 0].

(2) [1598 3232]
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(3) (A1) + (A2) = CA1B
−1 +CA2B

−1 = C(A1B
−1 +A2B

−1) = C(A1 +A2)B
−1 = (A1 +A2);

(A) = C(A)B−1 = CAB−1 = (A).

(4) ([6 2−7]) = [20 10 44];

([  ]) =

⎡⎣ −3 5 −4
2 −1 0
4 3 −2

⎤⎦⎡⎣ 



⎤⎦ = [−3+ 5 − 4 2−  4+ 3 − 2]

(5) (a) Use Theorem 5.2 and part (1) of Theorem 5.3.

(b) Use Theorem 5.2 and part (2) of Theorem 5.3.

(6) (a) A =

∙
29 32 −2
43 42 −6

¸
(b) A =

⎡⎣ 113 −58 51 −58
566 −291 255 −283

−1648 847 −742 823

⎤⎦

(7) (a) A =

⎡⎣ 2 1 −3 0
1 3 0 −4
0 0 1 −2

⎤⎦; A =

⎡⎣ −151 99 163 16
171 −113 −186 −17
238 −158 −260 −25

⎤⎦

(b) A =

⎡⎢⎢⎣
6 −1 −1
0 3 2
2 0 −4
1 −5 1

⎤⎥⎥⎦; A =

⎡⎢⎢⎣
115 −45 59
374 −146 190
−46 15 −25
−271 108 −137

⎤⎥⎥⎦

(8)

⎡⎣ 0 −1 0
0 0 0
0 0 1

⎤⎦
(9) (a) A () = 3 − 2 − + 1 = (+ 1)(− 1)2

(b) Fundamental eigenvectors for 1 = 1: {[2 1 0] [2 0 3]}; for 2 = −1: {[3−6 2]}
(c)  = ([2 1 0] [2 0 3] [3−6 2])

(d) A =

⎡⎣ 1 0 0
0 1 0
0 0 −1

⎤⎦. (Note: P =
⎡⎣ 2 2 3
1 0 −6
0 3 2

⎤⎦ and P−1 = 1
41

⎡⎣ 18 5 −12
−2 4 15
3 −6 −2

⎤⎦)
(e) This is a reflection through the plane spanned by {[2 1 0] [2 0 3]}. The equation for this plane

is 3− 6 + 2 = 0.
(10) (a) Basis for ker() = {[2−3 1 0] [−3 4 0 1]}; basis for range() = {[3 2 2 1] [1 1 3 4]}

(b) 2 + 2 = 4

(c) [−18 26−4 2] ∈ ker() because ([−18 26−4 2]) = [−6−2 10 20] 6= 0;
[−18 26−6 2] ∈ ker() because ([−18 26−6 2]) = 0

(d) [8 3−11−23] ∈ range(); row reduction shows [8 3−11−23] = 5[3 2 2 1] − 7[1 1 3 4], and
so, ([5−7 0 0]) = [8 3−11−23]
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(11) Matrix for  with respect to standard bases:

⎡⎢⎢⎣
1 0 0 0 0 −1
0 1 −2 0 0 0
0 0 0 1 0 −3
0 0 0 0 0 0

⎤⎥⎥⎦ ;
basis for ker() =

½∙
0 2 1
0 0 0

¸


∙
0 0 0
0 1 0

¸


∙
1 0 0
3 0 1

¸¾
;

basis for range() = {3 2 };
dim(ker()) + dim(range()) = 3 + 3 = 6 = dim(M32)

(12) (a) If v ∈ ker(1), then 1(v) = 0W . Thus, (2 ◦ 1)(v) = 2(1(v)) = 2(0W) = 0X , and so
v ∈ ker(2 ◦ 1). Therefore, ker(1) ⊆ ker(2 ◦ 1). Hence, dim(ker(1)) ≤ dim(ker(2 ◦ 1)).

(b) Let 1 be the projection onto the -axis (1([ ]) = [ 0]) and 2 be the projection onto the
-axis (2([ ]) = [0 ]). A basis for ker(1) is {[0 1]}, while ker(2 ◦ 1) = R2.

(13) (a) By part (2) of Theorem 5.9 applied to  and  ,

dim(ker())− dim(ker()) = (− rank(A))− (− rank(A ))

= (−)− (rank(A)− rank(A )) = −

by Corollary 5.11.

(b) Since  is onto, dim(range()) =  = rank(A) (by part (1) of Theorem 5.9) = rank(A )
(by Corollary 5.11) = dim(range()). Thus, by part (3) of Theorem 5.9, dim(ker()) +
dim(range()) = , implying dim(ker()) +  = , and so dim(ker()) = 0, and  is

one-to-one (by part (1) of Theorem 5.12).

(c) Converse:  one-to-one =⇒  onto. This is true.
 one-to-one =⇒ dim(ker()) = 0

=⇒ dim(ker()) = − (by part (a))

=⇒ (−) + dim(range()) =  (by part (3) of Theorem 5.9)

=⇒ dim(range()) = 
=⇒  is onto (by Theorem 4.13, and part (2) of Theorem 5.12).

(14) (a)  is not one-to-one because (3 − + 1) = O22. Corollary 5.13 then shows that  is not onto.

(b) ker() has {3−+1} as a basis, so dim(ker()) = 1. Thus, dim(range()) = 3 by the Dimension
Theorem.

(15) In each part, let A represent the given matrix for  with respect to the standard bases.

(a) The reduced row echelon form of A is I3. Therefore, ker() = {0}, and so dim(ker()) = 0 and
 is one-to-one. By Corollary 5.13,  is also onto. Hence dim(range()) = 3.

(b) The reduced row echelon form of A is

⎡⎣ 1 0 4 0
0 1 −1 0
0 0 0 1

⎤⎦.
dim(ker()) = 4− rank(A) = 1.  is not one-to-one.
dim(range()) = rank(A) = 3.  is onto.

(16) (a) dim(ker()) = dim(P3)− dim(range()) ≥ 4− dim(R3) = 1, so  cannot be one-to-one.
(b) dim(range()) = dim(P2)− dim(ker()) ≤ dim(P2) = 3  dim(M22), so  cannot be onto.
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(17) (a) (v1) = (v2) = (v2) =⇒ v1 = v2, because  is one-to-one. In this case, the set

{(v1) (v2)} is linearly dependent, since (v1) is a nonzero multiple of (v2). Part (1) of
Theorem 5.14 then implies that {v1v2} must be linearly dependent, which is correct, since v1 is
a nonzero multiple of v2.

(b) Consider the contrapositive: For  onto and w ∈W, if {v1v2} spans V, then (v1 + v2) = w
for some   ∈ R.
Proof of the contrapositive: Suppose  is onto, w ∈ W, and {v1v2} spans V. By part (2) of
Theorem 5.14, {(v1) (v2)} spans W, so there exist   ∈ R such that

w = (v1) + (v2) = (v1 + v2)

(18) (a) 1 and 2 are isomorphisms (by Theorem 5.16) because their (given) matrices are nonsingular.

Their inverses are given in part (b).

(b) Matrix for 2 ◦ 1 =

⎡⎢⎢⎣
81 71 −15 18
107 77 −31 19
69 45 −23 11
−29 −36 −1 −9

⎤⎥⎥⎦;

matrix for −11 : 1
5

⎡⎢⎢⎣
2 −10 19 11
0 5 −10 −5
3 −15 26 14
−4 15 −23 −17

⎤⎥⎥⎦;

matrix for −12 : 1
2

⎡⎢⎢⎣
−8 26 −30 2
10 −35 41 −4
10 −30 34 −2
−14 49 −57 6

⎤⎥⎥⎦ 

(c) Both computations yield 1
10

⎡⎢⎢⎣
−80 371 −451 72
20 −120 150 −30

−110 509 −619 98
190 −772 922 −124

⎤⎥⎥⎦ 
(19) (a) The determinant of the shear matrix given in Table 5.1 is 1, so this matrix is nonsingular. There-

fore, the given mapping is an isomorphism by Theorem 5.16.

(b) The inverse isomorphism is 

⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 1 0 −
0 1 −
0 0 1

⎤⎦⎡⎣ 1
2
3

⎤⎦ =

⎡⎣ 1 − 3
2 − 3

3

⎤⎦ . This

represents a shear in the -direction with factor −.
(20) (a) (BAB) = BA (B ) = BAB, since A is symmetric.

(b) Suppose AC ∈W. Note that if BAB = BCB, then A = C because B is nonsingular. Thus

 is one-to-one, and so  is onto by Corollary 5.13.

An alternate approach is as follows: Suppose C ∈ W. If A = (B )−1CB−1 then (A) = C
Thus  is onto, and so  is one-to-one by Corollary 5.13.

(21) (a) (4 + 3 + 2) = 43 + (12+ 3)2 + (6 + 2)+ 2. Clearly ker() = {0}. Apply part
(1) of Theorem 5.12.

(b) No. dim(W) = 3 6= dim(P3)
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(c) The polynomial  ∈ range() since it does not have the correct form for an image under  (as
stated in part (a)).

(22) In parts (a), (b), and (c), let A represent the given matrix.

(a) (i) A() = 3 − 32 − + 3 = (− 1)(+ 1)(− 3);
eigenvalues for : 1 = 1, 2 = −1, and 3 = 3;
basis for 1: {[−1 3 4]}; basis for −1: {[−1 4 5]}; basis for 3: {[−6 20 27]}

(ii) All algebraic and geometric multiplicities equal 1;  is diagonalizable.

(iii)  = {[−1 3 4] [−1 4 5] [−6 20 27]};

D =

⎡⎣ 1 0 0
0 −1 0
0 0 3

⎤⎦; P =
⎡⎣ −1 −1 −6

3 4 20
4 5 27

⎤⎦  (Note that P−1 =

⎡⎣ −8 3 −4
1 3 −2
1 −1 1

⎤⎦).
(b) (i) A() = 3 + 52 + 20+ 28 = (+ 2)(2 + 3+ 14);

eigenvalue for :  = −2 since 2 + 3+ 14 has no real roots; basis for −2: {[0 1 1]}
(ii) For  = −2: algebraic multiplicity = geometric multiplicity = 1;  is not diagonalizable.

(c) (i) A() = 3 − 52 + 3+ 9 = (+ 1)(− 3)2;
eigenvalues for : 1 = −1, and 2 = 3;
basis for −1: {[1 3 3]}; basis for 3: {[1 5 0] [3 0 25]}

(ii) For 1 = −1: algebraic multiplicity = geometric multiplicity = 1;
For 2 = 3: algebraic multiplicity = geometric multiplicity = 2;  is diagonalizable.

(iii)  = {[1 3 3] [1 5 0] [3 0 25]};

D =

⎡⎣ −1 0 0
0 3 0
0 0 3

⎤⎦; P =
⎡⎣ 1 1 3
3 5 0
3 0 25

⎤⎦  (Note that P−1 = 1
5

⎡⎣ 125 −25 −15
−75 16 9
−15 3 2

⎤⎦).

(d) Matrix for  with respect to standard coordinates: A =

⎡⎢⎢⎣
1 0 0 0
−3 0 0 0
0 −2 −1 0
0 0 −1 −2

⎤⎥⎥⎦.
(i) A() = 4 + 23 − 2 − 2 = (− 1)(+ 1)(+ 2);
eigenvalues for : 1 = 1, 2 = 0, 3 = −1, and 4 = −2;
basis for 1: {−3 + 32 − 3+ 1} ({[−1 3−3 1]} in standard coordinates);
basis for 0: {2 − 2+ 1} ({[0 1−2 1]} in standard coordinates);
basis for −1: {−+ 1} ({[0 0−1 1]} in standard coordinates);
basis for −2: {1} ({[0 0 0 1]} in standard coordinates)

(ii) All algebraic and geometric multiplicities equal 1;  is diagonalizable.
(iii)  = {−3 + 32 − 3+ 1 2 − 2+ 1−+ 1 1}

({[−1 3−3 1] [0 1−2 1] [0 0−1 1] [0 0 0 1]} in standard coordinates);

D =

⎡⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −2

⎤⎥⎥⎦; P =
⎡⎢⎢⎣
−1 0 0 0
3 1 0 0
−3 −2 −1 0
1 1 1 1

⎤⎥⎥⎦  (Note that P−1 = P).
(23) Basis for 1: {[  ] [   ]}; basis for −1: {[ −  −  − ]}.

basis of eigenvectors: {[  ] [   ] [ −  −  − ]};
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D =

⎡⎣ 1 0 0
0 1 0
0 0 −1

⎤⎦
(24) A(A) = A

4 − 4A3 − 18A2 + 108A− 135I4

=

⎡⎢⎢⎣
649 216 −176 −68
−568 −135 176 68
1136 432 −271 −136
−1088 0 544 625

⎤⎥⎥⎦− 4
⎡⎢⎢⎣

97 54 −8 19
−70 −27 8 −19
140 108 11 38
304 0 −152 −125

⎤⎥⎥⎦

− 18

⎡⎢⎢⎣
37 12 −8 −2
−28 −3 8 2
56 24 −7 −4
−32 0 16 25

⎤⎥⎥⎦+ 108
⎡⎢⎢⎣

5 2 0 1
−2 1 0 −1
4 4 3 2
16 0 −8 −5

⎤⎥⎥⎦−
⎡⎢⎢⎣
135 0 0 0
0 135 0 0
0 0 135 0
0 0 0 135

⎤⎥⎥⎦
= O44

(25) (a) T

(b) F

(c) T

(d) T

(e) T

(f) F

(g) F

(h) T

(i) T

(j) F

(k) F

(l) T

(m) F

(n) T

(o) T

(p) F

(q) F

(r) T

(s) F

(t) T

(u) T

(v) F

(w) T

(x) T

(y) T

(z) T
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Chapter 6

Section 6.1

(1) Orthogonal, not orthonormal: (a), (f);

Orthogonal and orthonormal: (b), (d), (e), (g);

Neither: (c)

(2) Orthogonal: (a), (d), (e);

Not orthogonal, columns not normalized: (b), (c)

(3) (a) [v] =
h
2
√
3+3
2  3

√
3−2
2

i
(b) [v] = [2−1 4] (c) [v] = [3

13
√
3

3  5
√
6
3  4
√
2]

(4) (a) {[5−1 2] [5−3−14]}
(b) {[2−1 3 1] [−7−1 0 13]}
(c) {[2 1 0−1] [−1 1 3−1] [5−7 5 3]}

(d) {[0 1 3−2] [2 3−1 0] [−3 2 0 1]}

(e) {[4−1−2 2] [2 0 3−1] [3 8−4−6]}

(5) (a) {[2 2−3] [13−4 6] [0 3 2]}
(b) {[1−4 3] [25 4−3] [0 3 4]}
(c) {[1−3 1] [2 5 13] [4 1−1]}
(d) {[3 1−2] [5−3 6] [0 2 1]}

(e) {[2 1−2 1] [3−1 2−1] [0 5 2−1]
[0 0 1 2]}

(f) {[2 1 0−3] [0 3 2 1] [5−1 0 3]
[0 3−5 1]}

(6) Orthogonal basis for W = {[−2−1 4−2 1] [4−3 0−2 1] [−1−33 15 38−19] [3 3 3−2−7]}

(7) (a) [−1 3 3] (b) [3 3 1] (c) [5 1 1] (d) [4 3 2]

(8) (a) (v) · (v) = (v · v) = 0 = 0, for  6= .

(b) No

(9) (a) Express v and w as linear combinations of {u1    u} using Theorem 6.3. Then expand and

simplify v ·w.
(b) Let w = v in part (a).

(10) Follow the hint. Then use Exercise 9(b). Finally, drop some terms to get the inequality.

(11) (a) (A−1) = (A )−1 = (A−1)−1, since A is orthogonal.

(b) AB(AB) = AB(BA ) = A(BB )A = AIA = AA = I. Hence (AB) = (AB)−1.

(12) A = A =⇒ A2 = AA =⇒ I = AA
 =⇒ A = A−1.

Conversely, A = A−1 =⇒ I = AA
 =⇒ A = A2A =⇒ A = IA

 =⇒ A = A .

(13) Suppose A is both orthogonal and skew-symmetric. Then A2 = A(−A ) = −AA = −I. Hence
|A|2 = |− I| = (−1)|I| (by Corollary 3.4) = −1, if  is odd, a contradiction.

(14) A(A + I)
 = A(A + I) = AA + A = I + A (since A is orthogonal). Hence |I + A| =

|A| |(A+ I) | = (−1)|A+ I|, implying |A+ I| = 0. Thus A+ I is singular.
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(15) Use part (2) of Theorem 6.7. To be a unit vector, the first column must be [±1 0 0]. To be a unit
vector orthogonal to the first column, the second column must be [0±1 0], etc.

(16) (a) By Theorem 6.5, we can expand the orthonormal set {u} to an orthonormal basis for R. Form
the matrix using these basis vectors as rows. Then use part (1) of Theorem 6.7.

(b)

⎡⎢⎢⎣
√
6
6

√
6
3

√
6
6√

30
6 −

√
30
15 −

√
30
30

0
√
5
5 −2

√
5
5

⎤⎥⎥⎦ is one possible answer.
(17) Proof of the other half of part (1) of Theorem 6.7: ( ) entry of AA = (th row of A)·(th row of A)

=

½
1  = 
0  6= 

(since the rows of A form an orthonormal set). Hence AA = I, and A is orthogonal.

Proof of part (2): A is orthogonal iff A is orthogonal (by part (2) of Theorem 6.6) iff the rows of

A form an orthonormal basis for R (by part (1) of Theorem 6.7) iff the columns of A form an

orthonormal basis for R.

(18) (a) kvk2 = v · v = Av ·Av (by Theorem 6.9) = kAvk2. Then take square roots.
(b) Using part (a) and Theorem 6.9, we have

v ·w
(kvk)(kwk) =

(Av) · (Aw)
(kAvk)(kAwk) 

and so the cosines of the appropriate angles are equal.

(19) A detailed proof of this can be found in the beginning of the proof of Theorem 6.19 in Appendix A.

(That portion of the proof uses no results beyond Section 6.1.)

(20) (a) Let Q1 and Q2 be the matrices whose columns are the vectors in  and , respectively. Then
Q1 is orthogonal by part (2) of Theorem 6.7. Also, Q1 (respectively, Q2) is the transition matrix

from  (respectively, ) to standard coordinates. By Theorem 4.19, Q−12 is the transition matrix

from standard coordinates to . Theorem 4.18 then implies P = Q−12 Q1 Hence, Q2 = Q1P
−1

By parts (2) and (3) of Theorem 6.6, Q2 is orthogonal, since both P and Q1 are orthogonal. Thus

 is an orthonormal basis by part (2) of Theorem 6.7.

(b) Let  = (b1    b) where  = dim(V). Then the th column of the transition matrix from 
to  is [b] . Now, [b] · [b ] = b ·b (by Exercise 19, since  is an orthonormal basis). This

equals 0 if  6=  and equals 1 if  =  since  is orthonormal. Hence, the columns of the transition

matrix form an orthonormal set of  vectors in R and so this matrix is orthogonal by part (2)
of Theorem 6.7.

(c) Let  = (c1     c) where  = dim(V). Then c · c = [c] · [c ] (by Exercise 19 since  is

orthonormal) = (P[c]) · (P[c ]) (by Theorem 6.9 since P is orthogonal) = [c] · [c ] (since
P is the transition matrix from  to ) = e · e which equals 0 if  6=  and equals 1 if  = 
Hence  is orthonormal.

(21) First note that AA is an × matrix. If  6= , the ( ) entry of AA equals (th row of A ) · (th
column of A) = (th column of A) · (th column of A) = 0, because the columns of A are orthogonal

to each other. Thus, AA is a diagonal matrix. Finally, the ( ) entry of AA equals (th row of
A ) · (th column of A) = (th column of A) · (th column of A) = 1, because the th column of A is

a unit vector.

Copyright c° 2016 Elsevier Ltd. All rights reserved. 119



Answers to Exercises Section 6.2

(22) (a) F (b) T (c) T (d) F (e) T (f) T (g) T (h) F (i) T (j) T

Section 6.2

(1) (a) W⊥ = span({[2 3]})
(b) W⊥ = span({[5 2−1] [0 1 2]})
(c) W⊥ = span({[2 3 7]})
(d) W⊥ = span({[3−1 4]})

(e) W⊥ = span({[−2 5−1]})
(f) W⊥ = span({[7 1−2−3] [0 4−1 2]})
(g) W⊥ = span({[3−2 4 1]})

(2) (a) w1 = projWv = [−3335  11135  127 ]; w2 = [− 2
35 − 6

35 
2
7 ]

(b) w1 = projWv = [−179 −109  149 ]; w2 = [269 −269  139 ]

(c) w1 = projWv = [
1
7 −37 −27 ]; w2 = [137  177 −197 ]

(d) w1 = projWv = [−5435  435  4235  9235 ]; w2 = [1935  10135  6335 −2235 ]
(3) Use the orthonormal basis {i j} for W.

(4) (a) 3
√
129
43 (b)

√
3806
22 (c) 2

√
247
13 (d) 8

√
17

17

(5) (a) Orthogonal projection onto 3+  +  = 0

(b) Orthogonal reflection through − 2 − 2 = 0
(c) Neither. () = ( − 1)( + 1)2. 1 = span{[−7 9 5]}, −1 = span{[−7 2 0] [11 0 2]}.

Eigenspaces have wrong dimensions.

(d) Neither. () = ( − 1)2( + 1). 1 = span{[−1 4 0] [−7 0 4]}, −1 = span{[2 1 3]}.
Eigenspaces are not orthogonal.

(6) 1
9

⎡⎣ 5 2 −4
2 8 2
−4 2 5

⎤⎦

(7) 1
7

⎡⎣ −2 3 −6
3 6 2
−6 2 3

⎤⎦

(8) (a)

⎡⎢⎣
1
3 −13 −13
−13 5

6 −16
−13 −16 5

6

⎤⎥⎦ (b) This is straightforward.

(9) (a) Characteristic polynomial = 3 − 22 + 

(b) Characteristic polynomial = 3 − 2

(c) Characteristic polynomial = 3 − 2 − + 1
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(10) (a) 1
59

⎡⎣ 50 −21 −3
−21 10 −7
−3 −7 58

⎤⎦

(b) 1
17

⎡⎣ 8 6 −6
6 13 4
−6 4 13

⎤⎦

(c) 1
9

⎡⎢⎢⎣
2 2 3 −1
2 8 0 2
3 0 6 −3
−1 2 −3 2

⎤⎥⎥⎦

(d) 1
15

⎡⎢⎢⎣
9 3 −3 −6
3 1 −1 −2
−3 −1 1 2
−6 −2 2 4

⎤⎥⎥⎦
(11) W⊥1 =W⊥2 =⇒ (W⊥1 )⊥ = (W⊥2 )⊥ =⇒ W1 =W2 (by Corollary 6.14).

(12) Let v ∈W⊥2 and let w ∈W1. Then w ∈W2, and so v ·w = 0, which implies v ∈W⊥1 .
(13) Both parts rely on the uniqueness assertion in Corollary 6.16, and the equation v = v+ 0.

(14) v ∈ W⊥ =⇒ projWv = 0 (see Exercise 13) =⇒ minimum distance between  and W = kvk (by
Theorem 6.18).

Conversely, suppose kvk is the minimum distance from  to W. Let w1 = projWv and
w2 = v− projWv. Then kvk = kw2k, by Theorem 6.18. Hence

kvk2 = kw1 +w2k2 = (w1 +w2) · (w1 +w2)
= w1 ·w1 + 2w1 ·w2 +w2 ·w2
= kw1k2 + kw2k2 (since w1 ⊥ w2)

Subtracting kvk2 = kw2k2 from both sides yields 0 = kw1k2, implying w1 = 0. Hence v = w2 ∈W⊥.
(15) Let A ∈ V, B ∈W. Then

“A ·B” =
X
=1

X
=1



=
X
=2

−1X
=1

 +
X
=1

 +
−1X
=1

X
=+1



=
X
=2

−1X
=1

 + 0 +
−1X
=1

X
=+1

(−) (since  = 0)

=
X
=2

−1X
=1

 −
X
=2

−1X
=1

 = 0

Now use Exercise 14(b) in Section 4.6 and follow the hint in the text.

(16) Let u = a
kak . Then {u} is an orthonormal basis for W. Hence projWb = (b · u)u = (b · a

kak )
a
kak =

( b·akak2 )a = projab, according to Section 1.2.

(17) Let  be a spanning set for W. Clearly, if v ∈W⊥ and u ∈  then v · u = 0.
Conversely, suppose v · u = 0 for all u ∈ . Let w ∈ W. Then w = 1u1 + · · ·+ u for some
u1    u ∈ . Hence, v ·w = 1(v · u1) + · · ·+ (v · u) = 0 + · · ·+ 0 = 0. Thus v ∈W⊥.
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(18) First, show W ⊆ (W⊥)⊥. Let w ∈ W. We need to show that w ∈ (W⊥)⊥. That is, we must prove
that w ⊥ v for all v ∈W⊥. But, by the definition of W⊥, w · v = 0, since w ∈W, which completes
this half of the proof.

Next, prove W = (W⊥)⊥. By Corollary 6.13, dim(W) =  − dim(W⊥) =  − ( − dim((W⊥)⊥)) =
dim((W⊥)⊥). Thus, by Theorem 4.13, W = (W⊥)⊥.

(19) The proof that  is a linear operator is straightforward.
Suppose {u1    u} is an orthonormal basis for W.
First, we prove that range() = W. Note that if w ∈ W, then w = w + 0, where w ∈ W and

0 ∈ W⊥. Hence, by the uniqueness statement in Corollary 6.16, (w) = projWw = w. Therefore,
every w in W is in the range of . Similarly, Corollary 6.16 implies that projWv ∈ W for every

v ∈ R. Hence, range() =W.
To showW⊥ = ker(), we first prove that W⊥ ⊆ ker(). If v ∈W⊥, then since v ·w = 0 for every

w ∈W, (v) = projW(v) = (v · u1)u1 + · · ·+ (v · u)u = 0u1 + · · ·+ 0u = 0. Hence, v ∈ ker().
Finally, by the Dimension Theorem, we have

dim(ker()) = − dim(range()) = − dim(W) = dim(W⊥)
Since W⊥ ⊆ ker(), Theorem 4.13 implies that W⊥ = ker().

(20) Since for each v ∈ ker() we have Av = 0, each row of A is orthogonal to v. Hence,
ker() ⊆ (row space of A)⊥. Also, dim(ker()) =  − rank(A) (by part (2) of Theorem 5.9)

=  − dim(row space of A) = dim((row space of A)⊥) (by Corollary 6.13). Then apply Theorem 4.13.
(21) Suppose v ∈ (ker())⊥ and  (v) = 0. Then (v) = 0, so v ∈ ker(). Apply Theorem 6.11 to show

ker( ) = {0}.
(22) First, a ∈ W⊥ by Corollary 6.16. Also, since projWv ∈ W and w ∈ W (since  is in W), we have

b = (projWv)−w ∈W. Finally,
kv−wk2 = kv − projWv+ (projWv)−wk2

= ka+ bk2 = (a+ b) · (a+ b)
= kak2 + kbk2 (since a · b =0)
≥ kak2
= kv − projWvk2 

(23) (a) Mimic the proof of Theorem 6.11.

(b) Mimic the proofs of Theorem 6.12 and Corollary 6.13.

(24) Note that, for any v ∈ R, if we consider v to be an × 1 matrix, then vv is the 1× 1 matrix whose
single entry is v · v. Thus, we can equate v · v with vv.
(a) v · (Aw) = v (Aw) = (vA)w = (Av)w = (Av) ·w
(b) Let v ∈ ker(2). We must show that v is orthogonal to every vector in range(1). An arbitrary

element of range(1) is of the form 1(w), for some w ∈ R. Now,
v · 1(w) = 2(v) ·w (by part (a))

= 0 ·w (because v ∈ ker(2))
= 0

Hence, v ∈ (range(1))⊥.
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(c) By Theorem 5.9, dim(ker(2)) =  − rank(A ) =  − rank(A) (by Corollary 5.11). Also,

dim(range(1)
⊥) =  − dim(range(1)) (by Corollary 6.13) =  − rank(A) (by Theorem 5.9).

Hence, dim(ker(2)) = dim(range(1)
⊥). This, together with part (b) and Theorem 4.13 com-

pletes the proof.

(d) The row space of A = the column space of A = range(2). Switching the roles of A and A in

parts (a), (b) and (c), we see that (range(2))
⊥ = ker(1). Taking the orthogonal complement

of both sides of this equality and using Corollary 6.14 yields range(2) = (ker(1))
⊥, which

completes the proof.

(25) (a) T

(b) T

(c) F

(d) F

(e) T

(f) F

(g) T

(h) T

(i) T

(j) F

(k) T

(l) T

Section 6.3

(1) Parts (a) and (g) are symmetric, because the matrix for  is symmetric.

Part (b) is not symmetric, because the matrix for  with respect to the standard basis is not symmetric.

Parts (c), (d), and (f) are symmetric, since  is orthogonally diagonalizable.

Part (e) is not symmetric, since  is not diagonalizable, and hence not orthogonally diagonalizable.

(2) (a) 1
25

∙ −7 24
24 7

¸

(b) 1
11

⎡⎣ 11 −6 6
−6 18 0
6 0 4

⎤⎦

(c) 1
49

⎡⎣ 58 −6 −18
−6 53 12
−18 12 85

⎤⎦

(d) 1
169

⎡⎢⎢⎣
−119 −72 −96 0
−72 119 0 96
−96 0 119 −72
0 96 −72 −119

⎤⎥⎥⎦
(3) (a)  = ( 113 [5 12]

1
13 [−12 5]), P = 1

13

∙
5 −12
12 5

¸
, D =

∙
0 0
0 169

¸
(b)  = ( 15 [4 3]

1
5 [3−4]), P = 1

5

∙
4 3
3 −4

¸
, D =

∙
3 0
0 −1

¸
(c)  =

³
1√
2
[−1 1 0] 1

3
√
2
[1 1 4] 13 [−2−2 1]

´
(other bases are possible, since 1 is two-dimensional),

P =

⎡⎢⎢⎣
− 1√

2
1

3
√
2
−23

1√
2

1
3
√
2
−23

0 4
3
√
2

1
3

⎤⎥⎥⎦, D =

⎡⎣ 1 0 0
0 1 0
0 0 3

⎤⎦.
Another possibility is

 = ( 13 [−1 2 2] 13 [2−1 2] 13 [2 2−1]), P = 1
3

⎡⎣ −1 2 −2
2 −1 −2
2 2 1

⎤⎦, D =

⎡⎣ 1 0 0
0 1 0
0 0 3

⎤⎦ 
(d)  = (19 [−8 1 4] 19 [4 4 7] 19 [1−8 4]),

P = 1
9

⎡⎣ −8 4 1
1 4 −8
4 7 4

⎤⎦, D =

⎡⎣ 0 0 0
0 −3 0
0 0 9

⎤⎦
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(e)  =
³

1√
14
[3 2 1 0] 1√

14
[−2 3 0 1] 1√

14
[1 0−3 2] 1√

14
[0−1 2 3]

´
,

P = 1√
14

⎡⎢⎢⎣
3 −2 1 0
2 3 0 −1
1 0 −3 2
0 1 2 3

⎤⎥⎥⎦, D =

⎡⎢⎢⎣
2 0 0 0
0 2 0 0
0 0 −3 0
0 0 0 5

⎤⎥⎥⎦
(f)  = ( 1√

26
[4 1 3] 15 [3 0−4] 1

5
√
26
[4−25 3])

(other bases are possible, since −13 is two-dimensional),

P =

⎡⎢⎢⎢⎣
4√
26

3
5

4
5
√
26

1√
26

0 − 25
5
√
26

3√
26
−45 3

5
√
26

⎤⎥⎥⎥⎦, D =

⎡⎣ 13 0 0
0 −13 0
0 0 −13

⎤⎦
(g)  =

³
1√
5
[1 2 0] 1√

6
[−2 1 1] 1√

30
[2−1 5]

´
,

P =

⎡⎢⎢⎢⎣
1√
5
− 2√

6
2√
30

2√
5

1√
6
− 1√

30

0 1√
6

5√
30

⎤⎥⎥⎥⎦, D =

⎡⎣ 15 0 0
0 15 0
0 0 −15

⎤⎦
(4) (a)  = ( 119 [−10 15 6] 119 [15 6 10]),  = ( 1

19
√
5
[20 27 26] 1

19
√
5
[35−24−2]),

A =

∙ −2 2
2 1

¸
, P = 1√

5

∙
1 −2
2 1

¸
, D =

∙
2 0
0 −3

¸
(b)  = ( 12 [1−1 1 1] 12 [−1 1 1 1] 12 [1 1 1−1]),

 = ( 1
2
√
5
[3−1 3 1] 1√

30
[−2 4 3 1] 16 [−1−1 0 2])

A =

⎡⎣ 2 −1 2
−1 2 2
2 2 −1

⎤⎦, P =
⎡⎢⎢⎢⎣

2√
5
− 1√

30
1√
6

0 5√
30

1√
6

1√
5

2√
30
− 2√

6

⎤⎥⎥⎥⎦, D =

⎡⎣ 3 0 0
0 3 0
0 0 −3

⎤⎦

(5) (a) 1
25

∙
23 −36
−36 2

¸
(b) 1

17

∙
353 −120
−120 514

¸
(c) 1

3

⎡⎣ 11 4 −4
4 17 −8
−4 −8 17

⎤⎦
(6) For example, the matrix A in Example 7 of Section 5.6 is diagonalizable but not symmetric and hence

not orthogonally diagonalizable.

(7) 1
2

∙
+ +

p
(− )2 + 42 0

0 + −p(− )2 + 42

¸
(Note: You only need to compute the eigen-

values. You do not need the corresponding eigenvectors.)

(8) (a) Since  is diagonalizable and  = 1 is the only eigenvalue, 1 = R. Hence, for every v ∈ R,
(v) = 1v = v. Therefore,  is the identity operator.
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(b)  must be the zero linear operator. Since  is diagonalizable, the eigenspace for 0 is all of V.
(9) Let 1 and 2 be symmetric operators on R. Then, note that for all xy ∈ R,

(2 ◦ 1)(x) · y = 2(1(x)) · y = 1(x) · 2(y) = x · (1 ◦ 2)(y)

Now 2 ◦1 is symmetric iff for all xy ∈ R, x · (1 ◦ 2)(y) = (2 ◦1)(x) · y = x · (2 ◦1)(y) iff
for all y ∈ R, (1 ◦ 2)(y) = (2 ◦ 1)(y) iff (1 ◦ 2) = (2 ◦ 1).
(This argument uses the fact that if for all x ∈ R, x · y = x · z, then y = z. Proof: Let x = y− z.

Then,
(y− z) · y = (y− z) · z =⇒ ((y − z) · y)− ((y − z) · z) = 0

=⇒ (y − z) · (y − z) = 0
=⇒ ky− zk2 = 0
=⇒ y− z = 0 =⇒ y = z )

(10) (i)=⇒ (ii): This is Exercise 6 in Section 3.4.
(ii)=⇒(iii): Since A and B are symmetric, both are orthogonally similar to diagonal matrices D1

and D2, respectively, by Theorems 6.19 and 6.22. Now, since A and B have the same characteristic

polynomial, and hence the same eigenvalues with the same algebraic multiplicities (and geometric

multiplicities, since A and B are diagonalizable), we can assume D1 = D2 (by listing the eigenvectors

in an appropriate order when diagonalizing). Thus, if D1 = P
−1
1 AP1 and D2 = P

−1
2 BP2, for some

orthogonal matrices P1 and P2, then (P1P
−1
2 )
−1A(P1P−12 ) = B. Note that P1P

−1
2 is orthogonal by

parts (2) and (3) of Theorem 6.6, so A and B are orthogonally similar.

(iii)=⇒(i): Trivial.
(11) (v1) · v2 = v1 ·(v2) =⇒ (1v1) · v2 = v1 · (2v2) =⇒ (2 − 1)(v1 · v2) = 0 =⇒ v1 · v2 = 0, since

2 − 1 6= 0.
(12) Suppose A is orthogonal, and  is an eigenvalue for A with corresponding unit eigenvector u. Then

1 = u · u = Au ·Au (by Theorem 6.9) = (u) · (u) = 2(u · u) = 2. Hence  = ±1.
Conversely, suppose that A is symmetric with all eigenvalues equal to ±1. Let P be an orthogonal

matrix with P−1AP = D, a diagonal matrix with all entries equal to ±1 on the main diagonal. Note
that D2 = I. Then, since A = PDP−1, AA = AA = PD2P−1 = PIP

−1 = I. Hence A is

orthogonal.

(13) (a) −A(A− I) = −A(A − I ) = −AA +A = −I +A = A− I. Therefore,

|A− I| =
¯̄−A(A− I) ¯̄ = |−A| ¯̄(A− I) ¯̄ = (−1) |A| |(A− I)| = − |A− I| 

since  is odd and |A| = 1. This implies that |A− I| = 0, and so A− I is singular.
(b) By part (a), A − I is singular. Hence, there is a nonzero vector v such that (A − I)v = 0.

Thus, Av = Iv = v, an so v is an eigenvector for the eigenvalue  = 1.

(c) Suppose v is a unit eigenvector for A corresponding to  = 1. Expand the set {v} to an
orthonormal basis  = {wxv} for R3. Notice that we listed the vector v last. Let Q be the

orthogonal matrix whose columns are w x and v, in that order. Let P = QAQ. Now, the last
column of P equals QAv = Qv (since Av = v) = e3, since v is a unit vector orthogonal to
the first two rows of Q . Next, since P is the product of orthogonal matrices, P is orthogonal,

and since |Q | = |Q| = ±1 we must have |P| = |A| = 1. Also, the first two columns of P are
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orthogonal to its last column, e3, making the (3 1) and (3 2) entries of P equal to 0. Since the
first column of P is a unit vector with third coordinate 0, it can be expressed as [cos  sin  0],
for some value of , with 0 ≤   2. The second column of P must be a unit vector with

third coordinate 0, orthogonal to the first column. The only possibilities are ±[− sin  cos  0].
Choosing the minus sign makes |P| = −1, so the second column must be [− sin  cos  0]. Thus,
P = QAQ has the desired form.

(d) The matrix for the linear operator  on R3 given by (v) = Av with respect to the standard
basis has a matrix that is orthogonal with determinant 1. But, by part (c), and the Orthogonal
Diagonalization Method, the matrix for  with respect to the ordered orthonormal basis

 = (wxv) is

⎡⎣ cos  − sin  0
sin  cos  0
0 0 1

⎤⎦. According to Table 5.1 in Section 5.2, this is a coun-
terclockwise rotation around the -axis through the angle . But since we are working in -
coordinates, the -axis corresponds to the vector v, the third vector in . Because the basis  is

orthonormal, the plane of the rotation is perpendicular to the axis of rotation.

(e) The axis of rotation is in the direction of the vector [−1 3 3] The angle of rotation is  ≈ 278◦.
This is a counterclockwise rotation about the vector [−1 3 3] as you look down from the point

(−1 3 3) toward the plane through the origin spanned by [6 1 1] and [0 1−1].
(f) Let G be the matrix with respect to the standard basis for any chosen orthogonal reflection

through a plane in R3. Then, G is orthogonal, |G| = −1 (since it has eigenvalues −1 1 1), and
G2 = I3 Let C = AG. Then C is orthogonal since it is the product of orthogonal matrices. Since
|A| = −1, it follows that |C| = 1. Thus, A = AG2 = CG, where C represents a rotation about

some axis in R3 by part (d) of this exercise.

(14) (a) T (b) F (c) T (d) T (e) T (f) T

Chapter 6 Review Exercises

(1) (a) [v] = [−1 4 2] (b) [v] = [3 2 3]

(2) (a) {[1−1−1 1] [1 1 1 1]}
(b) {[1 3 4 3 1] [−1−1 0 1 1] [−1 3−4 3−1]}

(3) {[6 3−6] [3 6 6] [2−2 1]}
(4) (a) {[4 7 0 4] [2 0 1−2] [29−28−18 20] [0 4−14−7]}

(b) {19 [4 7 0 4] 13 [2 0 1−2] 1
9
√
29
[29−28−18 20] 1

3
√
29
[0 4−14−7]}

(c)

⎡⎢⎢⎢⎢⎢⎣
4
9

7
9 0 4

9

2
3 0 1

3 −23√
29
9 − 28

9
√
29

− 2√
29

20
9
√
29

0 4
3
√
29
− 14
3
√
29
− 7
3
√
29

⎤⎥⎥⎥⎥⎥⎦
(5) Using the hint, note that v ·w = v ·(AAw). Now, AAe is the th column of A

A, so e ·(AAe)
is the ( ) entry of AA. Since this equals e · e , we see that AA = I. Hence, A

 = A−1, and A
is orthogonal.
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(6) (a) w1 = projWv = [0−9 18]; w2 = projW⊥v = [2 16 8]

(b) w1 = projWv =
£
7
2 

23
2 

5
2 −32

¤
; w2 = projW⊥v =

£−32 −32  92 − 152 ¤
(7) (a) Distance ≈ 10141294 (b) Distance ≈ 14248050

(8) {[1 0−2−2] [0 1−2 2]}

(9) 1
3

⎡⎣ 2 −1 1
−1 2 1
1 1 2

⎤⎦

(10) 1
7

⎡⎣ 3 6 −2
6 −2 3
−2 3 6

⎤⎦
(11) (a) () = (− 1)2 = 3 − 22 +  (b) () = 2(− 1) = 3 − 2

(12) (a) Not a symmetric operator, since the matrix for  with respect to the standard basis is⎡⎢⎢⎣
0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0

⎤⎥⎥⎦  which is not symmetric.
(b) Symmetric operator, since the matrix for  is orthogonally diagonalizable.

(c) Symmetric operator, since the matrix for  with respect to the standard basis is symmetric.

(13) (a)  =
³
1√
6
[−1−2 1] 1√

30
[1 2 5] 1√

5
[−2 1 0]

´
; P =

⎡⎢⎢⎣
− 1√

6
1√
30
− 2√

5

− 2√
6

2√
30

1√
5

1√
6

5√
30

0

⎤⎥⎥⎦; D =

⎡⎣ 1 0 0
0 2 0
0 0 −1

⎤⎦

(b)  =
³
1√
3
[1−1 1]  1√

2
[1 1 0]  1√

6
[−1 1 2]

´
; P =

⎡⎢⎢⎢⎣
1√
3

1√
2
− 1√

6

− 1√
3

1√
2

1√
6

1√
3

0 2√
6

⎤⎥⎥⎥⎦; D =

⎡⎣ 0 0 0
0 3 0
0 0 3

⎤⎦
(14) Any diagonalizable 4 × 4 matrix that is not symmetric works. For example, chose any non-diagonal

upper triangular 4× 4 matrix with 4 distinct entries on the main diagonal.
(15) Because

¡
AA

¢
= A

¡
A
¢
= AA, we see that AA is symmetric. Therefore AA is orthogo-

nally diagonalizable by Corollary 6.23.

(16) (a) T

(b) T

(c) T

(d) T

(e) F

(f) F

(g) T

(h) T

(i) T

(j) T

(k) T

(l) T

(m) F

(n) T

(o) T

(p) T

(q) F

(r) F

(s) T

(t) T

(u) F

(v) T
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Chapter 7

Section 7.1

(1) (a) [1 + 4 1 +  6− ]

(b) [−12−32−7+30 53−29]
(c) [5 +  2−  3]

(d) [−24− 12−28− 8−32]
(e) 1 + 28

(f) 3 + 77

(2) Let z1 = [1     ], and let z2 = [1     ].

(a) Part (1): z1 ·z2 =
P

=1  =
P

=1(()) =
P

=1(()) =
P

=1() =
P

=1 () = z2 · z1
Part (2): z1 · z1 =

P
=1  =

P
=1 ||2 ≥ 0

Also, z1 · z1 =
P

=1 ||2 =
³pP

=1 ||2
´2
= kz1k2

(b) (z1 · z2) = 
P

=1  =
P

=1  =
P

=1  = z1 · (z2)

(3) (a)

∙
11 + 4 −4− 2
2− 4 12

¸

(b)

⎡⎣ 1−  2 6− 4
0 3−  5
10 0 7 + 3

⎤⎦
(c)

⎡⎣ 1−  0 10
2 3−  0

6− 4 5 7 + 3

⎤⎦
(d)

∙ −3− 15 −3 9
9− 6 0 3 + 12

¸
(e)

∙ −7 + 6 −9− 
−3− 3 4− 6

¸

(f)

∙
1 + 40 −4− 14
13− 50 23 + 21

¸
(g)

∙ −12 + 6 −16− 3 −11 + 41
−15 + 23 −20 + 5 −61 + 15

¸
(h)

∙
86− 33 6− 39
61 + 36 13 + 9

¸

(i)

⎡⎣ 4 + 36 −5 + 39
1− 7 −6− 4
5 + 40 −7− 5

⎤⎦
(j)

⎡⎣ 40 + 58 50 −20 + 80
4 + 8 8− 6 −20
56− 10 50 + 10 80 + 102

⎤⎦
(4) (a) ( ) entry of (Z)∗ = ( ) entry of (Z)


= ( ) entry of (Z) =  = 

= (( ) entry of Z) = (( ) entry of Z

) = (( ) entry of Z∗)

(b) Let Z be an ×  complex matrix and letW be an ×  matrix. Note that (ZW)∗ andW∗Z∗

are both × matrices. We present two methods of proof that (ZW)∗ =W∗Z∗

First method: Notice that the rule (AB) = BA holds for complex matrices, since matrix

multiplication for complex matrices is defined in exactly the same manner as for real matrices,

and hence the proof of Theorem 1.18 is valid for complex matrices as well. Thus we have:

(ZW)∗ = (ZW) =WZ = (W )(Z ) (by part (4) of Theorem 7.2) =W∗Z∗

Second method: We begin by computing the ( ) entry of (ZW)∗ Now, the ( ) entry of
ZW = 11 + · · ·+ . Hence,

( ) entry of (ZW)∗ = (( ) entry of ZW)

= (11 + · · ·+ ) = 11 + · · ·+ 
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Next, we compute the ( ) entry ofW∗Z∗ to show that it equals the ( ) entry of (ZW)∗. Let
A = Z∗, an × matrix, and B =W∗, a ×  matrix. Then  =  and  = . Hence,

( ) entry ofW∗Z∗ = ( ) entry of BA = 11 + · · ·+ 

= 11 + · · ·+  = 11 + · · ·+ 

Therefore, (ZW)∗ =W∗Z∗.

(5) (a) Skew-Hermitian

(b) Neither

(c) Hermitian

(d) Skew-Hermitian

(e) Hermitian

(6) (a) H∗ = (12 (Z + Z
∗))∗ = 1

2(Z + Z
∗)∗ (by part (3) of Theorem 7.2) = 1

2(Z
∗ + Z) (by part (2) of

Theorem 7.2) =H. A similar calculation shows that K is skew-Hermitian.

(b) Part (a) proves existence for the decomposition by providing specific matrices H and K. For
uniqueness, suppose Z =H+K, where H is Hermitian and K is skew-Hermitian. Our goal is to

show that H and K must satisfy the formulas from part (a). Now Z∗ = (H+K)∗ =H∗ +K∗ =
H −K. Hence Z + Z∗ = (H +K) + (H −K) = 2H, which gives H = 1

2(Z + Z
∗). Similarly,

Z− Z∗ = 2K, so K = 1
2 (Z− Z∗).

(7) (a) HJ is Hermitian iff (HJ)∗ =HJ iff J∗H∗ =HJ iff JH =HJ (since H and J are Hermitian).

(b) Use induction on .
Base Step ( = 1): H1 =H is given to be Hermitian.

Inductive Step: Assume H is Hermitian and prove that H+1 is Hermitian. But HH = H+1

= H1+ = HH (by part (1) of Theorem 1.17), and so by part (a), H+1 = HH is Hermitian.

(c) (P∗HP)∗ = P∗H∗(P∗)∗ = P∗HP (since H is Hermitian).

(8) (AA∗)∗ = (A∗)∗A∗ = AA∗ (and A∗A is handled similarly).

(9) Let Z be Hermitian. Then ZZ∗ = ZZ = Z∗Z. Similarly, if Z is skew-Hermitian,

ZZ∗ = Z(−Z) = −(ZZ) = (−Z)Z = Z∗Z

(10) Let Z be normal. Consider H1 =
1
2(Z+Z

∗) and H2 =
1
2(Z−Z∗). Note that H1 is Hermitian and H2

is skew-Hermitian (by Exercise 6(a)). Clearly Z =H1 +H2. Now,

H1H2 = ( 12)(
1
2)(Z+ Z

∗)(Z− Z∗)
= 1

4(Z
2 + Z∗Z− ZZ∗ − (Z∗)2)

= 1
4(Z

2 − (Z∗)2) (since Z is normal)

A similar computation shows that H2H1 is also equal to
1
4(Z

2 − (Z∗)2). Hence H1H2 =H2H1.

Conversely, let H1 be Hermitian and H2 be skew-Hermitian with H1H2 = H2H1. If Z = H1 +H2,

then

ZZ∗ = (H1 +H2)(H1 +H2)
∗

= (H1 +H2)(H
∗
1 +H

∗
2) (by part (2) of Theorem 7.2)

= (H1 +H2)(H1 −H2) (since H1 is Hermitian and H2 is skew-Hermitian)

= H2
1 +H2H1 −H1H2 −H2

2

= H2
1 −H2

2 (since H1H2 = H2H1)

A similar argument shows Z∗Z =H2
1 −H2

2 also, and so ZZ
∗ = Z∗Z, and Z is normal.
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(11) (a) F (b) F (c) T (d) F (e) F (f) T

Section 7.2

(1) (a)  = 1
5 +

13
5 ;  =

28
5 − 3

5 

(b) No solutions: After applying the row reduction method to the first 3 columns, the matrix changes

to:

⎡⎣ 1 1 +  0
0 0 1
0 0 0

1− 
3 + 4
4− 2

⎤⎦
(c) Matrix row reduces to

⎡⎣ 1 0 4− 3
0 1 −
0 0 0

2 + 5
5 + 2
0

⎤⎦;
Solution set = {( (2 + 5)− (4− 3) (5 + 2) +  ) |  ∈ C}

(d)  = 7 + ;  = −6 + 5
(e) No solutions: After applying the row reduction method to the first column, the matrix changes

to:

∙
1 2 + 3
0 0

−1 + 3
3 + 4

¸
(f) Matrix row reduces to

∙
1 0 −3 + 2
0 1 4 + 7

−
2− 5

¸
;

Solution set = {( (−) + (3− 2) (2− 5)− (4 + 7) ) |  ∈ C}

(2) (a) |A| = 0; |A∗| = 0 = |A|
(b) |A| = −15− 23; |A∗| = −15 + 23 = |A|

(c) |A| = 3− 5; |A∗| = 3 + 5 = |A|

(3) Your computations may produce complex scalar multiples of the vectors given here, although they

might not be immediately recognized as such.

(a) A() = 2 + (1− )−  = (− )(+ 1); eigenvalues 1 = , 2 = −1;
 = {[1 +  2] |  ∈ C}; −1 = {[7 + 6 17] |  ∈ C}.

(b) A() = 3 − 112 + 44− 34; eigenvalues: 1 = 5 + 3, 2 = 5− 3, 3 = 1;
1 = {[1− 3 5 1− 3] |  ∈ C}; 2 = {[1 + 3 5 1 + 3] |  ∈ C}; 3 = {[1 2 2] |  ∈ C}.

(c) A() = 3 + (2− 2)2 − (1 + 4)− 2 = (− )2(+ 2); 1 = , 2 − 2;
 = {[(−3− 2) 0 2] + [1 1 0] |   ∈ C}; −2 = {[−1  1] |  ∈ C}.

(d) A() = 3 − 22 −  + 2 + (−22 + 4) = ( − )2( − 2); eigenvalues: 1 = , 2 = 2;
 = {[1 1 0] |  ∈ C}; 2 = {[ 0 1] |  ∈ C}. (Note that A is not diagonalizable.)

(4) (a) Let A be the matrix from Exercise 3(a). A is diagonalizable since A has 2 distinct eigenvalues.

P =

∙
1 +  7 + 6
2 17

¸
; D =

∙
 0
0 −1

¸


(b) Let A be the matrix from Exercise 3(d). The solution to Exercise 3(d) shows that the Diago-

nalization Method of Section 3.4 only produces two fundamental eigenvectors. Hence, A is not

diagonalizable by Step 4 of that method.
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(c) Let A be the matrix in Exercise 3(b). A() = 3 − 112 + 44 − 34. There are 3 eigenvalues,
5+3 5− 3 and 1, each producing one complex fundamental eigenvector. Thus, there are three
fundamental complex eigenvectors, and so A is diagonalizable as a complex matrix.

On the other hand, A has only one real eigenvalue  = 1, and since  produces only one real
fundamental eigenvector, A is not diagonalizable as a real matrix.

(5) By the Fundamental Theorem of Algebra, the characteristic polynomial A() of a complex  × 
matrix A must factor into  linear factors. Since each root of A() has multiplicity 1, there must be 
distinct roots. Each of these roots is an eigenvalue, and each eigenvalue yields at least one fundamental

eigenvector. Thus, we have a total of  fundamental eigenvectors, showing that A is diagonalizable.

(6) (a) T (b) F (c) F (d) F

Section 7.3

(1) (a) Mimic the proof in Example 6 in Section 4.1 of the textbook, restricting the discussion to poly-

nomial functions of degree ≤ , and using complex-valued functions and complex scalars instead
of their real counterparts.

(b) This is the complex analog of Theorem 1.12. Property (1) is proven for the real case just after

the statement of Theorem 1.12 in Section 1.4 of the textbook. Generalize this proof to complex

matrices. The other properties are similarly proved.

(2) (a) Linearly independent; dim = 2

(b) Not linearly independent; dim = 1. (Note: [−3 + 6 3 9] = 3[2 + − 3])
(c) Not linearly independent; dim = 2. (Note: Using the given vectors as columns, the matrix row

reduces to

⎡⎣ 1 0 1
0 1 −2
0 0 0

⎤⎦ )
(d) Not linearly independent, dim = 2. (Note: Using the given vectors as columns, the matrix row

reduces to

⎡⎣ 1 0 
0 1 −2
0 0 0

⎤⎦ )
(3) (a) Linearly independent; dim = 2. (Note: [− 3 + −1] is not a scalar multiple of [2 + − 3])

(b) Linearly independent; dim = 2. (Note: [−3+6 3 9] is not a real scalar multiple of [2+ − 3])
(c) Not linearly independent; dim = 2.

(Note:

⎡⎢⎢⎢⎢⎢⎢⎣
3 1 1
−1 1 −3
1 −2 5
2 0 2
0 4 −8
−1 1 −3

⎤⎥⎥⎥⎥⎥⎥⎦ row reduces to
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 1
0 1 −2
0 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ )
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(d) Linearly independent; dim = 3.

(Note:

⎡⎢⎢⎢⎢⎢⎢⎣
3 1 3
−1 1 1
1 −2 −2
2 0 5
0 4 3
−1 1 −8

⎤⎥⎥⎥⎥⎥⎥⎦ row reduces to
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ )

(4) (a) The 3× 3 complex matrix whose columns (or rows) are the given vectors row reduces to I3.
(b) [ 1 + −1]

(5) Ordered basis = ([1 0] [ 0] [0 1] [0 ]); matrix =

⎡⎢⎢⎣
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤⎥⎥⎦
(6) Span: Let v ∈ V. Then there exists 1      ∈ C such that v = 1v1 + · · ·+ v. Suppose, for each

,  =  + , for some    ∈ R. Then

v = (1 + 1)v1 + · · ·+ ( + )v = 1v1 + 1(v1) + · · ·+ v + (v)

which shows that v ∈ span({v1 v1    v v}).
Linear Independence: Suppose 1v1 + 1(v1) + · · ·+ v + (v) = 0. Then

(1 + 1)v1 + · · ·+ ( + )v = 0

implying

(1 + 1) = · · · = ( + ) = 0

(since {v1    v} is linearly independent). Hence, 1 = 1 = 2 = 2 = · · · =  =  = 0.

(7) Exercise 6 clearly implies that if V is an -dimensional complex vector space, then it is 2-dimensional
when considered as a real vector space. Hence, the real dimension must be even. Therefore, R3 cannot
be considered as a complex vector space since its real dimension is odd.

(8)

⎡⎢⎢⎣
−3 +  −25 − 11

5 

1
2 − 3

2  −
− 1

2 +
7
2  −85 − 4

5 

⎤⎥⎥⎦
(9) (a) T (b) F (c) T (d) F

Section 7.4

(1) (a) Not orthogonal; [1 + 2−3− ] · [4− 2 3 + ] = −10 + 10
(b) Not orthogonal; [1− −1 +  1− ] · [−2 2] = −5− 5

(c) Orthogonal (d) Orthogonal
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(2) (z) · (z) = (z · z) (by parts (4) and (5) of Theorem 7.1) = (0) (since z is orthogonal to
z) = 0 so z is orthogonal to z  Also,

||z||2 = (z) · (z) = (z · z) = ||2||z||2 = 1

since || = 1 and z is a unit vector. Hence, each z is also a unit vector.

(3) (a) {[1 +   1] [2−1− −1 + ] [0 1 ]}

(b)

⎡⎢⎢⎢⎣
1+
2


2

1
2

2√
8

−1−√
8

−1+√
8

0 1√
2

√
2

⎤⎥⎥⎥⎦
(4) For any ×  matrix B, |B| = |B| by part (3) of Theorem 7.5. Therefore,¯̄̄̄

|A|
¯̄̄̄2
= |A| |A| = |A| |A| = |A| |(A) | = |A| |A∗| = |AA∗| = |I| = 1

(5) (a) A unitary ⇒ A∗ = A−1 ⇒ (A∗)−1 = A ⇒ (A∗)−1 = (A∗)∗ ⇒ A∗ is unitary.

(b) (AB)∗ = B∗A∗ (by part (5) of Theorem 7.2) = B−1A−1 = (AB)−1.

(6) (a) A∗ = A−1 iff (A) = A−1 iff (A) = A−1 iff (A)∗ = (A)−1 (using the fact that A−1 = (A)−1,
since AA−1 = I =⇒ AA−1 = I = I =⇒ (A)(A−1) = I =⇒ A−1 = (A)−1).

(b) (A)∗ = ((A)) = ((A)) (by part (4) of Theorem 7.2) = ((A) ) = (A∗) = (A−1) =
(A)−1.

(c) A2 = I iff A = A−1 iff A = A∗ (since A is unitary) iff A is Hermitian.

(7) (a) A is unitary iff A∗ = A−1 iff A = A−1 iff (A ) = (A−1) iff (A )∗ = (A )−1 iff A is

unitary.

(b) Follow the hint in the textbook.

(8) Modify the proof of Theorem 6.8.

(9) Z∗ = 1
3

⎡⎣ −1− 3 2− 2 2
2− 2 −2 −2
−2 2 1− 4

⎤⎦ and ZZ∗ = Z∗Z = 1
9

⎡⎣ 22 8 10
8 16 2
−10 −2 25

⎤⎦.
(10) (a) Let A be the given matrix for . A is normal since

A∗ =
∙

1 + 6 2 + 10
−10 + 2 5

¸
and AA∗ = A∗A =

∙
141 12− 12

12 + 12 129

¸


Hence A is unitarily diagonalizable by Theorem 7.9.

(b) P =

" −1+√
6

1−√
3

2√
6

1√
3

#
; P−1AP = P∗AP =

∙
9 + 6 0
0 −3− 12

¸
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(11) (a) A is normal since A∗ =

⎡⎣ −4− 5 2− 2 4− 4
2− 2 −1− 8 −2 + 2
4− 4 −2 + 2 −4− 5

⎤⎦ and AA∗ = A∗A = 81I3.

Hence A is unitarily diagonalizable by Theorem 7.9.

(b) P = 1
3

⎡⎣ −2 1 2
1 −2 2
2 2 

⎤⎦ and P−1AP = P∗AP =
⎡⎣ −9 0 0

0 9 0
0 0 9

⎤⎦.
(12) (a) Note that

Az ·Az = z · z = (z · z) (by part (5) of Theorem 7.1)

= (z · z) (by part (4) of Theorem 7.1),

while

Az ·Az = z · (A∗(Az)) (by Theorem 7.3)

= z · ((A∗A)z)
= z · ((A−1A)z)
= z · z

Thus (z · z) = z · z, and so  = 1, which gives ||2 = 1, and hence || = 1.
(b) Let A be unitary, and let  be an eigenvalue of A. By part (a), || = 1.

Now, suppose A is Hermitian. Then  is real by Theorem 7.11. Hence  = ±1.
Conversely, suppose every eigenvalue of A is ±1. Since A is unitary, A∗ = A−1, and so AA∗ =
A∗A = I, which implies that A is normal. Thus A is unitarily diagonalizable (by Theorem 7.9).

Let A = PDP∗, where P is unitary and D is diagonal. But since the eigenvalues of A are ±1
(real), D∗ = D. Thus A∗ = (PDP∗)∗ = PDP∗ = A, and A is Hermitian.

(13) The eigenvalues are −4, 2 +√6, and 2−√6.
(14) (a) Since A is normal, A is unitarily diagonalizable (by Theorem 7.9). Hence A = PDP∗ for some

diagonal matrix D and some unitary matrix P. Since all eigenvalues of A are real, the main

diagonal elements of D are real, and so D∗ = D. Thus,

A∗ = (PDP∗)∗ = PD∗P∗ = PDP∗ = A

and so A is Hermitian.

(b) Since A is normal, A is unitarily diagonalizable (by Theorem 7.9). Hence, A = PDP∗ for some
diagonal matrix D and some unitary matrix P. Thus PP∗ = I. Also note that if

D =

⎡⎢⎣ 1 · · · 0
...

. . .
...

0 · · · 

⎤⎥⎦  then D∗ =

⎡⎢⎣ 1 · · · 0
...

. . .
...

0 · · · 

⎤⎥⎦ 

and so DD∗ =

⎡⎢⎣ 11 · · · 0
...

. . .
...

0 · · · 

⎤⎥⎦ =
⎡⎢⎣ |1|2 · · · 0

...
. . .

...

0 · · · ||2

⎤⎥⎦ 
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Since the main diagonal elements of D are the (not necessarily distinct) eigenvalues of A, and
these eigenvalues all have absolute value 1, it follows that DD∗ = I. Then,

AA∗ = (PDP∗)(PDP∗)∗ = (PDP∗)(PD∗P∗) = P(D(P∗P)D∗)P∗

= P(DD∗)P∗ = PP∗ = I

Hence, A∗ = A−1, and A is unitary.

(c) Because A is unitary, A−1 = A∗. Hence, AA∗ = I = A∗A. Therefore, A is normal.

(15) (a) F (b) T (c) T (d) T (e) F

Section 7.5

(1) (a) Note that hxxi = (Ax) · (Ax) = kAxk2 ≥ 0.
However, kAxk2 = 0⇐⇒ Ax = 0⇐⇒ A−1Ax = A−10⇐⇒ x = 0.
Also, hxyi = (Ax) · (Ay) = (Ay) · (Ax) = hyxi  and

hx+ y zi = (A(x+ y)) · (Az) = (Ax+Ay) ·Az
= ((Ax) · (Az)) + ((Ay) · (Az)) = hx zi+ hy zi.

Finally, hxyi = (A(x)) · (Ay) = ((Ax)) · (Ay) = ((Ax) · (Ay)) =  hxyi.
(b) hxyi = −183, kxk = √314

(2) Note that hp1p1i = 2 + · · ·+ 21 + 20 ≥ 0.
Clearly, 2 + · · ·+ 21 + 20 = 0 if and only if each  = 0.
Also, hp1p2i =  + · · ·+ 11 + 00 =  + · · ·+ 11 + 00 = hp2p1i  and

hp1 + p2p3i = h( + )
 + · · ·+ (0 + 0) 

 + · · ·+ 0i
= ( + ) + · · ·+ (0 + 0)0 = ( + ) + · · ·+ (00 + 00)
= ( + · · ·+ 00) + ( + · · ·+ 00) = hp1p3i+ hp2p3i.

Finally, hp1p2i = () + · · ·+ (1)1 + (0)0 = ( + · · ·+ 11 + 00) =  hp1p2i.

(3) (a) Note that hf  fi = R 

(f())2  ≥ 0. Also, we know from calculus that a nonnegative continuous

function on an interval has integral zero if and only if the function is the zero function.

Also, hf gi = R 

f()g()  =

R 

g()f()  = hg fi  and

hf + ghi = R 

(f() + g())h()  =

R 

(f()h() + g()h()) 

=
R 

f()h() +

R 

g()h()  = hf hi+ hghi.

Finally, hf gi = R 

(f())g()  = 

R 

f()g()  =  hf gi.

(b) hf gi = 1
2(

 + 1); kfk =
q

1
2(

2 − 1)

(4) Note that hAAi = trace(AA), which by Exercise 28 in Section 1.5 is the sum of the squares of all

the entries of A, and hence is nonnegative. Also, this is clearly equal to zero if and only if A = O.

Next, hABi = trace(AB) = trace((AB) ) (by Exercise 13 in Section 1.4)
= trace(BA) = hBAi.

Also, hA+BCi = trace((A+B)C) = trace((A +B )C) = trace(AC+BC)
= trace(AC) + trace(BC) = hACi+ hBCi.

Finally, hABi = trace((A)B) = trace((A )B) = trace((AB))
= (trace(AB)) =  hABi.
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(5) (a) h0xi = h0+ 0xi = h0xi + h0xi. Since h0xi ∈ C, we know that “− h0xi” exists. Adding
“− h0xi” to both sides gives 0 = h0xi. Then, hx0i = 0, by property (3) in the definition of an
inner product.

(b) For complex inner product spaces, hx yi = hyxi (by property (3) of an inner product space)
=  hyxi (by property (5) of an inner product space) = (hyxi) =  hxyi (by property (3) of
an inner product space).

A similar proof works in real inner product spaces.

(6) kxk = phx xi = p
 hx xi (by property (5) of an inner product space) =

q
 hxxi (by part

(3) of Theorem 7.12) =
p||2 hxxi = ||phxxi = || kxk.

(7) (a) We have

kx+ yk2 = hx+ y x+ yi
= hxxi+ hxyi+ hyxi+ hyyi
= kxk2 + 2 hxyi+ kyk2

(by property (3) of an inner product space).

(b) Use part (a) and the fact that x and y are orthogonal iff hxyi = 0.
(c) A proof similar to that in part (a) yields kx− yk2 = kxk2 − 2 hxyi+ kyk2.

Add this to the equation for kx+ yk2 in part (a).
(8) (a) Subtract the equation for kx−yk2 in the answer to Exercise 7(c) from the equation for kx+yk2

in Exercise 7(a). Then multiply by 1
4 .

(b) In the complex case,

kx+ yk2 = hx+ y x+ yi
= hxxi+ hxyi+ hyxi+ hyyi
= hxxi+ hxyi+ hxyi + hyyi 

Similarly, kx− yk2 = hxxi− hxyi− hxyi + hyyi 
kx+ yk2 = hxxi−  hxyi+ hxyi + hyyi 

and kx− yk2 = hxxi+  hxyi− hxyi + hyyi 
Then, kx+ yk2 − kx− yk2 = 2 hxyi+ 2hxyi

Also, (kx+ yk2 − kx− yk2) = (−2 hxyi+ 2hxyi)
= 2 hxyi− 2hxyi

Adding these and multiplying by 1
4 produces the desired result.

(9) (a)

q
3

3 − 3
2

(b) 0941 radians, or, 539◦

(10) (a)
√
174 (b) 0586 radians, or, 336◦

(11) (a) If either x or y is 0, then the theorem is obviously true. We only need to examine the case when

both kxk and kyk are nonzero. We need to prove −kxk kyk ≤ | hxyi | ≤ kxk kyk. By property
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(5) of an inner product space, and part (3) of Theorem 7.12, this is equivalent to proving¯̄̄̄¿
x

kxk 
y

kyk
À¯̄̄̄
≤ 1

Hence, it is enough to show | habi | ≤ 1 for any unit vectors a and b.
Let habi =  ∈ C. We need to show || ≤ 1. If  = 0, we are done. If  6= 0, then let v = ||


a.

Then

hvbi =
¿ ||


ab

À
=
||

habi = ||


 = || ∈ R

Also, since
¯̄̄
||


¯̄̄
= 1, v = ||


a is a unit vector. Now,

0 ≤ kv− bk2 = hv− b v− bi
= kvk2 − hvbi− hvbi+ kbk2
= 1− || − ||+ 1
= 2− 2||

Hence −2 ≤ −2||, or 1 ≥ ||, completing the proof.
(b) Note that

kx+ yk2 = hx+ y x+ yi
= hxxi+ hxyi+ hyxi+ hyyi
= kxk2 + hxyi+ hxyi+ kyk2

(by property (3) of an inner product space)

= kxk2 + 2(real part of hxyi) + kyk2
≤ kxk2 + 2| hxyi |+ kyk2
≤ kxk2 + 2kxk kyk+ kyk2

(by the Cauchy-Schwarz Inequality)

= (kxk+ kyk)2
(12) The given inequality follows directly from the Cauchy-Schwarz Inequality.

(13) (i) (xy) = kx− yk = k(−1)(x− y)k (by Theorem 7.13) = ky− xk = (yx).

(ii) (xy) = kx− yk =phx− y x− yi ≥ 0.
Also, (xy) = 0 iff kx− yk = 0 iff hx− y x− yi = 0 iff x− y = 0 (by property (2) of an inner
product space) iff x = y.

(iii) (xy) = kx− yk = k(x− z) + (z− y)k ≤ kx− zk+ kz− yk
(by the Triangle Inequality, part (2) of Theorem 7.14) = (x z) + (zy).

(14) (a) Orthogonal (b) Orthogonal (c) Not orthogonal (d) Orthogonal

(15) Suppose x ∈  , where x is a linear combination of {x1    x} ⊆  . Then x = 1x1 + · · ·+ x.
Consider

hxxi = hx 1x1i+ · · ·+ hx xi (by part (2) of Theorem 7.12)

= 1 hxx1i+ · · ·+  hxxi (by part (3) of Theorem 7.12)

= 1(0) + · · ·+ (0) (since vectors in  are orthogonal)

= 0
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a contradiction, since x is assumed to be nonzero.

(16) (a) We haveZ 

−
cos =

1


(sin)|− =

1


(sin − sin(−))

=
1


(0) = 0 (since the sine of an integral multiple of  is 0)

Similarly, Z 

−
sin = − 1


(cos)|− = −

1


(cos − cos(−))

= − 1

(cos − cos) (since cos(−) = cos)

= − 1

(0) = 0

(b) Use the trigonometric identities

cos cos =
1

2
(cos(− )+ cos(+ ))

and sin sin =
1

2
(cos(− )− cos(+ ))

Then,Z 

−
cos cos  =

1

2

Z 

−
cos(− ) +

1

2

Z 

−
cos(+ )  =

1

2
(0) +

1

2
(0) = 0

by part (a), since ±  is an integer. Also,Z 

−
sin sin  =

1

2

Z 

−
cos(− ) − 1

2

Z 

−
cos(+ ) 

=
1

2
(0)− 1

2
(0) = 0 by part (a).

(c) Use the trigonometric identity sin cos = 1
2 (sin(+) + sin(−)). Then,Z 

−
cos sin  =

1

2

Z 

−
sin(+) +

1

2

Z 

−
sin(−) 

=
1

2
(0) +

1

2
(0) = 0

by part (a), since ± is an integer.

(d) Obvious from parts (a), (b), and (c) with the real inner product of Example 5 (or Example 8)

with  = −,  = : hf gi = R − ()() .
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(17) Let  = (v1    v) be an orthogonal ordered basis for a subspace W of V, and let v ∈ W. Let
[v] = [1     ]. The goal is to show that  = hvvi kvk2. Now, v = 1v1 + · · ·+ v. Hence,

hvvi = h1v1 + · · ·+ vvi
= 1 hv1vi+ · · ·+  hvvi+ · · ·+  hvvi

(by properties (4) and (5) of an inner product)

= 1(0) + · · ·+ −1(0) + kvk2 + +1(0) + · · ·+ (0)

(since  is orthogonal)

= kvk2
Hence,  = hvvi kvk2. Also, if  is orthonormal, then each kvk = 1, so  = hvvi.

(18) Let v = 1v1 + · · ·+ v and w = 1v1 + · · ·+ v, where  = hvvi and  = hwvi (by
Theorem 7.16). Then

hvwi = h1v1 + · · ·+ v 1v1 + · · ·+ vi
= 11 hv1v1i+ 22 hv2v2i+ · · ·+  hvvi

(by property (5) of an inner product and part (3) of Theorem 7.12,

and since hvvi equals 0 when  and  are distinct)

= 11 + 22 + · · ·+  (since kvk = 1 for 1 ≤  ≤ )

= hvv1i hwv1i+ hvv2i hwv2i+ · · ·+ hvvi hwvi

(19) Using w1 = 2− +1, w2 = 1, and w3 =  yields the orthogonal basis {v1v2v3}, with v1 = 2− +1,
v2 = −202 + 20+ 13, and v3 = 152 + 4− 5.

(20) {[−9−4 8] [27 11−22] [5 3−4]}
(21) The proof is totally analogous to the (long) proof of Theorem 6.4 in Section 6.1 of the textbook. Use

Theorem 7.15 in the proof in place of Theorem 6.1.

(22) (a) Follow the proof of Theorem 6.11, using properties (4) and (5) of an inner product. In the last

step, use the fact that hwwi = 0 =⇒ w = 0 (by property (2) of an inner product).

(b) Prove part (4) of Theorem 7.19 first, using a proof similar to the proof of Theorem 6.12. (In

that proof, use Theorem 7.16 in place of Theorem 6.3.) Then prove part (5) of Theorem 7.19 as

follows:

Let W be a subspace of V of dimension . By Theorem 7.17, W has an orthogonal basis

{v1    v}. Expand this basis to an orthogonal basis for all of V. (That is, first expand to
any basis for V by Theorem 4.15, then use the Gram-Schmidt Process. Since the first  vectors
are already orthogonal, this expands {v1    v} to an orthogonal basis {v1    v} for V.)
Then, by part (4) of Theorem 7.19, {v+1    v} is a basis for W⊥, and so dim(W⊥) = − .
Hence dim(W) + dim(W⊥) = .

(c) Since any vector in W is orthogonal to all vectors in W⊥, W ⊆ (W⊥)⊥
(d) By part (3) of Theorem 7.19, W ⊆ (W⊥)⊥. Next, by part (5) of Theorem 7.19,

dim(W) = − dim(W⊥) = − (− dim((W⊥)⊥)) = dim((W⊥)⊥)
Thus, by Theorem 4.13, or its complex analog, W = (W⊥)⊥.
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(23) W⊥ = span({3 − 2 + 1})
(24) Using 1 and  as the vectors in the Gram-Schmidt Process, the basis obtained for W⊥ is

{−52 + 10− 2 152 − 14+ 2}.
(25) As in the hint, let {v1    v} be an orthonormal basis for W. Now if v ∈ V, let

w1 = hvv1iv1 + · · ·+ hvviv
and w2 = v−w1. Then, w1 ∈W because w1 is a linear combination of basis vectors forW. We claim
that w2 ∈W⊥. To see this, let u ∈W. Then u = 1v1 + · · ·+ v for some 1     . Then

huw2i = huv−w1i = h1v1 + · · ·+ v v− (hvv1iv1 + · · ·+ hvviv)i
= h1v1 + · · ·+ v vi− h1v1 + · · ·+ v hvv1iv1 + · · ·+ hvvivi

=
X
=1

 hvvi−
X
=1

X
=1

hvvi hvvi 

But hvvi = 0 when  6=  and hvvi = 1 when  = , since {v1    v} is an orthonormal set.
Hence,

huw2i =
X
=1

 hvvi−
X
=1

hvvi

=
X
=1

 hvvi−
X
=1

 hvvi = 0

Since this is true for every u ∈W, we conclude that w2 ∈W⊥.
Finally, we want to show uniqueness of decomposition. Suppose that v = w1+w2 and v = w

0
1+w

0
2

where w1 w
0
1 ∈ W and w2, w

0
2 ∈ W⊥. We want to show that w1 = w01 and w2 = w0

2 Now,
w1−w01 = w0

2−w2. Also, w1−w01 ∈W, but w0
2−w2 ∈W⊥ Thus, w1−w01 = w02−w2 ∈W ∩W⊥

By part (2) of Theorem 7.19, w1 −w01 = w0
2 −w2 = 0 Hence, w1 = w01 and w2 = w0

2.

(26) w1 =
1
2 (sin − cos ), w2 = 1


 − 1

2 sin +
1
2 cos 

(27) Orthonormal basis for W =
nq

15
14(2

2 − 1)
q

3
322(10

2 + 7+ 2)
o
. Then v = 42 − + 3 = w1 +w2,

where w1 =
1
23(32

2 + 73+ 57) ∈W and w2 =
12
23(5

2 − 8+ 1) ∈W⊥.

(28) Let W = span({v1    v}). Notice that w1 =
P

=1 hvviv (by Theorem 7.16, since {v1    v}
is an orthonormal basis for W by Theorem 7.15). Then, using the hint in the text yields

kvk2 = hvvi = hw1 +w2w1 +w2i
= hw1w1i+ hw2w1i+ hw1w2i + hw2w2i
= kw1k2 + kw2k2 (since w1 ∈W and w2 ∈W⊥)
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Hence,

kvk2 ≥ kw1k2 =
*Ã

X
=1

hvviv
!


⎛⎝ X
=1

hvviv
⎞⎠+

=
X
=1

*
(hvviv) 

⎛⎝ X
=1

hvviv
⎞⎠+

=
X
=1

X
=1

h(hvviv)  (hvviv)i

=
X
=1

X
=1

((hvvi hvvi) hvvi)

=
X
=1

(hvvi hvvi) (because {v1    v} is an orthonormal set)

=
X
=1

hvvi2 

(29) (a) Let {v1    v} be an orthonormal basis for W. Let xy ∈ V. Then

projWx = hxv1iv1 + · · ·+ hxviv
projWy = hyv1iv1 + · · ·+ hyviv

projW(x+ y) = hx+ yv1iv1 + · · ·+ hx+ yviv and

projW(x) = hxv1iv1 + · · ·+ hxviv

Clearly, by properties (4) and (5) of an inner product, projW(x+ y) = projWx+ projWy, and
projW(x) = (projWx). Hence  is a linear transformation.

(b) ker() = W⊥, range() = W
(c) First, we establish that if v ∈W, then (v) = v. Note that for v ∈W, v = v+ 0, where v ∈W

and 0 ∈W⊥. But by Theorem 7.20, any decomposition v = w1+w2 with w1 ∈W and w2 ∈W⊥
is unique. Hence, w1 = v and w2 = 0. Then, since w1 = projWv, we get (v) = v.
Finally, let v ∈ V and let x = (v) = projWv ∈W. Then

( ◦ )(v) = ((v)) = (x) = projWx = x (since x ∈W) = (v)

Hence,  ◦  = .

(30) (a) F (b) F (c) F (d) T (e) F

Chapter 7 Review Exercises

(1) (a) 0

(b) (1 + 2)(v · z) = ((1 + 2)v) · z =− 21 + 43, v · ((1 + 2)z) = 47− 9
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(c) Since (v · z) = (13 + 17),

(1 + 2)(v · z) = ((1 + 2)v) · z =(1 + 2)(13 + 17) = −21 + 43

while

v · ((1 + 2)z) = (1 + 2)(13 + 17) = (1− 2)(13 + 17) = 47− 9
(d) w · z =− 35 + 24; w · (v+ z) = −35 + 24, since w · v = 0

(2) (a) H =

⎡⎣ 2 1 + 3 7− 
1− 3 34 − 10− 10
7 +  − 10 + 10 30

⎤⎦
(b) AA∗ =

∙
32 −2 + 14

−2− 14 34

¸
, which is clearly Hermitian.

(3) (Az) ·w = z · (A∗w) (by Theorem 7.3) = z · (−Aw) (since A is skew-Hermitian) = −z · (Aw) (by
Theorem 7.1, part (5))

(4) (a)  = 4 + 3,  = −2
(b)  = 2 + 7,  = 0,  = 3− 2
(c) No solutions

(d) {[(2 + )− (3− ) (7 + )−  ] |  ∈ C} = {[(2− 3) + (1 + ) 7 + (1− ) ] |  ∈ C}

(5) By part (3) of Theorem 7.5, |A∗| = |A|. Hence, |A∗A| = |A∗| · |A| = |A| · |A| =
¯̄̄̄
|A|
¯̄̄̄2
, which is real

and nonnegative. This equals zero if and only if |A| = 0, which occurs if and only if A is singular (by

part (4) of Theorem 7.5).

(6) (a) A() = 3 − 2 + − 1 = (2 + 1)(− 1) = (− )(+ )(− 1);

D =

⎡⎣  0 0
0 − 0
0 0 1

⎤⎦; P =
⎡⎣ −2−  −2 +  0

1−  1 +  2
1 1 1

⎤⎦
(b) A() = 3 − 22 −  = (− )2; not diagonalizable. Eigenspace for  =  is one-dimensional,

with fundamental eigenvector [1− 3 − 1 1]. Fundamental eigenvector for  = 0 is [− 1 1].
(7) (a) One possibility: Consider : C→ C given by (z) = z. Note that (v+w) = (v+w) = v+w =

(v)+(w). But  is not a linear operator on C because () = −, but (1) = (1) = , so the
rule “(v) = (v)” is not satisfied.

(b) The example given in part (a) is a linear operator on C, thought of as a real vector space. In

that case we may use only real scalars, and so, if v = +, then (v) = (+) = − =
(− ) = (v).

Note: for any function  from any vector space to itself (real or complex), the rule “(v+w) =
(v) + (w)” implies that (v) = (v) for any rational scalar . Thus, any example for real
vector spaces for which (v +w) = (v) + (w) is satisfied, but (v) = (v) is not satisfied
for some , must involve an irrational value of .
One possibility: Consider R as a vector space over the rationals (as the scalar field). Choose

an uncountably infinite basis  for R over Q with 1 ∈  and π ∈ . Define : R→ R by letting
(1) = 1, but (v) = 0 for every v ∈  with v 6= 1. (Defining  on a basis uniquely determines
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.) This  is a linear operator on R over Q, and so (v+w) = (v)+(w) is satisfied. But, by
definition () = 0, but (1) = (1) = . Thus,  is not a linear operator on the real vector
space R.

(8) (a)  = {[1  1−] [4 + 5 7− 4  1]  [10 − 2 + 6 − 8−  − 1 + 8]  [0 0 1 ]}
(b)  = {12 [1  1−] 1

6
√
3
[4 + 5 7− 4  1]  1

3
√
30
[10−2 + 6−8− −1 + 8]  1√

2
[0 0 1 ]}

(c)

⎡⎢⎢⎢⎢⎣
1
2 −12  1

2
1
2 

1
6
√
3
(4− 5) 1

6
√
3
(7 + 4) − 1

6
√
3
 1

6
√
3

10
3
√
30

1
3
√
30
(−2− 6) 1

3
√
30
(−8 + ) 1

3
√
30
(−1− 8)

0 0 1√
2

− 1√
2


⎤⎥⎥⎥⎥⎦

(9) (a) A() = 2 − 5+ 4 = (− 1)(− 4); D =

∙
1 0
0 4

¸
; P =

⎡⎣ 1√
6
(−1− ) 1√

3
(1 + )

2√
6

1√
3

⎤⎦
(b) A() = 3 + (−98 + 98)2 − 4802 = ( − 49 + 49)2; D =

⎡⎣ 0 0 0
0 49− 49 0
0 0 49− 49

⎤⎦;
P =

⎡⎢⎢⎢⎣
6
7

1√
5
 −4

7
√
5

3
7 

2√
5

−2
7
√
5

2
7 0 15

7
√
5

⎤⎥⎥⎥⎦ is a probable answer. Another possibility: P = 1
7

⎡⎣ 3 −2 −6
2 6 3
6 3 2

⎤⎦

(10) Both AA∗ and A∗A equal

⎡⎣ 80 105 + 45 60
105− 45 185 60− 60

60 60 + 60 95

⎤⎦, and so A is normal. Hence, by

Theorem 7.9, A is unitarily diagonalizable.

(11) Now, A∗A =⎡⎢⎢⎢⎢⎣
459 −46 + 459 −459 + 46 −11− 925 −83 + 2227

−46− 459 473 92 + 445 −918 + 103 2248− 139
−459− 46 92− 445 473 −81 + 932 305− 2206
−11 + 925 −918− 103 −81− 932 1871 −4482− 218
−83− 2227 2248 + 139 305 + 2206 −4482 + 218 10843

⎤⎥⎥⎥⎥⎦ 
but AA∗ =⎡⎢⎢⎢⎢⎣

7759 −120 + 2395 3850− 1881 −1230− 3862 −95− 2905
−120− 2395 769 −648− 1165 −1188 + 445 −906 + 75
3850 + 1881 −648 + 1165 2371 329− 2220 660− 1467
−1230 + 3862 −1188− 445 329 + 2220 2127 1467 + 415
−95 + 2905 −906− 75 660 + 1467 1467− 415 1093

⎤⎥⎥⎥⎥⎦ 
so A is not normal. Hence, A is not unitarily diagonalizable, by Theorem 7.9. (Note: A is diagonal-
izable (with eigenvalues 0, ±1, and ±), but the eigenspaces are not orthogonal to each other.)

(12) If U is a unitary matrix, then U∗ = U−1. Hence, U∗U = UU∗ = I.

Copyright c° 2016 Elsevier Ltd. All rights reserved. 143



Answers to Exercises Chapter 7 Review

(13) Distance =
q

8
105 ≈ 0276

(14) {[1 0 0] [4 3 0] [5 4 2]}
(15) Orthogonal basis forW: {sin  cos+ 1

2 sin}; w1 = 2 sin− 36
42+3( cos+

1
2 sin); w2 = −w1

(16) (a) T

(b) F

(c) T

(d) F

(e) F

(f) T

(g) F

(h) T

(i) F

(j) T

(k) T

(l) T

(m) F

(n) T

(o) T

(p) T

(q) T

(r) T

(s) T

(t) T

(u) T

(v) T

(w) F
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Chapter 8

Section 8.1

(1) Symmetric: (a), (b), (c), (d)

(a) 1:

⎡⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤⎥⎥⎦ (b) 2 :

⎡⎢⎢⎢⎢⎣
1 2 0 0 1
2 0 0 1 0
0 0 1 0 1
0 1 0 0 1
1 0 1 1 1

⎤⎥⎥⎥⎥⎦
(c) 3:

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦

(d) 4:

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 1 0 0
1 0 2 1 0 0
0 2 0 0 1 1
1 1 0 0 2 0
0 0 1 2 0 1
0 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
(e) 1:

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0

⎤⎥⎥⎦ (f) 2:

⎡⎢⎢⎣
0 2 1 0
0 1 1 1
0 1 0 1
0 0 0 1

⎤⎥⎥⎦

(g) 3:

⎡⎢⎢⎢⎢⎣
0 2 2 0 0
1 0 0 0 1
1 0 0 2 0
0 0 1 0 1
0 2 0 2 0

⎤⎥⎥⎥⎥⎦
(h) 4:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2) All figures for this exercise appear on the next page.

C can be the adjacency matrix for a digraph (only) (see Figure 12).

F can be the adjacency matrix for either a graph or digraph (see Figure 13).
G can be the adjacency matrix for a digraph (only) (see Figure 14).

H can be the adjacency matrix for a digraph (only) (see Figure 15).

I can be the adjacency matrix for a graph or digraph (see Figure 16).
J can be the adjacency matrix for a graph or digraph (see Figure 17).
K can be the adjacency matrix for a graph or digraph (see Figure 18).

(3) The digraph is shown in Figure 19 (see the next page), and the adjacency matrix is

A

B

C

D

E

F

A B C D E F⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0 0
0 0 0 1 1 0
0 1 0 0 1 0
1 0 0 0 0 1
1 1 0 1 0 0
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

The transpose gives no new information. But it does suggest a different interpretation of the

results: namely, the ( ) entry of the transpose equals 1 if author  influences author .
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(4) (a) 15

(b) 56

(c) 74 = 1 + 2 + 15 + 56

(d) 89 = 0 + 4 + 10 + 75

(e) Length 2

(f) Length 2

(5) (a) 4

(b) 0

(c) 7 = 1 + 2 + 4

(d) 18 = 2 + 0 + 8 + 8

(e) No such path exists

(f) Length 2

(6) (a) 8 (b) 114 (c) 92 = 0 + 6 + 12 + 74

(7) (a) 3 (b) 10 (c) 19 = 1 + 2 + 4 + 12

(8) (a) If the vertex is the th vertex, then the th row and th column entries of the adjacency matrix
all equal zero, except possibly for the ( ) entry.

(b) If the vertex is the th vertex, then the th row entries of the adjacency matrix all equal zero,
except possibly for the ( ) entry. (Note: The th column entries may be nonzero.)

(9) (a) The trace equals the total number of loops in the graph or digraph.

(b) The trace equals the total number of cycles of length  in the graph or digraph. (See Exercise
6 in the textbook for the definition of a cycle.)

(10) Connected: (b), (c); Disconnected: (a), (d)

(11) (a) Since 2 has the same edges as 1, along with one new loop at each vertex, 2 has the same
number of edges connecting any two distinct vertices as 1. Thus, the entries off the main
diagonal of the adjacency matrices for the two graphs are the same. But 2 has one more
loop at each vertex than 1 has. Hence, the entries on the main diagonal of the adjacency
matrix for 2 are all 1 larger than the entries of A, so the adjacency matrix for 2 is found
by adding I to A. This does not change any entries off the main diagonal, but adds 1 to
every entry on the main diagonal.

(b) Connectivity only involves the existence of a path between distinct vertices. If there is a path
from  to  in 1, for  6= , the same path connects these two vertices in 2. If there is a
path from  to  in 2, then a similar path can be found from  to  in 1 merely by
deleting any loops that might appear in the path from  to  in 2. Thus,  is connected
by a path to  in 1 if and only if  is connected by a path to  in 2. Hence, 1 is
connected if and only if 2 is connected.

(c) Suppose there is a path of length  from  to  in 1, where  ≤ . Then, we can find a
path of length  from  to  in 2 by first following the known path of length  from 
to  that exists in 1 (and hence in 2), and then going ( −) times around the newly
added loop at  .

(d) In the discussion in the text for Theorem 8.3, we saw that a graph is connected if and only if

every pair of distinct vertices are connected by a path of length ≤ (− 1). However, using an
argument similar to that in part (c), if there is a path of length less than (− 1) connecting
two vertices in 2, then there is a path of length equal to (− 1) connecting those same two
vertices. Hence, 2 is connected if and only if each pair of distinct vertices is connected by
a path of length (− 1). (Note: Because of the newly added loops, there is a path of every
length ≥ 1 connecting each vertex in 2 to itself. Thus, all of the main diagonal entries of
any positive power of (A+ I) are nonzero.)

(e) By parts (a) and (d), including the note at the end of the answer for (d) above, and Theorem

8.1, 2 is connected if and only if (A + I)
−1 has no zero entries. But, by part (b), 1 is

connected if and only if 2 is connected. Hence, 1 is connected if and only if (A+ I)
−1

has no zero entries.
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(f) Part (a): (A+ I4)
3 =

⎡⎢⎢⎣
41 0 32 40
0 8 0 0
32 0 25 32
40 0 32 37

⎤⎥⎥⎦; disconnected;

Part (b): (A+ I4)
3 =

⎡⎢⎢⎣
13 4 9 1
4 7 6 5
9 6 8 3
1 5 3 4

⎤⎥⎥⎦; connected;

Part (c): (A+ I5)
4 =

⎡⎢⎢⎢⎢⎣
9 12 8 12 6
12 93 120 28 120
8 120 252 42 168
12 28 42 21 24
6 120 168 24 172

⎤⎥⎥⎥⎥⎦; connected;

Part (d): (A+ I5)
4 =

⎡⎢⎢⎢⎢⎣
86 0 0 85 85
0 100 78 0 0
0 78 61 0 0
85 0 0 86 85
85 0 0 85 86

⎤⎥⎥⎥⎥⎦; disconnected.
(12) If the graph is connected, then vertex  must have at least one edge connecting it to some other

distinct vertex  . (Otherwise there could be no paths at all connecting  to any other vertex.)
But then, the path  →  →  is a path of length 2 connecting  to itself. Hence, the ( )
entry of A2 is at least 1. Since this is true for each , all entries on the main diagonal of A2 are

nonzero.

(13) (a) The digraph2 in Figure 8.2 is strongly connected since there is a path from any vertex to any

other vertex. (This can be verified by inspection, or by using part (b) of this exercise — that

is, letting A represent the adjacency matrix for this digraph and noting that A +A2 +A3

has all nonzero entries off the main diagonal.) The digraph in Figure 8.7 is not strongly

connected, since there is no path directed to 5 from any other vertex.

(b) Use the fact that if a path exists between a given pair ,  of vertices, then there must be
a path of length at most  − 1 between  and  . (This is because any longer path would
involve returning to a vertex  that was already visited earlier in the path since there are
only  vertices. Hence, any portion of the longer path that involves travelling from  to
itself could be removed from that path to yield a shorter path between  and  .) Then use
Corollary 8.2.

(c) Create a new digraph by considering each directed edge of the given digraph and adding

a corresponding directed edge going in the opposite direction. If we include loops in this

process, the adjacency matrix for the new digraph will be (A+A ). Next, convert the new
digraph into a graph by replacing each pair of directed edges (that is, each directed edge

together with its opposite) by a single (undirected) edge. The entries of the adjacency matrix

of this graph that are not on the main diagonal would agree with those of (A+A ), while
the main diagonal entries of the adjacency matrix of this graph would agree with those of A
(These actually represent the number of loops at each vertex in the original digraph.) But

loops are irrelevant in determining connectivity since they do not connect distinct vertices.

Hence, by Theorem 8.3, this new graph is connected if and only if
¡
A+A

¢
+
¡
A+A

¢2
+
¡
A+A

¢3
+ · · · + ¡A+A

¢−1
has all entries nonzero off the main diagonal.
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(d) For the first adjacency matrix, let C = (A+A )Then

C =

⎡⎢⎢⎢⎢⎣
0 0 0 2 0
0 2 0 0 1
0 0 0 3 0
2 0 3 0 0
0 1 0 0 2

⎤⎥⎥⎥⎥⎦ , and, C+C2 +C3 +C4 =

⎡⎢⎢⎢⎢⎣
56 0 84 28 0
0 62 0 0 58
84 0 126 42 0
28 0 42 182 0
0 58 0 0 62

⎤⎥⎥⎥⎥⎦ 
However, some of the entries off the main diagonal of this sum are zero, so the digraph for A
is not weakly connected.

For the second adjacency matrix, let D = (B+B ) Then

D =

⎡⎢⎢⎢⎢⎣
0 0 2 2 0
0 0 0 1 0
2 0 0 0 1
2 1 0 0 0
0 1 1 0 2

⎤⎥⎥⎥⎥⎦ , and, D+D2 +D3 +D4 =

⎡⎢⎢⎢⎢⎣
80 20 24 20 32
20 6 4 6 4
24 4 52 44 32
20 6 44 46 12
32 4 32 12 52

⎤⎥⎥⎥⎥⎦ 
Since this sum has no zero entries off the main diagonal, the digraph forB is weakly connected.

(14) (a) Use part (c).

(b) Yes, it is a dominance digraph, because no tie games are possible and because each team

plays every other team. Thus if  and  are two given teams, either  defeats  or vice
versa.

(c) Since the entries of both A and A are all zeroes and ones, then, with  6= , the ( ) entry
of A + A =  +  = 1 iff  = 1 or  = 1, but not both. Also, the ( ) entry of
A+A = 2 = 0 iff  = 0. Hence, A+A

 has the desired properties (all main diagonal

entries equal to 0, and all other entries equal to 1) iff there is always exactly one directed edge
between two distinct vertices ( = 1 or  = 1, but not both, for  6= ), and the digraph
has no loops ( = 0). (This is the definition of a dominance digraph.)

(15) We prove Theorem 8.1 by induction on . For the base step,  = 1. This case is true by the
definition of the adjacency matrix. For the inductive step, let B = A. Then A+1 = BA. Note
that the ( ) entry of A+1

= (th row of B) · (th column of A) =
X

=1



=
X

=1

(number of paths of length  from  to ) · (number of paths of length 1 from  to )

= (number of paths of length  + 1 from  to )

(16) (a) T

(b) F

(c) T

(d) F

(e) T

(f) T

(g) T

(h) F

(i) F

(j) F

(k) F

(l) F

(m) T

Section 8.2

(1) (a) 1 = 8, 2 = 5, 3 = 3

(b) 1 = 10, 2 = 4, 3 = 5, 4 = 1, 5 = 6

(c) 1 = 12, 2 = 5, 3 = 3, 4 = 2, 5 = 2, 6 = 7

(d) 1 = 64, 2 = 48, 3 = 16, 4 = 36, 5 = 12, 6 = 28
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(2) (a) T (b) T

Section 8.3

(1) (a)  = −08− 33;  ≈ −73 when  = 5

(b)  = 112+ 105;  ≈ 665 when  = 5

(c)  = −15+ 38;  ≈ −37 when  = 5

(2) (a)  = 03752 + 035+ 360

(b)  = −0832 + 147− 18
(c)  = −00422 + 0633+ 0266

(3) (a)  = 1
4

3 + 25
28

2 + 25
14+

37
35 (b)  = −163 − 1

14
2 − 1

3+
117
35

(4) (a)  = 442862 − 20571
(b)  = 071162 + 16858+ 08989

(c)  = −010142 + 09633− 08534

(d)  = −014253 + 09882

(e)  = 03 − 039542 + 09706

(5) (a)  = 02+ 274; the angle reaches 434◦ in the 8th month.

(b) The angle reaches 514◦ in the 12th month.

(c)  = 00071432 + 01286+ 28614; the tower will be leaning at 543◦ in the 12th month.

(d) The quadratic approximation will probably be more accurate because the amount of change in

the angle from the vertical is generally increasing with each passing month.

(e) The angle reaches 382◦ after 54 months.

(f) The angle reaches 20◦ after 408 months.

(6) The answers to (a) and (b) assume that the years are renumbered as suggested in the textbook.

(a)  = 2581+ 15097; predicted population in 2005 is 29293 million.

(b) Predicted population in 2030 is 35745 million.

(c)  = 0972 + 19+ 16005; predicted population in 2030 is 37413 million.

(7) The least-squares polynomial is  = 4
5

2− 2
5+2, which is the exact quadratic through the given three

points.

(8) When  = 1, the system in Theorem 8.4 is

∙
1 1 · · · 1
1 2 · · · 

¸⎡⎢⎢⎢⎣
1 1
1 2
...

...

1 

⎤⎥⎥⎥⎦
∙
0
1

¸
=

∙
1 1 · · · 1
1 2 · · · 

¸⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦ 

which becomes

"


P
=1 P

=1 
P

=1 
2


# ∙
0
1

¸
=

" P
=1 P
=1 

#


the desired system.
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(9) (a) 1 =
230
39 , 2 =

155
39 ; ⎧⎪⎨⎪⎩

41 − 32 = 1123  which is almost 12

21 + 52 = 3123  which is almost 32

31 + 2 = 2123  which is close to 21

(b) 1 =
46
11 , 2 = −1211 , 3 = 62

33 ;⎧⎪⎪⎪⎨⎪⎪⎪⎩
21 − 2 + 3 = 1113  which is almost 11

− 1 + 32 − 3 = −913  which is almost − 9
1 − 22 + 33 = 12

31 − 42 + 23 = 2023  which is almost 21

(10) (a) T (b) F (c) F (d) F

Section 8.4

(1) A is not stochastic, since A is not square; A is not regular, since A is not stochastic.

B is not stochastic, since the entries of column 2 do not sum to 1; B is not regular, since B is not

stochastic.

C is stochastic; C is regular, since C is stochastic and has all nonzero entries.

D is stochastic; D is not regular, since every positive power of D is a matrix whose rows are the rows

of D permuted in some order, and hence every such power contains zero entries.

E is not stochastic, since the entries of column 1 do not sum to 1; E is not regular, since E is not
stochastic.

F is stochastic; F is not regular, since every positive power of F has all second row entries zero.
G is not stochastic, since G is not square; G is not regular, since G is not stochastic.

H is stochastic; H is regular, since

H2 =

⎡⎢⎢⎣
1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

⎤⎥⎥⎦ 
which has no zero entries.

(2) (a) p1 = [
5
18 

13
18 ], p2 = [

67
216 

149
216 ]

(b) p1 = [
2
9 

13
36 

5
12 ], p2 = [

25
108 

97
216 

23
72 ]

(c) p1 = [
17
48 

1
3 

5
16 ], p2 = [

205
576 

49
144 

175
576 ]

(3) (a) [25 
3
5 ] (b) [1859 

20
59 

21
59 ] (c) [14 

3
10 

3
10 

3
20 ]

(4) (a) [04 06] (b) [0305 0339 0356]

(5) (a) [034 0175 034 0145] in the next election;
[03555 01875 02875 01695] in the election after that

(b) The steady-state vector is [036 020 024 020]; in a century, the votes would be 36% for Party

A and 24% for Party C.
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(6) (a)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
6

1
6

1
5 0

1
8

1
2 0 0 1

5

1
8 0 1

2
1
10

1
10

1
4 0 1

6
1
2

1
5

0 1
3

1
6

1
5

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) If M is the stochastic matrix in part (a), then M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

41
120

1
6

1
5

13
60

9
100

1
8

27
80

13
240

13
200

1
5

3
20

13
240

73
240

29
200

3
25

13
48

13
120

29
120

107
300

13
60

9
80

1
3

1
5

13
60

28
75

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 which has

all entries nonzero. Thus,M is regular.

(c) 29
120 , since the probability vector after two time intervals is [

1
5 

13
240 

73
240 

29
120 

1
5 ]

(d) [15 
3
20 

3
20 

1
4 

1
4 ]; over time, the rat frequents rooms B and C the least and rooms D and E the

most.

(7) The limit vector for any initial input is [1 0 0]. However,M is not regular, since every positive power

ofM is upper triangular, and hence is zero below the main diagonal. The unique fixed point is [1 0 0].

(8) (a) Any steady-state vector is a solution of the systemµ∙
1−  
 1− 

¸
−
∙
1 0
0 1

¸¶∙
1
2

¸
=

∙
0
0

¸


which simplifies to

∙ − 
 −

¸ ∙
1
2

¸
=

∙
0
0

¸
. Using the fact that 1 + 2 = 1 yields a

larger system whose augmented matrix is

⎡⎣ − 
 −
1 1

¯̄̄̄
¯̄ 00
1

⎤⎦. This reduces to
⎡⎢⎢⎣
1 0

0 1

0 0

¯̄̄̄
¯̄̄̄


+


+

0

⎤⎥⎥⎦,
assuming  and  are not both zero. (Begin the row reduction with the row operation h1i↔ h3i
in case  = 0.) Hence, 1 =


+ , 2 =


+ is the unique steady-state vector.

(b) Here,  = 1
2 ,  =

1
3 , and so the steady-state vector is

6
5 [
1
3 

1
2 ] = [

2
5 

3
5 ], which agrees with the result

from Exercise 3(a).

(9) It is enough to show that the product of any two stochastic matrices is stochastic. Let A and B be

× stochastic matrices. Then the entries of AB are clearly nonnegative, since the entries of both A
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and B are nonnegative. Furthermore, the sum of the entries in the th column of AB =

X
=1

(AB) =
X
=1

(th row of A) · (th column of B)

=
X
=1

(11 + 22 + · · ·+ )

=

Ã
X
=1

1

!
1 +

Ã
X
=1

2

!
2 + · · ·+

Ã
X
=1



!


= (1)1 + (1)2 + · · ·+ (1)
(since A is stochastic, and each of the summations

is a sum of the entries of a column of A)

= 1

since B is stochastic. Hence AB is stochastic.

(10) Suppose M is a  ×  matrix.

Base Step ( = 1): th entry inMp = (th row of M) · p =P
=1

=
X

=1

(probability of moving from state  to )(probability of being in state )

= probability of being in state  after 1 step of the process

= th entry of p1

Inductive Step: Assume p =M
p is the probability vector after  steps of the process. Then, after

an additional step of the process, the probability vector p+1 =Mp =M(M
p) =M+1p.

(11) (a) F (b) T (c) T (d) T (e) F

Section 8.5

(1) (a) −24 −46 −15 −30 10 16 39 62
26 42 51 84 24 37 −11 −23

(b) 97 177 146 96 169 143 113
201 171 93 168 133 175 311
254 175 312 256 238 (430) (357)

(where “27” was used twice to pad the last vector)

(2) (a) HOMEWORK IS GOOD FOR THE SOUL

(b) WHO IS BURIED IN GRANT(’)S TOMB—

(c) DOCTOR, I HAVE A CODE

(d) TO MAKE A SLOW HORSE FAST DON(’)T FEED IT— —
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(3) (a) T (b) T (c) F

Section 8.6

(1) (a)  = 1
2 arctan(−

√
3
3 ) = − 

12 ; P =

" √
6+
√
2

4

√
6−√2
4√

2−√6
4

√
6+
√
2

4

#
;

equation in -coordinates: 2 − 2 = 2 or, 
2

2 − 2

2 = 1;
center in -coordinates: (0 0); center in -coordinates: (0 0);
see Figures 20 and 21.

Figure 20: Rotated Hyperbola

Figure 21: Original Hyperbola
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(b)  = 
4 , P =

" √
2
2 −

√
2
2√

2
2

√
2
2

#
;

equation in -coordinates: 42 + 92 − 8 = 32, or, (−1)29 + 2

4 = 1;

center in -coordinates: (1 0); center in -coordinates: (
√
2
2 
√
2
2 );

see Figures 22 and 23.

Figure 22: Rotated Ellipse

Figure 23: Original Ellipse
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(c)  = 1
2 arctan(−

√
3) = −

6 ; P =

" √
3
2

1
2

−12
√
3
2

#
;

equation in -coordinates:  = 22 − 12+ 13, or ( + 5) = 2(− 3)2;
vertex in -coordinates: (3−5); vertex in -coordinates: (00981−5830);
see Figures 24 and 25.

Figure 24: Rotated Parabola

Figure 25: Original Parabola
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(d)  ≈ 06435 radians (about 36◦520); P =

" 4
5 −35
3
5

4
5

#
;

equation in -coordinates: 42 − 16+ 92 + 18 = 11 or, (−2)29 + (+1)2

4 = 1;

center in -coordinates: (2−1); center in -coordinates = (115 
2
5);

see Figures 26 and 27.

Figure 26: Rotated Ellipse

Figure 27: Original Ellipse
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(e)  ≈ −06435 radians (about −36◦520); P =
" 4

5
3
5

−35 4
5

#
;

equation in -coordinates: 12 = 2 + 12 or, ( + 3) = 1
12(+ 6)

2;

vertex in -coordinates: (−6−3); vertex in -coordinates = (−335  65);
see Figures 28 and 29.

Figure 28: Rotated Parabola

Figure 29: Original Parabola
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(f) (All answers are rounded to four significant digits.)

 ≈ 04442 radians (about 25◦270); P =
∙
09029 −04298
04298 09029

¸
;

equation in -coordinates: 2

(1770)2 − 2

(2050)2 = 1;

center in -coordinates: (0 0); center in -coordinates = (0 0);

see Figures 30 and 31.

Figure 30: Rotated Hyperbola

Figure 31: Original Hyperbola

(2) (a) T (b) F (c) T (d) F

Section 8.7

(1) (a) (9 1) (9 5) (12 1) (12 5) (14 3)

(b) (3 5) (1 9) (5 7) (3 10) (6 9)

(c) (−2 5) (0 9) (−5 7) (−2 10) (−5 10)
(d) (20 6) (20 14) (32 6) (32 14) (40 10)
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(2) (a) (3 11) (5 9) (7 11) (11 7) (15 11); see Figure 32

(b) (−8 2) (−7 5) (−10 6) (−9 11) (−14 13); see Figure 33
(c) (8 1) (8 4) (11 4) (10 10) (16 11); see Figure 34

(d) (3 18) (4 12) (5 18) (7 6) (9 18); see Figure 35

Figure 32

Figure 33
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Figure 34

Figure 35

(3) (a) (3−4) (3−10) (7−6) (9−9) (10−3)
(b) (4 3) (10 3) (6 7) (9 9) (3 10)

(c) (−2 6) (0 8) (−8 17) (−10 22) (−16 25)
(d) (6 4) (11 7) (11 2) (14 1) (10−3)

(4) (a) (14 9) (10 6) (11 11) (8 9) (6 8) (11 14)

(b) (−2−3) (−6−3) (−3−6) (−6−6) (−8−6) (−2−9)
(c) (2 4) (2 6) (8 5) (8 6) (twice), (14 4)

(5) (a) (4 7) (6 9) (10 8) (9 2) (11 4)

(b) (0 5) (1 7) (0 11) (−5 8) (−4 10)
(c) (7 3) (7 12) (9 18) (10 3) (10 12)

(6) (a) (2 20) (3 17) (5 14) (6 19) (6 16) (9 14); see Figure 36

(b) (17 17) (17 14) (18 10) (20 15) (19 12) (22 10); see Figure 37
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(c) (1 18) (−3 13) (−6 8) (−2 17) (−5 12) (−6 10); see Figure 38
(d) (−19 6) (−16 7) (−15 9) (−27 7) (−21 8) (−27 10); see Figure 39

Figure 36

Figure 37

Figure 38
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Figure 39

(7) (a) Show that the given matrix is equal to the product⎡⎣ 1 0 
0 1 
0 0 1

⎤⎦⎡⎣ cos  − sin  0
sin  cos  0
0 0 1

⎤⎦⎡⎣ 1 0 −
0 1 −
0 0 1

⎤⎦ 
(b) Show that the given matrix is equal to the product⎡⎣ 1 0 0

0 1 
0 0 1

⎤⎦µ 1

1 +2

¶⎡⎣ 1−2 2 0
2 2 − 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 −
0 0 1

⎤⎦ 
(c) Show that the given matrix is equal to the product⎡⎣ 1 0 

0 1 
0 0 1

⎤⎦⎡⎣  0 0
0  0
0 0 1

⎤⎦⎡⎣ 1 0 −
0 1 −
0 0 1

⎤⎦ 
(8) Show that the given matrix is equal to the product⎡⎣ 1 0 

0 1 0
0 0 1

⎤⎦⎡⎣ −1 0 0
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 −
0 1 0
0 0 1

⎤⎦ 
(9) (a) (4 7) (6 9) (10 8) (9 2) (11 4)

(b) (0 5) (1 7) (0 11) (−5 8) (−4 10)
(c) (7 3) (7 12) (9 18) (10 3) (10 12)

(10) (a) Multiplying the two matrices yields I3.

(b) The first matrix represents a translation along the vector [ ], while the second is the inverse
translation along the vector [−−].

(c) See the answer for Exercise 7(a), and substitute  for , and  for , and then use part (a) of this
Exercise.
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(11) (a) Show that the matrices in parts (a) and (c) of Exercise 7 commute with each other when  = .
Both products equal ⎡⎣ (cos ) −(sin ) (1− (cos )) + (sin )

(sin ) (cos ) (1− (cos ))− (sin )
0 0 1

⎤⎦ 
(b) Consider the reflection about the -axis, whose matrix is given in Section 8.7 of the textbook as

A =

⎡⎣ −1 0 0
0 1 0
0 0 1

⎤⎦, and a counterclockwise rotation of 90◦ about the origin, whose matrix is
B =

⎡⎣ 0 −1 0
1 0 0
0 0 1

⎤⎦. Then AB =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦, but BA =

⎡⎣ 0 −1 0
−1 0 0
0 0 1

⎤⎦, and so A and B

do not commute. In particular, starting from the point (1 0), performing the rotation and then
the reflection yields (0 1). However, performing the reflection followed by the rotation produces
(0−1).

(c) Consider a reflection about  = − and scaling by a factor of  in the -direction and  in the
-direction, with  6=  Now,

(reflection) ◦ (scaling)([1 0]) = (reflection)([ 0]) = [0−]

But,

(scaling) ◦ (reflection)([1 0]) = (scaling)([0−1]) = [0−]
Hence,

(reflection) ◦ (scaling) 6= (scaling) ◦ (reflection)

(12) (a) The matrices are

∙
cos  − sin 
sin  cos 

¸
and

⎡⎣ cos  − sin  0
sin  cos  0
0 0 1

⎤⎦. If A represents either matrix, we

can verify A is orthogonal by directly computing AA .

(b) If A =

⎡⎣ 0 −1 18
1 0 −6
0 0 1

⎤⎦, then AA =

⎡⎣ 325 −108 18
−108 37 −6
18 −6 1

⎤⎦ 6= I3.
(c) Let  be the slope of a nonvertical line. Then, the matrices are, respectively,

⎡⎣ 1−2

1+2
2
1+2

2
1+2

2−1
1+2

⎤⎦ and

⎡⎢⎢⎢⎣
1−2

1+2
2
1+2 0

2
1+2

2−1
1+2 0

0 0 1

⎤⎥⎥⎥⎦ 

For a vertical line, the matrices are

∙ −1 0
0 1

¸
and

⎡⎣ −1 0 0
0 1 0
0 0 1

⎤⎦. All of these matrices are
obviously symmetric, and since a reflection is its own inverse, all of these matrices are their own

inverses. Hence, if A is any one of these matrices, then AA = AA = I, so A is orthogonal.
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(13) (a) F (b) F (c) F (d) T (e) T (f) F

Section 8.8

(1) (a) 1


∙
7
3

¸
+ 2

−
∙
2
1

¸
(b) 1

3

∙
1
1

¸
+ 2

−2
∙
3
4

¸

(c) 1

⎡⎣ 0
−1
1

⎤⎦+ 2


⎡⎣ 1
−1
1

⎤⎦+ 3
3

⎡⎣ 2
0
1

⎤⎦
(d) 1



⎡⎣ −11
0

⎤⎦+ 2


⎡⎣ 5
0
2

⎤⎦+ 3
4

⎡⎣ 1
1
1

⎤⎦
(There are other possible answers. For example, the first two vectors in the sum could be any

basis for the two-dimensional eigenspace corresponding to the eigenvalue 1.)

(e) 1


⎡⎢⎢⎣
−1
−1
1
0

⎤⎥⎥⎦ + 2


⎡⎢⎢⎣
1
3
0
1

⎤⎥⎥⎦ + 3

⎡⎢⎢⎣
2
3
0
1

⎤⎥⎥⎦ + 4
−3

⎡⎢⎢⎣
0
1
1
1

⎤⎥⎥⎦
(There are other possible answers. For example, the first two vectors in the sum could be any

basis for the two-dimensional eigenspace corresponding to the eigenvalue 1.)

(2) (a)  = 1
2 + 2

−3 (b)  = 1
 + 2

− + 3
5

(c)  = 1
2 + 2

−2 + 3
√
2 + 4

−√2

(3) Using the fact that Av = v, it can be easily seen that, with F() = 1
1v1+ · · ·+ 

v, both
sides of F0() = AF() yield 11

1v1 + · · ·+ 
v.

(4) (a) Suppose (v1    v) is an ordered basis for R consisting of eigenvectors of A corresponding

to the eigenvalues 1     . Then, by Theorem 8.9, all solutions to F0() = AF() are of the
form F() = 1

1v1 + · · ·+ 
v. Substituting  = 0 yields v = F(0) = 1v1 + · · ·+ v.

But since (v1    v) forms a basis for R, 1      are uniquely determined (by Theorem 4.9).

Thus, F() is uniquely determined.

(b) F() = 25

⎡⎣ 1
0
1

⎤⎦− 

⎡⎣ −12
0

⎤⎦− 2−
⎡⎣ 1
1
1

⎤⎦.
(5) (a) The equations 1() = , 2() = 0     () = (−1) translate into these ( − 1) equations:

 01() = 2(), 
0
2() = 3()     

0
−1() = (). Also, 

() + −1(−1) + · · · + 1
0 + 0 = 0

translates into  0() = −01() − 12() − · · · − −1(). These  equations taken together
are easily seen to be represented by F0() = AF(), where A and F are as given.

(b) Base Step ( = 1): A = [−0], I1 −A = [+ 0], and so A() = + 0.
Inductive Step: Assume true for . Prove true for  + 1. For the case  + 1,

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1
−0 −1 −2 −3 · · · −

⎤⎥⎥⎥⎥⎥⎦ 
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Then

(I+1 −A) =

⎡⎢⎢⎢⎢⎢⎣
 −1 0 0 · · · 0 0
0  −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · ·  −1
0 1 2 3 · · · −1 + 

⎤⎥⎥⎥⎥⎥⎦ 
Using a cofactor expansion on the first column yields

|I+1 −A| = 

¯̄̄̄
¯̄̄̄
¯
 −1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · ·  −1
1 2 3 · · · −1 + 

¯̄̄̄
¯̄̄̄
¯

+ (−1)(+1)+10

¯̄̄̄
¯̄̄̄
¯
−1 0 · · · 0 0
 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · ·  −1

¯̄̄̄
¯̄̄̄
¯ 

The first determinant equals |I −B|, where

B =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 0 1
−1 −2 −3 · · · −−1 −

⎤⎥⎥⎥⎥⎥⎦ 

Now, using the inductive hypothesis on the first determinant, and Theorems 3.2 and 3.10 on the

second determinant (since its corresponding matrix is lower triangular) yields

A() = ( + 
−1 + · · ·+ 2+ 1) + (−1)+20(−1) = +1 + 

 + · · ·+ 1+ 0

(6) (a) [2 3     −01 − 12 − · · ·− −1]

(b) Using Theorem 8.10,

0 = A() =  + −1−1 + · · ·+ 1+ 0

Thus,  = −0 − 1 − · · · − −1−1. Letting x = [1  2     −1] and substituting x for
[1     ] in part (a) gives

Ax = [ 2     −1−0 − 1− · · ·− −1−1]
= [ 2     −1 ] = x

(c) Let v = [ 2 3     ]. Then v = [ 2     ]. By part (a),

Av = [2 3     −0− · · ·− −1]

Equating the first − 1 coordinates of Av and v yields

2 =  3 = 2      = −1
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Further recursive substitution gives

2 =  3 = 2      = −1

Hence v = [1      −1].

(d) By parts (b) and (c), {[1      −1]} is a basis for .

(7) (a) T (b) T (c) T (d) F

Section 8.9

(1) (a) Unique least-squares solution: v =
£
23
30 

11
10

¤
; ||Av − b|| =

√
6
6 ≈ 0408; ||Az− b|| = 1

(b) Unique least-squares solution: v =
£
229
75 

1
3

¤
; ||Av − b|| = 59

√
3

15 ≈ 6813; ||Az− b|| = 7
(c) Infinite number of least-squares solutions, all of the form v =

£
7+ 17

3 −13− 23
3  

¤
; two par-

ticular least-squares solutions are
£
17
3 −233  0

¤
and

£
8−12 13

¤
; with v as either of these vectors,

||Av− b|| =
√
6
3 ≈ 0816; ||Az− b|| = 3

(d) Infinite number of least-squares solutions, all of the form v =
£
1
2+

5
4− 1−32− 11

4 +
19
3   

¤
;

two particular least-squares solutions are
£−12  296  1 0¤ and £14  4312  0 1¤ ; with v as either of these

vectors, ||Av− b|| =
√
6
3 ≈ 0816; ||Az− b|| = √5 ≈ 2236

(2) (a) Infinite number of least-squares solutions, all of the form v =
£−47+ 19

42 
8
7− 5

21  
¤
 with

5
24 ≤  ≤ 19

24 

(b) Infinite number of least-squares solutions, all of the form v =
£−65+ 19

10 −15+ 19
35  

¤
 with

0 ≤  ≤ 19
12 

(3) (a) v ≈ [158−058]; (0I−C)v ≈ [0025−0015] (Actual nearest eigenvalue is 2 +√3 ≈ 3732)
(b) v ≈ [046−036 090]; (0I−C)v ≈ [003−004 007] (Actual nearest eigenvalue is √2 ≈ 1414)
(c) v ≈ [145−005−040]; (0I−C)v ≈ [−009−006−015] (Actual nearest eigenvalue is 3

√
12 ≈

2289)

(4) If AX = b is consistent, then b is in the subspace W of Theorem 8.13. Thus, projWb = b Finally,
the fact that statement (3) of Theorem 8.13 is equivalent to statement (1) of Theorem 8.13 shows that

the actual solutions are the same as the least-squares solutions in this case.

(5) Let b = Av1. Then A
Av1 = A

b. Also, AAv2 = A
Av1 = A

b. Hence v1 and v2 both satisfy
part (3) of Theorem 8.13. Therefore, by part (1) of Theorem 8.13, if W = {Ax | x ∈ R}, then
Av1 = projWb = Av2.

(6) Let b = [1  ], let A be as in Theorem 8.4, and let W = {Ax | x ∈ R} Since projWb ∈ W
exists, there must be some v ∈ R such that Av = projWb. Hence, v satisfies part (1) of Theorem
8.13, so (AA)v = Ab by part (3) of Theorem 8.13. This shows that the system (AA)X = Ab
is consistent, which proves part (2) of Theorem 8.4.

Next, let () = 0 + 1 + · · · + 
 and z = [0 1     ] A short computation shows that

||Az−b||2 =   the sum of the squares of the vertical distances illustrated in Figure 8.10, just before

the definition of a least-squares polynomial in Section 8.3 of the textbook. Hence, minimizing ||Az−b||
over all possible ( + 1)-vectors z gives the coefficients of a degree  least-squares polynomial for the
given points (1 1)     ( ) However, parts (2) and (3) of Theorem 8.13 show that such a minimal
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solution is found by solving (AA)v = Ab thus proving part (1) of Theorem 8.4.

Finally, when AA is row equivalent to I+1, the uniqueness condition holds by Theorems 2.15
and 2.16, which proves part (3) of Theorem 8.4.

(7) (a) F (b) T (c) T (d) T (e) T

Section 8.10

(1) (a) C =

∙
8 12
0 −9

¸
, A =

∙
8 6
6 −9

¸
(b) C =

∙
7 −17
0 11

¸
, A =

"
7 −172

− 17
2 11

#

(c) C =

⎡⎣ 5 4 −3
0 −2 5
0 0 0

⎤⎦, A =

⎡⎢⎢⎣
5 2 −32
2 −2 5

2

− 3
2

5
2 0

⎤⎥⎥⎦
(2) (a) A =

∙
43 −24
−24 57

¸
, P =1

5

∙ −3 4
4 3

¸
, D =

∙
75 0
0 25

¸
,

 =
¡
1
5 [−3 4] 15 [4 3]

¢
, [x] = [−7−4], (x) = 4075

(b) A =

⎡⎣ −5 16 40
16 37 16
40 16 49

⎤⎦, P = 1
9

⎡⎣ 1 −8 4
−8 1 4
4 4 7

⎤⎦, D =

⎡⎣ 27 0 0
0 −27 0
0 0 81

⎤⎦,
 =

¡
1
9 [1−8 4] 19 [−8 1 4] 19 [4 4 7]

¢
, [x] = [3−6 3], (x) = 0

(c) A =

⎡⎣ 18 48 −30
48 −68 18
−30 18 1

⎤⎦, P = 1
7

⎡⎣ 2 −6 3
3 −2 −6
6 3 2

⎤⎦, D =

⎡⎣ 0 0 0
0 49 0
0 0 −98

⎤⎦,
 =

¡
1
7 [2 3 6]

1
7 [−6−2 3] 17 [3−6 2]

¢
, [x] = [5 0 6], (x) = −3528

(d) A =

⎡⎢⎢⎣
1 0 −12 12
0 5 60 60

−12 60 864 576
12 60 576 864

⎤⎥⎥⎦, P = 1
17

⎡⎢⎢⎣
1 0 12 −12
0 1 −12 −12

−12 12 1 0
12 12 0 1

⎤⎥⎥⎦, D =

⎡⎢⎢⎣
289 0 0 0
0 1445 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦,
 =

¡
1
17 [1 0−12 12] 117 [0 1 12 12] 117 [12−12 1 0] 117 [−12−12 0 1]

¢
,

[x] = [1−3−3−10], (x) = 13294
(3) First,  = e


 Ae = e


 Be = . Also, for  6= , let x = e + e . Then

 +  +  +  = x
Ax = xBx =  +  +  + 

Using  =  and  =  , we get  +  =  + . Hence, since A and B are symmetric,

2 = 2 , and so  =  .

(4) Yes; if (x) = Σ , 1 ≤  ≤  ≤ , then xC1x and C1 upper triangular imply that the ( )
entry for C1 is zero if    and  if  ≤ . A similar argument describes C2. Thus, C1 = C2.
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(5) (a) Consider the expression (x) = 11
2
1 + · · · + 

2
 in Step 3 of the Quadratic Form Method,

where 11      are the eigenvalues of A, and [x] = [1     ]. Clearly, if all of 11     
are positive and x 6= 0, then (x) must be positive. (Obviously, (0) = 0.)
Conversely, if (x) is positive for all x 6= 0, then choose x so that [x] = e to yield (x) = ,

thus proving that the eigenvalue  is positive.

(b) Replace “positive” with “nonnegative” throughout the solution to part (a).

(6) (a) T (b) F (c) F (d) T (e) T
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Chapter 9

Section 9.1

(1) (a) Solution to first system: (602 1500); solution to second system: (302 750). The systems are
ill-conditioned, because a very small change in the coefficient of  leads to a very large change in
the solution.

(b) Solution to first system: (400 800 2000); solution to second system: (336 66623  1600). Systems
are ill-conditioned.

(2) Answers to this problem may differ significantly from the following, depending on where the rounding

is performed in the algorithm:

(a) Without partial pivoting: (3210 0765); with partial pivoting: (3230 0767). Actual solution is
(3214 0765).

(b) Without partial pivoting: (3040 107−521); with partial pivoting: (3010 101−503). (Actual
solution is (3000 10−5).)

(c) Without partial pivoting: (226 101−211); with partial pivoting: (277−327 595). Actual

solution is (267−315 573).

(3) Answers to this problem may differ significantly from the following, depending on where the rounding

is performed in the algorithm:

(a) Without partial pivoting: (3214 07651); with partial pivoting: (3213 07648). Actual solution is
(3214 0765).

(b) Without partial pivoting: (3001 10−5); with partial pivoting: (3000 9995−4999). (Actual
solution is (3000 10−5).)

(c) Without partial pivoting: (−2380 8801−1630); with partial pivoting: (2678−3159 5746).
Actual solution is (267−315 573).

(4) (a)
1 2

Initial Values 0000 0000
After 1 Step 5200 −6000
After 2 Steps 6400 −8229
After 3 Steps 6846 −8743
After 4 Steps 6949 −8934
After 5 Steps 6987 −8978
After 6 Steps 6996 −8994
After 7 Steps 6999 −8998
After 8 Steps 7000 −9000
After 9 Steps 7000 −9000
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(b)
1 2 3

Initial Values 0000 0000 0000
After 1 Step −0778 −4375 2000
After 2 Steps −1042 −4819 2866
After 3 Steps −0995 −4994 2971
After 4 Steps −1003 −4995 2998
After 5 Steps −1000 −5000 2999
After 6 Steps −1000 −5000 3000
After 7 Steps −1000 −5000 3000

(c)
1 2 3

Initial Values 0000 0000 0000
After 1 Step −8857 4500 −4333
After 2 Steps −10738 3746 −8036
After 3 Steps −11688 4050 −8537
After 4 Steps −11875 3975 −8904
After 5 Steps −11969 4005 −8954
After 6 Steps −11988 3998 −8991
After 7 Steps −11997 4001 −8996
After 8 Steps −11999 4000 −8999
After 9 Steps −12000 4000 −9000
After 10 Steps −12000 4000 −9000

(d)
1 2 3 4

Initial Values 0000 0000 0000 0000
After 1 Step 0900 −1667 3000 −2077
After 2 Steps 1874 −0972 3792 −2044
After 3 Steps 1960 −0999 3966 −2004
After 4 Steps 1993 −0998 3989 −1999
After 5 Steps 1997 −1001 3998 −2000
After 6 Steps 2000 −1000 3999 −2000
After 7 Steps 2000 −1000 4000 −2000
After 8 Steps 2000 −1000 4000 −2000

(5) (a)
1 2

Initial Values 0000 0000
After 1 Step 5200 −8229
After 2 Steps 6846 −8934
After 3 Steps 6987 −8994
After 4 Steps 6999 −9000
After 5 Steps 7000 −9000
After 6 Steps 7000 −9000
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(b)
1 2 3

Initial Values 0000 0000 0000
After 1 Step −0778 −4569 2901
After 2 Steps −0963 −4978 2993
After 3 Steps −0998 −4999 3000
After 4 Steps −1000 −5000 3000
After 5 Steps −1000 −5000 3000

(c)
1 2 3

Initial Values 0000 0000 0000
After 1 Step −8857 3024 −7790
After 2 Steps −11515 3879 −8818
After 3 Steps −11931 3981 −8974
After 4 Steps −11990 3997 −8996
After 5 Steps −11998 4000 −8999
After 6 Steps −12000 4000 −9000
After 7 Steps −12000 4000 −9000

(d)
1 2 3 4

Initial Values 0000 0000 0000 0000
After 1 Step 0900 −1767 3510 −2012
After 2 Steps 1980 −1050 4003 −2002
After 3 Steps 2006 −1000 4002 −2000
After 4 Steps 2000 −1000 4000 −2000
After 5 Steps 2000 −1000 4000 −2000

(6) Strictly diagonally dominant: (a), (c)

(7) (a) Put the third equation first, and move the other two down to get the following:

1 2 3
Initial Values 0000 0000 0000
After 1 Step 3125 −0481 1461
After 2 Steps 2517 −0500 1499
After 3 Steps 2500 −0500 1500
After 4 Steps 2500 −0500 1500

(b) Put the first equation last (and leave the other two alone) to get:

1 2 3
Initial Values 0000 0000 0000
After 1 Step 3700 −6856 4965
After 2 Steps 3889 −7980 5045
After 3 Steps 3993 −8009 5004
After 4 Steps 4000 −8001 5000
After 5 Steps 4000 −8000 5000
After 6 Steps 4000 −8000 5000

(c) Put the second equation first, the fourth equation second, the first equation third, and the third

equation fourth to get the following:
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1 2 3 4
Initial Values 0000 0000 0000 0000
After 1 Step 5444 −5379 9226 −10447
After 2 Steps 8826 −8435 10808 −11698
After 3 Steps 9820 −8920 10961 −11954
After 4 Steps 9973 −8986 10994 −11993
After 5 Steps 9995 −8998 10999 −11999
After 6 Steps 9999 −9000 11000 −12000
After 7 Steps 10000 −9000 11000 −12000
After 8 Steps 10000 −9000 11000 −12000

(8) The Jacobi Method yields the following:

1 2 3
Initial Values 00 00 00
After 1 Step 160 −130 120
After 2 Steps −370 590 −870
After 3 Steps 2240 −610 2120
After 4 Steps −770 9070 −14950
After 5 Steps 30560 25150 −3560
After 6 Steps 122350 190350 −238950

The Gauss-Seidel Method yields the following:

1 2 3
Initial Values 00 00 00
After 1 Step 160 830 −1830
After 2 Steps 2480 18410 −35650
After 3 Steps 56560 410530 −806330
After 4 Steps 1246480 9091410 −17816650

The actual solution is (2−3 1).

(9) (a)
1 2 3

Initial Values 0000 0000 0000
After 1 Step 3500 2250 1625
After 2 Steps 1563 2406 2516
After 3 Steps 1039 2223 2869
After 4 Steps 0954 2089 2979
After 5 Steps 0966 2028 3003
After 6 Steps 0985 2006 3005
After 7 Steps 0995 2000 3003
After 8 Steps 0999 1999 3001
After 9 Steps 1000 2000 3000
After 10 Steps 1000 2000 3000
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(b)
1 2 3

Initial Values 0000 0000 0000
After 1 Step 3500 4000 4500
After 2 Steps −0750 0000 0750
After 3 Steps 3125 4000 4875
After 4 Steps −0938 0000 0938
After 5 Steps 3031 4000 4969
After 6 Steps −0984 0000 0985
After 7 Steps 3008 4000 4992
After 8 Steps −0996 0000 0996

(10) (a) T (b) F (c) F (d) T (e) F (f) F

Section 9.2

(1) (a) LDU =

∙
1 0
−3 1

¸ ∙
2 0
0 5

¸ ∙
1 −2
0 1

¸
(b) LDU =

∙
1 0
1
2 1

¸ ∙
3 0
0 −2

¸ ∙
1 1

3
0 1

¸

(c) LDU =

⎡⎣ 1 0 0
−2 1 0
−2 4 1

⎤⎦ ⎡⎣ −1 0 0
0 2 0
0 0 3

⎤⎦ ⎡⎣ 1 −4 2
0 1 −4
0 0 1

⎤⎦
(d) LDU =

⎡⎢⎣ 1 0 0
5
2 1 0
1
2 −32 1

⎤⎥⎦
⎡⎣ 2 0 0
0 −4 0
0 0 3

⎤⎦ ⎡⎣ 1 3 −2
0 1 −5
0 0 1

⎤⎦

(e) LDU =

⎡⎢⎢⎢⎣
1 0 0 0

− 4
3 1 0 0

−2 −32 1 0
2
3 −2 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
−3 0 0 0

0 −23 0 0

0 0 1
2 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 −13 −13 1

3

0 1 5
2 −112

0 0 1 3

0 0 0 1

⎤⎥⎥⎥⎦

(f) LDU =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
−3 −3 1 0
−1 2 −2 1

⎤⎥⎥⎦
⎡⎢⎢⎣
−3 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 −3

⎤⎥⎥⎦
⎡⎢⎢⎣
1 4 −2 −3
0 1 0 −1
0 0 1 5
0 0 0 1

⎤⎥⎥⎦
(2) (a) With the given values of L, D, and U, LDU =

∙
 
  + 

¸
. The first row of LDU cannot

equal [0 1], since this would give  = 0, forcing  = 0 6= 1.

(b) The matrix

∙
0 1
1 0

¸
cannot be reduced to row echelon form using only Type (I) and lower Type

(II) row operations.

(3) (a) KU =

∙ −1 0
2 −3

¸ ∙
1 −5
0 1

¸
; solution = {(4−1)}.
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(b) KU =

⎡⎣ 2 0 0
2 −1 0
1 −3 3

⎤⎦ ⎡⎣ 1 −2 5
0 1 3
0 0 1

⎤⎦; solution = {(5−1 2)}.
(c) KU =

⎡⎣ −1 0 0
4 3 0
−2 5 −2

⎤⎦ ⎡⎣ 1 −3 2
0 1 −5
0 0 1

⎤⎦; solution = {(2−3 1)}.
(d) KU =

⎡⎢⎢⎣
3 0 0 0
1 −2 0 0
−5 −1 4 0
1 3 0 −3

⎤⎥⎥⎦
⎡⎢⎢⎣
1 −5 2 2
0 1 −3 0
0 0 1 −2
0 0 0 1

⎤⎥⎥⎦; solution = {(2−2 1 3)}.
(4) (a) F (b) T (c) F (d) F

Section 9.3

(1) (a) After nine iterations, eigenvector = [060 080] and eigenvalue = 50.

(b) After five iterations, eigenvector = [091 042] and eigenvalue = 531.

(c) After seven iterations, eigenvector = [041 041 082] and eigenvalue = 30.

(d) After five iterations, eigenvector = [058 058 000 058] and eigenvalue = 600.

(e) After fifteen iterations, eigenvector = [0346 0852 0185 0346] and eigenvalue = 5405

(f) After six iterations, eigenvector = [04455−05649−06842−01193] and eigenvalue = 57323.
(2) For the matrices in both parts, the Power Method fails to converge, even after many iterations. The

matrix in part (a) is not diagonalizable, with 1 as its only eigenvalue and dim(1) = 1. The matrix in
part (b) has eigenvalues 1, 3, and −3, none of which are strictly dominant.

(3) (a) u is derived from u−1 as u = Au−1, where  is a normalizing constant. A proof by induction
shows that u = A

u0 for some nonzero constant . If u0 = 0v1 + 0v2, then

u = 0A
v1 + 0A

v2 = 0

1v1 + 0


2v2

Hence  = 0

1 and  = 0


2. Thus,

||
|| =

¯̄̄̄
¯010


2

¯̄̄̄
¯ =

¯̄̄̄
1
2

¯̄̄̄ |0|
|0| 

(b) Let 1     be the eigenvalues of A with |1|  | |, for 2 ≤  ≤ . Let {v1    v} be as given
in the exercise. Suppose the initial vector in the Power Method is u0 = 01v1 + · · ·+ 0v and
the th iteration yields u = 1v1 + · · ·+ v. As in part (a), a proof by induction shows that
u = A

u0 for some nonzero constant . Therefore,

u = 01A
v1 + 02A

v2 + · · ·+ 0A
v

= 01

1v1 + 02


2v2 + · · ·+ 0


v

Hence,  = 0

. Thus, for 2 ≤  ≤ ,  6= 0, and 0 6= 0, we have

|1|
| | =

¯̄
01


1

¯̄¯̄
0




¯̄ = ¯̄̄̄1


¯̄̄̄ |01|
|0 | 
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(4) (a) F (b) T (c) T (d) F

Section 9.4

(1) (a) Q = 1
3

⎡⎣ 2 1 −2
−2 2 −1
1 2 2

⎤⎦; R =

⎡⎣ 3 6 3
0 6 −9
0 0 3

⎤⎦
(b) Q = 1

11

⎡⎣ 6 −2 −9
7 −6 6
6 9 2

⎤⎦; R =

⎡⎣ 11 22 11
0 11 22
0 0 11

⎤⎦

(c) Q =

⎡⎢⎢⎣
√
6
6

√
3
3

√
2
2

−
√
6
3

√
3
3 0

√
6
6

√
3
3 −

√
2
2

⎤⎥⎥⎦; R =

⎡⎢⎢⎣
√
6 3
√
6 −2

√
6

3

0 2
√
3 −10

√
3

3

0 0
√
2

⎤⎥⎥⎦

(d) Q = 1
3

⎡⎢⎢⎣
2 2 0
2 −2 1
0 −1 −2
1 0 −2

⎤⎥⎥⎦; R =

⎡⎣ 6 −3 9
0 9 12
0 0 15

⎤⎦

(e) Q = 1
105

⎡⎢⎢⎣
14 99 −2 32
70 0 −70 −35
77 −18 64 26
0 30 45 −90

⎤⎥⎥⎦; R =

⎡⎢⎢⎣
105 105 −105 210
0 210 105 315
0 0 105 420
0 0 0 210

⎤⎥⎥⎦

(2) (a) Q = 1
13

⎡⎣ 3 4
4 −12
12 3

⎤⎦; R =

∙
13 26
0 13

¸
;

∙



¸
= 1

169

∙
940
−362

¸
≈
∙

5562
−2142

¸

(b) Q = 1
3

⎡⎢⎢⎣
2 −2 1
1 0 −2
0 −1 −2
2 2 0

⎤⎥⎥⎦; R =

⎡⎣ 3 9 6
0 6 9
0 0 12

⎤⎦;
⎡⎣ 




⎤⎦ = 5
72

⎡⎣ 43
3
62

⎤⎦ ≈
⎡⎣ 2986
0208
4306

⎤⎦

(c) Q = 1
9

⎡⎢⎢⎢⎢⎢⎣
1 8 2

√
2

4 0 7
2

√
2

0 4 −92
√
2

−8 1 2
√
2

⎤⎥⎥⎥⎥⎥⎦; R =

⎡⎣ 9 −9 9
0 18 −9
0 0 18

√
2

⎤⎦;
⎡⎣ 




⎤⎦ = 1
108

⎡⎣ −6165
66

⎤⎦ ≈
⎡⎣ −05650602

0611

⎤⎦

(d) Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

2
3

2
19

√
19

2
9

4
9 − 1

19

√
19

4
9

2
9 − 3

19

√
19

4
9 −49 − 1

19

√
19

2
3 −13 2

19

√
19

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R =

⎡⎣ 9 −18 18
0 9 9

0 0 2
√
19

⎤⎦;
⎡⎣ 




⎤⎦ = 1
1026

⎡⎣ 2968
6651
3267

⎤⎦ ≈
⎡⎣ 2893
6482
3184

⎤⎦

(3) We will show that the entries of Q and R are uniquely determined by the given requirements. We will

proceed column by column, using a proof by induction on the column number .
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Base Step:  = 1. Here,

[1st column of A] = Q · [1st column of R] = [1st column of Q](11)
because R is upper triangular. But, since the 1st column of Q is a unit vector and 11 is positive,

11 = k[1st column of A]k  and [1st column of Q] =
1

11
[1st column of A]

Hence, the first column in each of Q and R is uniquely determined.

Inductive Step: Assume   1 and that columns 1     ( − 1) of both Q and R are uniquely

determined. We will show that the th column in each of Q and R is uniquely determined. Now,

[th column of A] = Q · [th column of R] =
X
=1

[th column of Q] ()

Let v =
P−1

=1 [th column of Q] (). By the Inductive Hypothesis, v is uniquely determined. Now,

[th column of Q] () = [th column of A]− v
But since the th column of Q is a unit vector and  is positive,

 = k[th column of A]− vk  and [th column of Q] =
1



([th column of A]− v) 

Hence, the th column in each of Q and R is uniquely determined.

(4) (a) If A is square, then A = QR, where Q is an orthogonal matrix and R has nonnegative entries

along its main diagonal. Setting U = R, we see that

AA = UQQU = U (I)U = UU

(b) Suppose A = QR (where this is a QR factorization of A) and AA = UU. Then R and R

must be nonsingular. Also, P = Q(R )−1U is an orthogonal matrix, because

PP = Q(R )−1U
¡
Q(R )−1U

¢
= Q(R )−1UUR−1Q

= Q(R )−1AAR−1Q

= Q(R )−1(RQ )(QR)R−1Q

= Q((R )−1R )(QQ)(RR−1)Q

= QIIIQ


= QQ

= I

Finally,

PU = Q(R )−1UU = (Q )−1(R )−1AA

= (RQ )−1AA = (A

)−1AA = IA = A

and so PU is a QR factorization of A, which is unique by Exercise 3. Hence, U is uniquely

determined.
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(5) (a) T (b) T (c) T (d) F (e) T

Section 9.5

(1) For each part, one possibility is given.

(a) U = 1√
2

∙
1 1
1 −1

¸
, Σ =

∙
2
√
10 0

0
√
10

¸
, V = 1√

5

∙
2 −1
1 2

¸
(b) U = 1

5

∙ −3 −4
−4 3

¸
, Σ =

∙
15
√
2 0

0 10
√
2

¸
, V = 1√

2

∙ −1 1
1 1

¸

(c) U = 1√
10

∙ −3 1
1 3

¸
, Σ =

∙
9
√
10 0 0

0 3
√
10 0

¸
, V = 1

3

⎡⎣ −1 −2 2
−2 2 1
2 1 2

⎤⎦
(d) U = 1√

5

∙ −1 −2
−2 1

¸
, Σ =

∙
5
√
5 0 0

0 5
√
5 0

¸
, V = 1

5

⎡⎣ −3 0 4
4 0 3
0 5 0

⎤⎦

(e) U =

⎡⎢⎢⎢⎣
2√
13

18
7
√
13
−37

3√
13

−12
7
√
13

2
7

0 13
7
√
13

6
7

⎤⎥⎥⎥⎦, Σ =
⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦, V = U

(Note: A represents the orthogonal projection onto the plane − 3+ 2 + 6 = 0.)

(f) U = 1
7

⎡⎣ 6 2 3
3 −6 −2
2 3 −6

⎤⎦, Σ =
⎡⎣ 2
√
2 0

0
√
2

0 0

⎤⎦, V = 1√
2

∙
1 −1
1 1

¸

(g) U = 1
11

⎡⎣ 2 6 9
−9 6 −2
6 7 −6

⎤⎦, Σ =
⎡⎣ 3 0
0 2
0 0

⎤⎦, V =

∙
0 1
1 0

¸

(h) U =

⎡⎢⎢⎣
−25
√
2 − 8

15

√
2 1

3

1
2

√
2 −16

√
2 2

3

3
10

√
2 −1330

√
2 −23

⎤⎥⎥⎦, Σ =
⎡⎣ 2 0 0 0
0 2 0 0
0 0 0 0

⎤⎦, V = 1√
2

⎡⎢⎢⎣
0 −1 0 1
−1 0 1 0
1 0 1 0
0 1 0 1

⎤⎥⎥⎦
(2) (a) A+ = 1

2250

∙
104 70 122
−158 110 31

¸
, v = 1

2250

∙
5618
3364

¸
, AAv = Ab = 1

15

∙
6823
3874

¸
(b) A+ = 1

450

∙
8 43 −11
−6 24 −48

¸
, v = 1

90

∙
173
264

¸
, AAv = Ab =

∙
65
170

¸

(c) A+ = 1
84

⎡⎣ 36 24 12 0
12 36 −24 0
−31 −23 41 49

⎤⎦, v = 1
14

⎡⎣ 44
−18
71

⎤⎦, AAv = Ab = 1
7

⎡⎣ 127
−30
60

⎤⎦
(d) A+ = 1

54

⎡⎣ 2 0 4 4
8 6 4 1
4 6 −4 −7

⎤⎦, v = 1
54

⎡⎣ 26
59
7

⎤⎦, AAv = Ab =

⎡⎣ 13
24
−2

⎤⎦
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(3) (a) A = 2
√
10

µ
1√
2

∙
1
1

¸¶³
1√
5

£
2 1

¤´
+
√
10

µ
1√
2

∙
1
−1

¸¶³
1√
5

£ −1 2
¤´

(b) A = 9
√
10

µ
1√
10

∙ −3
1

¸¶¡
1
3

£ −1 −2 2
¤¢
+ 3
√
10

µ
1√
10

∙
1
3

¸¶¡
1
3

£ −2 2 1
¤¢

(c) A = 2
√
2

⎛⎝1
7

⎡⎣ 6
3
2

⎤⎦⎞⎠³ 1√
2

£
1 1

¤´
+
√
2

⎛⎝1
7

⎡⎣ 2
−6
3

⎤⎦⎞⎠³ 1√
2

£ −1 1
¤´

(d) A = 3

⎛⎝ 1
11

⎡⎣ 2
−9
6

⎤⎦⎞⎠ £ 0 1
¤
+ 2

⎛⎝ 1
11

⎡⎣ 6
6
7

⎤⎦⎞⎠ £ 1 0
¤

(e) A = 2

⎡⎢⎣ −
2
5

√
2

1
2

√
2

3
10

√
2

⎤⎥⎦³ 1√
2

£
0 −1 1 0

¤´
+ 2

⎡⎢⎣ −
8
15

√
2

−16
√
2

−1330
√
2

⎤⎥⎦³ 1√
2

£ −1 0 0 1
¤´

(4) If A is orthogonal, then AA = I. Therefore,  = 1 is the only eigenvalue for AA, and the
eigenspace is all of R. Therefore, {v1    v} can be any orthonormal basis for R. If we take
{v1    v} to be the standard basis for R, then the corresponding Singular Value Decomposition for
A is AII. If, instead, we use the rows of A, which form an orthonormal basis for R, to represent
{v1    v}, then the corresponding Singular Value Decomposition for A is IIA.

(5) If A = UΣV , then AA = VΣUUΣV = VΣΣV . For  ≤ , let  be the ( ) entry of Σ.
Thus, for  ≤ , AAv = VΣ

ΣVv = VΣ
Σe = VΣ

 (e) = V(
2
 e) = 2v. (Note that in

this proof, “e” has been used to represent both a vector in R and a vector in R.) If   , then
AAv = VΣ

ΣVv = VΣ
Σe = VΣ

 (0) = 0. This proves the claims made in the exercise.

(6) Because A is symmetric, it is orthogonally diagonalizable. Let D = PAP be an orthogonal diago-

nalization for A, with the eigenvalues of A along the main diagonal of D. Thus, A = PDP . By

Exercise 5, the columns of P form an orthonormal basis of eigenvectors for AA, and the correspond-
ing eigenvalues are the squares of the diagonal entries in D. Hence, the singular values of A are the

square roots of these eigenvalues, which are the absolute values of the diagonal entries of D. Since the
diagonal entries of D are the eigenvalues of A, this completes the proof.

(7) Express v ∈ R as v = 1v1 + · · ·+ v, where {v1    v} are right singular vectors for A. Since
{v1    v} is an orthonormal basis for R, kvk =

p
21 + · · ·+ 2. Thus,

kAvk2 = (Av) · (Av)
= (1Av1 + · · ·+ Av) · (1Av1 + · · ·+ Av)

= 21
2
1 + · · ·+ 2

2
 (by parts (2) and (3) of Lemma 9.4)

≤ 21
2
1 + 22

2
1 + · · ·+ 2

2
1

= 21
¡
21 + 22 + · · ·+ 2

¢
= 21 kvk2 

Therefore, kAvk ≤ 1 kvk.
(8) In all parts, assume  represents the number of nonzero singular values.

(a) The th column of V is the right singular vector v, which is a unit eigenvector corresponding to
the eigenvalue  of A

A. But −v is also a unit eigenvector corresponding to the eigenvalue 
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of AA. Thus, if any vector v is replaced with its opposite vector, the set {v1    v} is still
an orthonormal basis for R consisting of eigenvectors for AA. Since the vectors are kept in the
same order, the  do not increase, and thus {v1    v} fulfills all the necessary conditions to be
a set of right singular vectors for A. For  ≤ , the left singular vector u =

1

Av, so when we

change the sign of v, we must adjust U by changing the sign of u as well. For   , changing
the sign of v has no effect on U, but still produces a valid Singular Value Decomposition.

(b) If the eigenspace  for A
A has dimension higher than 1, then the corresponding right singular

vectors can be replaced by any orthonormal basis for , for which there is an infinite number of

choices. Then the associated left singular vectors u1    u must be adjusted accordingly.

(c) Let {v1    v} be a set of right singular vectors for A. By Exercise 5, the th diagonal entry of
Σ must be the square root of an eigenvalue of AA corresponding to the eigenvector v. Since
{v1    v} is an orthonormal basis of eigenvectors, it must correspond to a complete set of
eigenvalues for AA. Also by Exercise 5, all of the vectors v, for   , correspond to the
eigenvalue 0. Hence, all of the square roots of the nonzero eigenvalues of AA must lie on the

diagonal of Σ. Thus, the values that appear on the diagonal ofΣ are uniquely determined. Finally,
the order in which these numbers appear is determined by the requirement for the Singular Value

Decomposition that they appear in non-increasing order.

(d) By definition, for 1 ≤  ≤ , u =
1

Av, and so these left singular vectors are completely

determined by the choices made for v1    v, the first  columns of V.

(e) Columns  + 1 through  of U are the left singular vectors u+1    u, which can be any
orthonormal basis for the orthogonal complement of the column space of A (by parts (2) and (3)

of Theorem 9.5). If = +1, this orthogonal complement to the column space is one-dimensional,
and so there are only two choices for u+1, which are opposites of each other, because u+1 must
be a unit vector. If    + 1, the orthogonal complement to the column space has dimension
greater than 1, and there is an infinite number of choices for its orthonormal basis.

(9) (a) Each right singular vector v, for 1 ≤  ≤ , must be an eigenvector for AA. Performing the
Gram-Schmidt Process on the rows of A, eliminating zero vectors, and normalizing will produce
an orthonormal basis for the row space of A, but there is no guarantee that it will consist of

eigenvectors for AA. For example, if A =

∙
1 1
0 1

¸
, performing the Gram-Schmidt Process on

the rows of A produces the two vectors [1 1] and
£−12  12¤, neither of which is an eigenvector for

AA =

∙
1 1
1 2

¸
.

(b) The right singular vectors v+1    v form an orthonormal basis for the eigenspace 0 of A
A.

Any orthonormal basis for 0 will do. By part (5) of Theorem 9.5, 0 equals the kernel of the
linear transformation  whose matrix with respect to the standard bases is A. A basis for ker()
can be found by using the Kernel Method. That basis can be turned into an orthonormal basis

for ker() by applying the Gram-Schmidt Process and normalizing.

(10) If A = UΣV , as given in the exercise, then A+ = VΣ+U , and so

A+A = VΣ+UUΣV = VΣ+ΣV 

Note that Σ+Σ is an ×  diagonal matrix whose first  diagonal entries equal 1, with the remaining
diagonal entries equal to 0. Note also that since the columns v1    v of V are orthonormal,

Vv = e, for 1 ≤  ≤ .
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(a) If 1 ≤  ≤ , then A+Av = VΣ
+ΣVv = VΣ

+Σe = Ve = v.

(b) If   , then A+Av = VΣ
+ΣVv = VΣ

+Σe = V (0) = 0.

(c) By parts (4) and (5) of Theorem 9.5, {v1    v} is an orthonormal basis for (ker())⊥, and
{v+1    v} is an orthonormal basis for ker(). The orthogonal projection onto (ker())⊥
sends every vector in (ker())⊥ to itself, and every vector orthogonal to (ker())⊥ (that is, every
vector in ker()) to 0. Parts (a) and (b) prove that this is precisely the result obtained by

multiplying A+A by the bases for (ker())⊥ and ker().

(d) Using part (a), if 1 ≤  ≤ , then

AA+Av = A
¡
A+Av

¢
= Av

By part (b), if   ,
AA+Av = A

¡
A+Av

¢
= A(0) = 0

But, if   , v ∈ ker(), and so Av = 0 as well. Hence, AA+A and A represent linear

transformations from R to R that agree on a basis for R. Therefore, they are equal as

matrices.

(e) By part (d), AA+A = A. If A is nonsingular, we can multiply both sides by A−1 (on the left)
to obtain A+A = I. Multiplying by A

−1 again (on the right) yields A+ = A−1.

(11) If A = UΣV , as given in the exercise, then A+ = VΣ+U . Note that since the columns u1    u
of U are orthonormal, Uu = e, for 1 ≤  ≤ .

(a) If 1 ≤  ≤ , then

A+u = VΣ
+Uu = VΣ

+e = V

µ
1


e

¶
=
1


v

Thus,

AA+u = A
¡
A+u

¢
= A

µ
1


v

¶
=
1


Av = u

(b) If   , then
A+u = VΣ

+Uu = VΣ
+e = V (0) = 0

Thus,

AA+u = A
¡
A+u

¢
= A (0) = 0

(c) By Theorem 9.5, {u1    u} is an orthonormal basis for range(), and {u+1    u} is an
orthonormal basis for (range())⊥. The orthogonal projection onto range() sends every vector
in range() to itself, and every vector in (range())⊥ to 0. Parts (a) and (b) prove that this is
precisely the action of multiplying by AA+ by showing how it acts on bases for range() and

(range())
⊥
.

(d) Using part (a), if 1 ≤  ≤ , then

A+AA+u = A
+
¡
AA+u

¢
= A+u

By part (b), if   ,
A+AA+u = A

+
¡
AA+u

¢
= A+(0) = 0

But, if   , A+u = 0 as well. Hence, A
+AA+ and A+ represent linear transformations from

R to R that agree on a basis for R. Therefore, they are equal as matrices.
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(e) Let 1: (ker())
⊥ → range() be given by 1(v) = Av. Parts (2) and (3) of Theorem 9.5 shows

that dim((ker())⊥) =  = dim(range()). Part (a) of this exercise and part (2) of Theorem 9.5

shows that

 : range()→ range() given by  (u) = 1(A
+u)

is the identity linear transformation. Hence, 1 must be onto, and so by Corollary 5.13, 1 is an
isomorphism. Because  is the identity transformation, the inverse of 1 has A

+ as its matrix

with respect to the standard basis. This shows thatA+u is uniquely determined for u ∈ range().
Thus, since the subspace range() depends only on A, not on the Singular Value Decomposition
of A, A+u is uniquely determined on the subspace range(), independently from which Singular

Value Decomposition is used for A to compute A+. Similarly, part (3) of Theorem 9.5 and part

(b) of this exercise shows that A+u = 0 on a basis for (range())
⊥
, and so A+u = 0 for all

vectors in (range())
⊥
– again, independent of which Singular Value Decomposition of A is

used. Thus, A+u is uniquely determined for u ∈ range() and u ∈ (range())⊥, and thus, on a
basis for R which can be chosen from these two subspaces. Thus, A+ is uniquely determined.

(12) By part (a) of Exercise 28 in Section 1.5, trace
³
AA

´
equals the sum of the squares of the entries of

A. If A = UΣV is a Singular Value Decomposition of A, then

AA = UΣVVΣU = UΣΣU 

Using part (c) of Exercise 28 in Section 1.5, we see that

trace
³
AA

´
= trace

³
UΣΣU

´
= trace

³
UUΣΣ

´
= trace

³
ΣΣ

´
= 21 + · · ·+ 2

(13) Let V1 be the ×  matrix whose columns are

v    v v1    v−1v+1    v

in that order. Let U1 be the × matrix whose columns are

u    u u1    u−1u+1    u

in that order. (The notation used here assumes that   1   , and   , but the construction
of V1 and U1 can be adjusted in an obvious way if  = 1,  = , or  = .) Let Σ1 be the diagonal
×  matrix with       in the first  − + 1 diagonal entries and zero on the remaining diagonal
entries. We claim that U1Σ1V


1 is a Singular Value Decomposition for A . To show this, because

U1, Σ1, and V1 are of the proper form, it is enough to show that A = U1Σ1V

1 .

If  ≤  ≤ , then
Av =

¡
uv


 + · · ·+ uv




¢
v = u

and ¡
U1Σ1V


1

¢
v = U1Σ1e−+1 = U1e−+1 = u

If    or   , then
Av =

¡
uv


 + · · ·+ uv




¢
v = 0

If   , ¡
U1Σ1V


1

¢
v = U1Σ1e+−+1 = U10 = 0

and if   , ¡
U1Σ1V


1

¢
v = U1Σ1e = U10 = 0
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Hence, Av =
¡
U1Σ1V


1

¢
v for every , and so A = U1Σ1V


1 .

Finally, since we know a Singular Value Decomposition for A, we know that       are the
singular values for A , and by part (1) of Theorem 9.5, rank(A) =  − + 1.

(14) (a) A =

⎡⎢⎢⎢⎢⎣
40 −5 15 −15 5 −30
18 3 12 12 −06 18
50 5 45 −45 −5 −60

−24 −15 09 09 33 −24
425 −25 60 −60 25 −375

⎤⎥⎥⎥⎥⎦

(b) A1 =

⎡⎢⎢⎢⎢⎣
25 0 25 −25 0 −25
0 0 0 0 0 0
50 0 50 −50 0 −50
0 0 0 0 0 0
50 0 50 −50 0 −50

⎤⎥⎥⎥⎥⎦  A2 =

⎡⎢⎢⎢⎢⎣
35 0 15 −15 0 −35
0 0 0 0 0 0
55 0 45 −45 0 −55
0 0 0 0 0 0
40 0 60 −60 0 −40

⎤⎥⎥⎥⎥⎦ 

A3 =

⎡⎢⎢⎢⎢⎣
40 −5 15 −15 5 −30
0 0 0 0 0 0
50 5 45 −45 −5 −60
0 0 0 0 0 0

425 −25 60 −60 25 −375

⎤⎥⎥⎥⎥⎦  A4 =

⎡⎢⎢⎢⎢⎣
40 −5 15 −15 5 −30
18 18 0 0 −18 18
50 5 45 −45 −5 −60

−24 −24 0 0 24 −24
425 −25 60 −60 25 −375

⎤⎥⎥⎥⎥⎦
(c) (A) ≈ 15385; (A−A1)(A) ≈ 02223; (A−A2)(A) ≈ 01068; (A−A3)(A) ≈

00436; (A−A4)(A) ≈ 00195
(d) The method described in the text for the compression of digital images takes the matrix describing

the image and alters it by zeroing out some of the lower singular values. This exercise illustrates

how the matrices A that use only the first  singular values for a matrix A get closer to approx-

imating A as  increases. The matrix for a digital image is, of course, much larger than the 5× 6
matrix considered in this exercise. Also, you can frequently get a very good approximation of the

image using a small enough number of singular values so that less data needs to be saved. Using

the outer product form of the Singular Value Decomposition, only the singular values and the

relevant singular vectors are needed to construct each A, so not all  entries of A need to be

kept in storage.

(15) These are the steps to process a digital image in MATLAB, as described in the textbook:

— Enter the command: edit

— Use the text editor to enter the following MATLAB program:
function totalmat = RevisedPic(U, S, V, k)

T = V’

totalmat = 0;

for i = 1:k

totalmat = totalmat + U(:,i)*T(i,:)*S(i,i);

end

— Save this program under the name RevisedPic.m

— Enter the command: A = imread(’picturefilename’)
where “picturefilename” is the name of the file containing the picture, including its file

extension (preferably .tif or .jpg).

— Enter the command: ndims(A)
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— If the response is “3”, then MATLAB is treating your picture as if it is in color, even if it appears
to be black-and-white.

If this is the case, enter the command: B = A(:,:,1);

(to use only the first color of the three used for color pictures)

followed by the command: C = double(B);

(to convert the integer format to decimal)

Otherwise, just enter: C = double(A);

— Enter the command: [U,S,V] = svd(C);
(This computes the Singular Value Decomposition of C.)

— Enter the command: W = RevisedPic(U,S,V,100);

(Here, the number “100” represents the number of singular values you are using.

You may change this to any value you like.)

— Enter the command: R = uint8(round(W));
(This converts the decimal output to the correct integer format.)

— Enter the command: imwrite(R,’Revised100.tif’,’tif’)
(This will write the revised picture out to a file named “Revised100.tif”.

Of course, you can use any file name you would like, or use the .jpg extension instead of .tif.)

— You may repeat the steps:
W=RevisedPic(U,S,V,k);

R = uint8(round(W));

imwrite(R,’Revisedk.tif’,’tif’)

with different values for k to see how the picture gets more refined as more singular values

are used.

— Output can be viewed using any appropriate software you may have on your computer for viewing
such files.

(16) (a) F

(b) T

(c) F

(d) F

(e) F

(f) T

(g) F

(h) T

(i) F

(j) T

(k) T
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Appendices

Appendix B

(1) (a) Not a function; undefined for   1

(b) Function; range = { ∈ R | ≥ 0}; image of 2 = 1; pre-images of 2 = {−3 5}
(c) Not a function; two values are assigned to each  6= 1
(d) Function; range = {−4−2 0 2 4   }; image of 2 = −2; pre-images of 2 = {6 7}
(e) Not a function ( undefined at  = 

2 )

(f) Function; range = all prime numbers; image of 2 = 2; pre-image of 2 = {0 1 2}
(g) Not a function; 2 is assigned to two different values (−1 and 6)

(2) (a) {−15−10−5 5 10 15}
(b) {−9−8−7−6−5 5 6 7 8 9}
(c) {   −8−6−4−2 0 2 4 6 8   }

(3) ( ◦ )() = 1
4

√
752 − 30+ 35; ( ◦ )() = 1

4(5
√
32 + 2− 1)

(4) ( ◦ )
µ∙




¸¶
=

∙ −8 24
2 8

¸ ∙



¸
; ( ◦ )

µ∙



¸¶
=

∙ −12 8
−4 12

¸ ∙



¸
(5) (a) Let  : →  be given by (1) = 4, (2) = 5, (3) = 6 and : →  be given by (4) =

(7) = 8, (5) = 9, (6) = 10. Then  ◦  is onto, but −1({7}) is empty, so  is not onto.
(b) Use the example from part (a). Note that  ◦  is one-to-one, but (4) = (7), so  is not

one-to-one.

(6) The function  is onto because, given any real number , the ×  diagonal matrix A with 11 = 
and  = 1 for 2 ≤  ≤  has determinant . Also,  is not one-to-one because for every  6= 0, any
other matrix obtained by performing a Type (II) operation on A (for example,

 1 ←  2  +  1 ) also has determinant .

(7) The function  is not onto because only symmetric 3 × 3 matrices are in the range of  ((A) =
A+A = (A +A) = ((A)) ). Also,  is not one-to-one because if A is any nonsymmetric 3× 3
matrix, then (A) = A+A = A + (A ) = (A ), but A 6= A .

(8)  is not one-to-one, because (+ 1) = (+ 3) = 1;  is not onto, because there is no pre-image for
. For  ≥ 3 the pre-image of P2 is P3.

(9) If (1) = (2), then 3
3
1−5 = 332−5 =⇒ 331 = 3

3
2 =⇒ 31 = 32 =⇒ 1 = 2. So  is one-to-one.

Also, if  ∈ R, then 
³¡

+5
3

¢ 1
3

´
= , so  is onto. Inverse of  = −1() =

¡
+5
3

¢ 1
3 .

(10) The function  is one-to-one, because

(A1) = (A2)

=⇒ B−1A1B = B
−1A2B

=⇒ B(B−1A1B)B
−1 = B(B−1A2B)B

−1

=⇒ (BB−1)A1(BB
−1) = (BB−1)A2(BB

−1)
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=⇒ IA1I = IA2I

=⇒ A1 = A2.

The function  is onto, because for any C ∈M, (BCB
−1) = B−1(BCB−1)B = C. Also, −1(A)

= BAB−1.

(11) (a) Let  ∈ . Since  ◦  is onto, there is some  ∈  such that ( ◦ )() = . Then (()) = .
Let () = . Then () = , so  is onto. (Exercise 5(a) shows that  is not necessarily onto.)

(b) Let 1 2 ∈  such that (1) = (2). Then ((1)) = ((2)), implying ( ◦ )(1) =
( ◦ )(2). But since  ◦  is one-to-one, 1 = 2. Hence,  is one-to-one. (Exercise 5(b) shows
that  is not necessarily one-to-one.)

(12) (a) F (b) T (c) F (d) F (e) F (f) F (g) F (h) F

Appendix C

(1) (a) 11− 

(b) 24− 32
(c) 20− 12

(d) 18− 9
(e) 9 + 19

(f) 2 + 42

(g) −17− 19
(h) 5− 4
(i) 9 + 2

(j) −6
(k) 16 + 22

(l)
√
73

(m)
√
53

(n) 5

(2) (a) 3
20 +

1
20  (b) 3

25 − 4
25  (c) − 4

17 − 1
17  (d) − 5

34 +
3
34 

(3) In all parts, let 1 = 1 + 1 and 2 = 2 + 2.

(a) Part (1):

1 + 2 = (1 + 1) + (2 + 2)

= (1 + 2) + (1 + 2)

= (1 + 2)− (1 + 2)

= (1 − 1) + (2 − 2)

= 1 + 2

Part (2):

(12) = (1 + 1)(2 + 2)

= (12 − 12) + (12 + 21)

= (12 − 12)− (12 + 21)

= (12 − (−1)(−2)) + (1(−2) + 2(−1))
= (1 − 1)(2 − 2)

= 1 2

(b) If 1 6= 0, then 1
1
exists. Hence, 1

1
(12) =

1
1
(0), implying 2 = 0.

(c) Part (4): 1 = 1 ⇐⇒ 1 + 1 = 1 − 1 ⇐⇒ 1 = −1 ⇐⇒ 21 = 0 ⇐⇒ 1 = 0 ⇐⇒ 1 is
real.

Part (5): 1 = −1 ⇐⇒ 1 + 1 = −(1 − 1) ⇐⇒ 1 + 1 = −1 + 1 ⇐⇒ 1 = −1 ⇐⇒
21 = 0 ⇐⇒ 1 = 0 ⇐⇒ 1 is pure imaginary.
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(4) In all parts, let 1 = 1 + 1 and 2 = 2 + 2. Also note that 11 = |1|2 because
11 = (1 + 1)(1 − 1) = 21 + 21.

(a) |12|2 = (12)(12) (by the above) = (12) (1 2) (by part (2) of Theorem C.1)

= (11) (22) = |1|2|2|2 = (|1| |2|)2. Now take square roots.
(b) We have ¯̄̄̄

1

1

¯̄̄̄
=

¯̄̄̄
1
|1|2

¯̄̄̄
(by the boxed equation just before Theorem C.1 in Appendix C)

=

¯̄̄̄
1

21 + 21
− 1

21 + 21


¯̄̄̄

=

sµ
1

21 + 21

¶2
+

µ
1

21 + 21

¶2
=

sµ
1

21 + 21

¶2
(21 + 21)

=
1p

21 + 21
=

1

|1| 

(c) We have µ
1
2

¶
=

µ
12
22

¶
=

µ
12
|2|2

¶
=

µ
(1 + 1)(2 − 2)

22 + 22

¶
=

(12 − 12)

22 + 22
+
(12 − 12)

22 + 22
 =

(12 − 12)

22 + 22
− (12 − 12)

22 + 22


=
(12 − 12)

22 + 22
+
(−12 + 12)

22 + 22
 =

(1 − 1)(2 + 2)

22 + 22

=
12
22

=
1
2


(5) (a) F (b) F (c) T (d) T (e) F

Appendix D

(1) (a) (III): h2i ↔ h3i; inverse operation is (III): h2i ↔ h3i.
The matrix is its own inverse.

(b) (I): h2i ← −2 h2i; inverse operation is (I): h2i ← −12 h2i.

The inverse matrix is

⎡⎣ 1 0 0
0 − 12 0
0 0 1

⎤⎦.
(c) (II): h3i ← −4 h1i+ h3i; inverse operation is (II): h3i ← 4 h1i+ h3i.

The inverse matrix is

⎡⎣ 1 0 0
0 1 0
4 0 1

⎤⎦.
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(d) (I): h2i ← 6 h2i; inverse operation is (I): h2i ← 1
6 h2i.

The inverse matrix is

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1
6 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦.
(e) (II): h3i ← −2 h4i+ h3i; inverse operation is (II): h3i ← 2 h4i+ h3i.

The inverse matrix is

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 1

⎤⎥⎥⎦.
(f) (III): h1i↔ h4i; inverse operation is (III): h1i↔ h4i.

The matrix is its own inverse.

(2) (a)

∙
4 9
3 7

¸
=

∙
4 0
0 1

¸ ∙
1 0
3 1

¸ ∙
1 0
0 1

4

¸ ∙
1 9

4
0 1

¸ ∙
1 0
0 1

¸
(b) Not possible, since the matrix is singular.

(c) The product of the following matrices in the order listed:⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦,
⎡⎢⎢⎣
−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦,
⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
3 0 0 1

⎤⎥⎥⎦,
⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦,
⎡⎢⎢⎣
1 0 0 0
0 6 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦,
⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1

⎤⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 −53 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
1 0 0 2

3

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 −16
0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
(3) If A and B are row equivalent, then B = E · · ·E2E1A for some elementary matrices E1    E, by

Theorem D.3. Hence B = PA, with P = E · · ·E1. By Corollary D.4, P is nonsingular.
Conversely, if B = PA for a nonsingular matrix P, then by Corollary D.4, P = E · · ·E1 for some
elementary matrices E1    E. Hence A and B are row equivalent by Theorem D.3.

(4) Follow the hint in the textbook. Because U is upper triangular with all nonzero diagonal entries, when

row reducing U to I, no Type (III) row operations are needed, and all Type (II) row operations used
will be of the form hi← hi+hi, where    (the pivots are all below the targets). Thus, none of the
Type (II) row operations change a diagonal entry, since  = 0 when   . Hence, only Type (I) row
operations make changes on the main diagonal, and no main diagonal entry will be made zero. Also,

the elementary matrices for the Type (II) row operations mentioned are upper triangular: nonzero

on the main diagonal, and perhaps in the ( ) entry, with   . Since the elementary matrices for
Type (I) row operations are also upper triangular, we see that U−1, which is the product of all these
elementary matrices, is the product of upper triangular matrices. Therefore, it is also upper triangular.

(5) For Type (I) and (III) operations, E = E . If E corresponds to a Type (II) operation hi←  hi+ hi,
then E corresponds to hi ←  hi+ hi, so E is also an elementary matrix.
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(6) Note that (AF ) = FA . Now, multiplying by F on the left performs a row operation onA . Taking

the transpose again shows that this is a corresponding column operation on A. The first equation show
that this is the same as multiplying by F on the right side of A.

(7) A is nonsingular iff rank(A) =  (by Theorem 2.15) iff A is row equivalent to I (by the definition of
rank) iff A = E · · ·E1I = E · · ·E1 for some elementary matrices E1    E (by Theorem D.3).

(8) AX = O has a nontrivial solution iff rank(A)   (by Theorem 2.7) iff A is singular (by Theorem

2.15) iff A cannot be expressed as a product of elementary matrices (by Corollary D.4).

(9) (a) By Theorem D.3, E · · ·E2E1A is row equivalent toA, so both have the same reduced row echelon
form, and thus have the same rank (by definition of rank).

(b) The reduced row echelon form of A cannot have more nonzero rows than A.

(c) If A has  rows of zeroes, then rank(A) =  − . But AB has at least  rows of zeroes, so
rank(AB) ≤ − .

(d) Let A = E · · ·E1D, where D is in reduced row echelon form. Then

rank(AB) = rank(E · · ·E1DB)
= rank(DB) (by repeated use of part (a))

≤ rank(D) (by part (c))

= rank(A) (by definition of rank)

(e) Exercise 18 in Section 2.3 proves the same results as those in parts (a) through (d), except that it

is phrased in terms of the underlying row operations rather than in terms of elementary matrices.

(10) (a) T (b) F (c) F (d) T (e) T
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Chapter Tests 
 
 We include here three sample tests for each of 
Chapters 1 through 7.  Answer keys for all tests follow 
the test collection itself.  The answer keys also include 
optional hints that an instructor might want to divulge for 
some of the more complicated or time-consuming 
problems. 
 
 Instructors who are supervising independent study 
students can use these tests to measure their students’ 
progress at regular intervals.  However, in a typical 
classroom situation, we do not expect instructors to give 
a test immediately after every chapter is covered, since 
that would amount to six or seven tests throughout the 
semester.  Rather, we envision these tests as being used 
as a test bank; that is, a supply of questions, or ideas for 
questions, to assist instructors in composing their own 
tests. 
 
 Note that most of the tests, as printed here, would 
take a student much more than an hour to complete, even 
with the use of software on a computer and/or calculator.  
Hence, we expect instructors to choose appropriate 
subsets of these tests to fulfill their classroom needs. 



Andrilli/Hecker - Chapter Tests Chapter 1 - Version A

Test for Chapter 1 – Version A
(1) A rower can propel a boat 5 km/hr on a calm river. If the rower rows southeastward against a current

of 2 km/hr northward, what is the net velocity of the boat? Also, what is the net speed of the boat?

(2) Use a calculator to find the angle  (to the nearest degree) between the vectors x = [3−2 5] and
y = [−4 1−1].

(3) Prove that, for any vectors xy ∈ R,

kx+ yk2 + kx− yk2 = 2(kxk2 + kyk2)

(4) Let x = [−3 4 2] represent the force on an object in a three-dimensional coordinate system, and let
a = [5−1 3] be a given vector. Use projax to decompose x into two component forces in directions
parallel and orthogonal to a. Verify that your answer is correct.

(5) State the contrapositive, converse, and inverse of the following statement:

If kx+ yk 6= kxk+ kyk, then x is not parallel to y.
Which one of these is logically equivalent to the original statement?

(6) Give the negation of the following statement:

kxk = kyk or (x− y) · (x+ y) 6= 0.
(7) Use a proof by induction to show that if the ×  matrices A1    A are diagonal, then

P
=1A is

diagonal.

(8) Decompose A =

⎡⎣ −4 3 −2
6 −1 7
2 4 −3

⎤⎦ into the sum of S and V, where S is a symmetric matrix and V

is a skew-symmetric matrix.

(9) Given the following information about the employees of a certain TV network, calculate the total

amount of salaries and perks paid out by the network for each TV show:

TV Show 1

TV Show 2

TV Show 3

TV Show 4

Actors Writers Directors⎡⎢⎢⎣
12 4 2
10 2 3
6 3 5
9 4 1

⎤⎥⎥⎦

Actor

Writer

Director

Salary Perks⎡⎣ $50000 $40000
$60000 $30000
$80000 $25000

⎤⎦
(10) Let A and B be symmetric  ×  matrices. Prove that AB is symmetric if and only if A and B

commute.
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Test for Chapter 1 – Version B
(1) Three people are competing in a three-way tug-of-war, using three ropes all attached to a brass ring.

Player A is pulling due north with a force of 100 lbs. Player B is pulling due east, and Player C is
pulling at an angle of 30 degrees off due south, toward the west side. The ring is not moving. At what
magnitude of force are Players B and C pulling?

(2) Use a calculator to find the angle  (to the nearest degree) between the vectors x = [2−5] and
y = [−6 5].

(3) Prove that, for any vectors a and b in R with a 6= 0, the vector b− projab is orthogonal to a.
(4) Let x = [5−2−4] represent the force on an object in a three-dimensional coordinate system, and let

a = [−2 3−3] be a given vector. Use projax to decompose x into two component forces in directions
parallel and orthogonal to a. Verify that your answer is correct.

(5) State the contrapositive, converse, and inverse of the following statement:

If kxk2 + 2(x · y)  0, then kx+ yk  kyk.
Which one of these is logically equivalent to the original statement?

(6) Give the negation of the following statement:

There is a unit vector x in R3 such that x is parallel to [−2 3 1].
(7) Use a proof by induction to show that if the  ×  matrices A1    A are lower triangular, thenP

=1A is lower triangular.

(8) Decompose A =

⎡⎣ 5 8 −2
−6 3 −3
9 4 1

⎤⎦ into the sum of S and V, where S is a symmetric matrix and V is

a skew-symmetric matrix.

(9) Given the following information about the amount of foods (in ounces) eaten by three cats each week,

and the percentage of certain nutrients in each food type, find the total intake of each type of nutrient

for each cat each week:

Cat 1

Cat 2

Cat 3

Food A Food B Food C Food D⎡⎣ 9 4 7 8
6 3 10 4
4 6 9 7

⎤⎦

Food A

Food B

Food C

Food D

Nutrient 1 Nutrient 2 Nutrient 3⎡⎢⎢⎣
5% 4% 8%
2% 3% 2%
9% 2% 6%
6% 0% 8%

⎤⎥⎥⎦
(10) Prove that if A and B are both ×  skew-symmetric matrices, then (AB) = BA.

Copyright c° 2016 Elsevier Ltd. All rights reserved. 192



Andrilli/Hecker - Chapter Tests Chapter 1 - Version C

Test for Chapter 1 – Version C
(1) Using Newton’s Second Law of Motion, find the acceleration vector on a 10 kg object in a three-

dimensional coordinate system when the following forces are simultaneously applied:

• a force of 6 newtons in the direction of the vector [−4 0 5],
• a force of 4 newtons in the direction of the vector [2 3−6], and
• a force of 8 newtons in the direction of the vector [−1 4−2].

(2) Use a calculator to find the angle  (to the nearest degree) between the vectors x = [−2 4−3] and
y = [8−3−2].

(3) Without using the Triangle Inequality, prove that, for any vectors xy ∈ R,

kx+ yk2 ≤ (kxk+ kyk)2.

(Hint: Use the Cauchy-Schwarz Inequality.)

(4) Let x = [−4 2−7] represent the force on an object in a three-dimensional coordinate system, and let
a = [6−5 1] be a given vector. Use projax to decompose x into two component forces in directions
parallel and orthogonal to a. Verify that your answer is correct.

(5) Use a proof by contrapositive to prove the following statement:

If y 6= projxy, then y 6= x for all  ∈ R.
(6) Give the negation of the following statement:

For every vector x ∈ R, there is some y ∈ R such that kyk  kxk.

(7) Decompose A =

⎡⎣ −3 6 3
7 5 2
−2 4 −4

⎤⎦ into the sum of S and V, where S is a symmetric matrix and V is

a skew-symmetric matrix.

(8) Given A =

⎡⎣ −4 3 1 5
6 −9 2 −4
8 7 −1 2

⎤⎦ and B =

⎡⎢⎢⎣
6 4 −2
−1 −3 4
2 3 9
−2 5 −8

⎤⎥⎥⎦, calculate, if possible, the third row
of AB and the second column of BA.

(9) Use a proof by induction to show that if the × matrices A1    A are diagonal, then the product

A1 · · ·A is diagonal.

(10) Prove that if A is a skew-symmetric matrix, then A3 is also skew-symmetric.
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Test for Chapter 2 – Version A
(1) Use Gaussian Elimination to find the quadratic equation  = 2+ +  that goes through the points

(3 7), (−2 12), and (−4 56).
(2) Use Gaussian Elimination or the Gauss-Jordan Method to solve the following linear system. Give the

full solution set. ⎧⎨⎩ 51 + 102 + 23 + 144 + 25 = −13
−71 − 142 − 23 − 224 + 45 = 47
31 + 62 + 3 + 94 = −13

(3) Solve the following homogeneous system using the Gauss-Jordan Method. Give the full solution set,

expressing the vectors in it as linear combinations of particular solutions.⎧⎨⎩ 21 + 52 − 163 − 94 = 0
1 + 2 − 23 − 24 = 0

−31 + 22 − 143 − 24 = 0

(4) Find the rank of A =

⎡⎣ 2 −1 8
−2 2 −10
−5 3 −21

⎤⎦. Is A row equivalent to I3?

(5) Solve the following two systems simultaneously:⎧⎨⎩ 21 + 52 + 113 = 8
21 + 72 + 143 = 6
31 + 112 + 223 = 9

and

⎧⎨⎩ 21 + 52 + 113 = 25
21 + 72 + 143 = 30
31 + 112 + 223 = 47



(6) Let A be a × matrix, B be an × matrix, and let  be the Type (I) row operation  : hi← hi,
for some scalar  and some  with 1 ≤  ≤ . Prove that (AB) = (A)B. (Since you are proving
part of Theorem 2.1 in the textbook, you may not use that theorem in your proof. However, you may

use the fact from Chapter 1 that (th row of (AB)) = (th row of A)B.)

(7) Determine whether or not [−15 10−23] is in the row space of

A =

⎡⎣ 5 −4 8
2 1 2
−1 −5 1

⎤⎦ 

(8) Find the inverse of A =

⎡⎣ 3 −1 2
8 −9 3
4 −3 2

⎤⎦.
(9) Without using row reduction, find the inverse of the matrix A =

∙
6 −8
5 −9

¸
.

(10) Let A and B be nonsingular  ×  matrices. Prove that A and B commute if and only if (AB)2 =
A2B2.
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Test for Chapter 2 – Version B
(1) Use Gaussian Elimination to find the circle 2 + 2 +  +  +  = 0 that goes through the points

(5−1), (6−2), and (1−7).
(2) Use Gaussian Elimination or the Gauss-Jordan Method to solve the following linear system. Give the

full solution set.⎧⎨⎩ 31 − 22 + 193 + 114 + 95 − 276 = 31
−21 + 2 − 123 − 74 − 85 + 216 = −22
21 − 22 + 143 + 84 + 35 − 146 = 19

(3) Solve the following homogeneous system using the Gauss-Jordan Method. Give the full solution set,

expressing the vectors in it as linear combinations of particular solutions.⎧⎨⎩ −31 + 92 + 83 + 44 = 0
51 − 152 + 3 + 224 = 0
41 − 122 + 33 + 224 = 0

(4) Find the rank of A =

⎡⎣ 3 −9 7
1 −2 2

−15 41 −34

⎤⎦. Is A row equivalent to I3?

(5) Solve the following two systems simultaneously:⎧⎨⎩ 41 − 32 − 3 = −13
−41 − 22 − 33 = 14
51 − 2 + 3 = −17

and

⎧⎨⎩ 41 − 32 − 3 = 13
−41 − 22 − 33 = −16
51 − 2 + 3 = 18



(6) Let A be a ×  matrix, B be an ×  matrix, and let  be the Type (II) row operation

 : hi← hi+ hi, for some scalar  and some   with 1 ≤   ≤ . Prove that (AB) = (A)B.
(Since you are proving part of Theorem 2.1 in the textbook, you may not use that theorem in your

proof. However, you may use the fact from Chapter 1 that (th row of (AB)) = (th row of A)B.)

(7) Determine whether [−2 3 1] is in the row space of A =

⎡⎣ 2 −1 −5
−4 1 9
−1 1 3

⎤⎦.
(8) Find the inverse of A =

⎡⎣ 3 3 1
2 1 0
10 3 −1

⎤⎦.
(9) Without using row reduction, solve the linear system⎧⎨⎩ −51 + 92 + 43 = −91

71 − 142 − 103 = 146
−71 + 122 + 43 = −120

 where

⎡⎣ 32 6 −17
21 4 −11
−7 −32 7

2

⎤⎦
is the inverse of the coefficient matrix

(10) (a) Prove that if A is a nonsingular matrix and  6= 0, then (A)−1 = (1

)A−1.

(b) Use the result from part (a) to prove that if A is a nonsingular skew-symmetric matrix, then A−1

is also skew-symmetric.
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Test for Chapter 2 – Version C
(1) Use Gaussian Elimination to find the values of , , , and  that solve the following partial fractions

problem:
52 − 18+ 1
(− 2)2(+ 3) =



− 2 +
+ 

(− 2)2 +


+ 3


(2) Use Gaussian Elimination or the Gauss-Jordan Method to solve the following linear system. Give the

full solution set.⎧⎪⎪⎨⎪⎪⎩
91 + 362 − 113 + 34 + 345 − 156 = −6

−101 − 402 + 93 − 24 − 385 − 96 = −89
41 + 162 − 43 + 4 + 155 = 22
111 + 442 − 123 + 24 + 475 + 36 = 77

(3) Solve the following homogeneous system using the Gauss-Jordan Method. Give the full solution set,

expressing the vectors in it as linear combinations of particular solutions.⎧⎨⎩ −21 − 22 + 143 + 4 − 75 = 0
61 + 92 − 273 − 24 + 215 = 0
−31 − 42 + 163 + 4 − 105 = 0

(4) Find the rank of A =

⎡⎢⎢⎣
5 6 −2 23
2 4 −1 13
−6 −9 1 −27
4 6 −1 19

⎤⎥⎥⎦. Is A row equivalent to I4?

(5) Find the reduced row echelon form matrix B for the matrix

A =

⎡⎣ 2 2 3
−3 2 1
5 1 3

⎤⎦ 
and list a series of row operations that converts B to A.

(6) Determine whether [25 12−19] is a linear combination of a = [7 3 5], b = [3 3 4], and c = [3 2 3].

(7) Find the inverse of A =

⎡⎢⎢⎣
−2 0 1 −1
4 −1 −1 3
3 1 −1 −2
3 7 −2 −16

⎤⎥⎥⎦.
(8) Without using row reduction, solve the linear system⎧⎨⎩ −41 + 22 − 53 = −3

−41 + 2 − 33 = −7
61 + 32 − 43 = 26

 where

⎡⎣ 5
2 −72 −12−17 23 4
−9 12 2

⎤⎦
is the inverse of the coefficient matrix.

(9) Prove by induction that if A1    A are nonsingular ×  matrices, then

(A1 · · ·A)
−1 = (A)

−1 · · · (A1)
−1.

(10) Suppose that A and B are ×  matrices, and that 1      are row operations such that

1(2(· · · ((AB)) · · · )) = I. Prove that 1(2(· · · ((A)) · · · )) = B−1.
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Test for Chapter 3 – Version A
(1) Calculate the area of the parallelogram determined by the vectors x = [−2 5] and y = [6−3].
(2) If A is a 5× 5 matrix with determinant 4, what is |6A| ? Why?

(3) Calculate the determinant of A =

⎡⎣ 5 −6 −3
4 6 1
5 10 2

⎤⎦ by row reducing A to upper triangular form.

(4) Prove that if A and B are ×  matrices, then |AB | = |AB|.
(5) Use cofactor expansion along any row or column to find the determinant of

A =

⎡⎢⎢⎣
3 0 −4 6
4 −2 5 2
−3 3 0 −5
7 0 0 −8

⎤⎥⎥⎦ 
Be sure to use cofactor expansion to find any 3× 3 determinants needed as well.

(6) Prove that if A and B−1 are similar ×  matrices, then |A||B| = 1.
(7) Use Cramer’s Rule to solve the following system:⎧⎨⎩ 51 + 2 + 23 = 3

−81 + 22 − 3 = 17
61 − 2 + 3 = −10



(8) Let A =

⎡⎣ 0 1 −1
1 0 1
−1 −1 0

⎤⎦  Find a nonsingular matrix P having all integer entries, and a diagonal

matrix D such that D = P−1AP.

(9) Prove that an ×  matrix A is singular if and only if  = 0 is an eigenvalue for A.

(10) Suppose that 1 = 2 is an eigenvalue for an  ×  matrix A. Prove that 2 = 8 is an eigenvalue for
A3.
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Test for Chapter 3 – Version B
(1) Calculate the volume of the parallelepiped determined by the vectors x = [2 7−1], y = [4 2−3], and

z = [−5 6 2].
(2) If A is a 4× 4 matrix with determinant 7, what is |5A| ? Why?
(3) Calculate the determinant of

A =

⎡⎢⎢⎣
2 −4 −12 15
6 11 25 −32
4 13 32 −41
3 −16 −45 57

⎤⎥⎥⎦
by row reducing A to upper triangular form.

(4) Prove that if A and B are  ×  matrices with AB = −BA, and  is odd, then either A or B is

singular.

(5) Use cofactor expansion along any row or column to find the determinant of

A =

⎡⎢⎢⎣
2 1 5 2
4 3 −1 0
−6 8 0 0
1 7 0 −3

⎤⎥⎥⎦ 
Be sure to use cofactor expansion to find any 3× 3 determinants needed as well.

(6) Suppose A is an ×  matrix,  is the Type (II) row operation hi←  hi+ hi, and  is the Type

(II) column operation hcol. i←  hcol. i+ hcol. i. Prove that ( (A)) = 
¡
A
¢
by showing that

the th row of ( (A))

= th row of 

¡
A
¢
, first when  6= , and then when  = .

(7) Use Cramer’s Rule to solve the following system:⎧⎨⎩ 41 − 42 − 33 = −10
61 − 52 − 103 = −28
−21 + 22 + 23 = 6



(8) Let A =

⎡⎣ 2 1 −3
1 2 −3
1 1 −2

⎤⎦  Find a nonsingular matrix P having all integer entries, and a diagonal

matrix D such that D = P−1AP.

(9) Consider the matrix A =

⎡⎢⎢⎣
2 1 0 0
0 2 1 0
0 0 2 1
0 0 0 2

⎤⎥⎥⎦.
(a) Show that A has only one eigenvalue. What is it?

(b) Show that Step 3 of the Diagonalization Method of Section 3.4 produces only one fundamental

eigenvector for A.
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(10) Consider the matrix A =

"
3
5 − 45
4
5

3
5

#
. It can be shown that, for every nonzero vector X, the vectors

X and (AX) form an angle with each other measuring  = arccos( 35) ≈ 53◦. (You may assume this
fact.) Show why A is not diagonalizable, first from an algebraic perspective, and then from a geometric

perspective.
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Test for Chapter 3 – Version C
(1) Calculate the volume of the parallelepiped determined by the vectors x = [5−2 3], y = [−3 1−2],

and z = [4−5 1].
(2) Calculate the determinant of

A =

⎡⎢⎢⎣
4 3 1 2
1 9 0 2
8 3 2 −2
4 3 1 1

⎤⎥⎥⎦
by row reducing A to upper triangular form.

(3) Use a cofactor expansion along any row or column to find the determinant of

A =

⎡⎢⎢⎢⎢⎣
0 0 0 0 5
0 12 0 9 4
0 0 0 8 3
0 14 11 7 2
15 13 10 6 1

⎤⎥⎥⎥⎥⎦ 
Be sure to use cofactor expansion on each 4× 4, 3× 3, and 2× 2 determinant you need to calculate as
well.

(4) Prove that if A is an orthogonal matrix (that is, A = A−1), then |A| = ±1.
(5) Suppose that A is an ×  matrix, B is an ×  matrix, and  is a Type (I), (II), or (III) column

operation. Prove that (AB) = A((B)). (Hint: You can assume the fact that if  is the row
operation corresponding to the column operation , then, for any matrix D, ((D)) =

¡

¡
D

¢¢
.)

(6) Perform (only) the Base Step in the proof by induction of the following statement, which is part of

Theorem 3.3: Let A be an  ×  matrix, with  ≥ 2, and let  be the Type (II) row operation

hi← hi+ hi. Then |A| = |(A)|.
(7) Use Cramer’s Rule to solve the following system:⎧⎨⎩ −91 + 62 + 23 = −41

51 − 32 − 3 = 22
−81 + 62 + 3 = −40



(8) Use diagonalization to calculate A9 if A =

∙
5 −6
3 −4

¸
.

(9) Let A =

⎡⎣ −4 6 −6
0 2 0
3 −3 5

⎤⎦  Find a nonsingular matrix P having all integer entries, and a diagonal

matrix D such that D = P−1AP.

(10) Let  be an eigenvalue for an ×  matrix A having algebraic multiplicity . Prove that  is also an
eigenvalue with algebraic multiplicity  for A .
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Test for Chapter 4 – Version A
(1) Prove that R is a vector space using the operations ⊕ and ¯ given by x⊕ y = (5 + 5)15

and ¯ x = 15.

(2) Prove that the set of ×  skew-symmetric matrices is a subspace ofM.

(3) Prove that the set {[5−2−1] [2−1−1] [8−2 1]} spans R3.
(4) Find a simplified general form for all the vectors in span() in P3 if

 = {43 − 202 − − 11 63 − 302 − 2− 18 −53 + 252 + 2+ 16}

(5) Prove that the set {[2−1−11−4] [9−1 2 2] [4 0 21 8] [−2 1 8 3]} in R4 is linearly independent.
(6) Determine whether ½∙

4 13
−19 1

¸


∙
3 −15
19 −1

¸


∙
2 −12
15 −1

¸


∙ −4 7
−5 2

¸¾
is a basis forM22.

(7) Find a subset of

 = {33 − 22 + 3− 1 −63 + 42 − 6+ 2 3 − 32 + 2− 1
73 + 5− 1 113 − 122 + 13+ 3}

in P3 that is a basis for span(). What is dim(span())?
(8) Prove that the columns of a nonsingular ×  matrix A span R.

(9) Consider the matrix A =

⎡⎣ 5 −6 5
1 0 0
−2 4 −3

⎤⎦, which has  = 2 as an eigenvalue. Find a basis  for R3

that contains a basis for the eigenspace 2 for A.

(10) (a) Find the transition matrix from -coordinates to -coordinates if

 = ([−11−19 12] [7 16−2] [−8− 12 11]) and

 = ([2 4−1] [−1−2 1] [1 1−2])

are ordered bases for R3.
(b) Given v = [−63−113 62] ∈ R3, find [v], and use your answer to part (a) to find [v] .

Copyright c° 2016 Elsevier Ltd. All rights reserved. 201



Andrilli/Hecker - Chapter Tests Chapter 4 - Version B

Test for Chapter 4 – Version B
(1) Prove that R with the usual scalar multiplication, but with addition given by x⊕ y = 3(+ ) is not

a vector space.

(2) Prove that the set of all polynomials p in P4 for which the coefficient of the second-degree term equals

the coefficient of the fourth-degree term is a subspace of P4.
(3) Let V be a vector space with subspaces W1 and W2. Prove that the intersection of W1 and W2 is a

subspace of V.
(4) Let  = {[5−15−4] [−2 6 1] [−9 27 7]}. Determine whether [2−4 3] is in span().
(5) Find a simplified general form for all the vectors in span() inM22 if

 =

½∙
2 −6
−1 −1

¸


∙
5 −15
−1 1

¸


∙
8 −24
−2 1

¸


∙
3 −9
1 2

¸¾


(6) Let  be the set

{23 − 112 − 12− 1 73 + 352 + 16− 7
− 53 + 292 + 33+ 2−53 − 262 − 12+ 5}

in P3 and let p() ∈ P3. Prove that there is exactly one way to express p() as a linear combination
of the elements of .

(7) Find a subset of

 = {[2−3 4−1] [−6 9−12 3] [3 1−2 2] [2 8−12 3] [7 6−10 4]}

that is a basis for span() in R4. Does  span R4?

(8) Let A be a nonsingular ×  matrix. Prove that the rows of A are linearly independent.

(9) Consider the matrix A =

⎡⎢⎢⎣
−1 −2 3 1
2 −6 6 7
0 0 −2 0
2 −4 6 5

⎤⎥⎥⎦, which has  = −2 as an eigenvalue. Find a basis 
for R4 that contains a basis for the eigenspace −2 for A.

(10) (a) Find the transition matrix from -coordinates to -coordinates if

 = (−212 + 14− 38 172 − 10+ 32 −102 + 4− 23) and
 = (−72 + 4− 14 22 − + 4 2 − + 1)

are ordered bases for P2.
(b) Given v = −1002 + 64− 181 ∈ P3, find [v] , and use your answer to part (a) to find [v] .
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Test for Chapter 4 – Version C
(1) The set R2 with operations [ ]⊕ [ ] = [++3 +−4], and ¯ [ ] = [+3−3 −4+4]

is a vector space. Find the zero vector 0 and the additive inverse of v = [ ] for this vector space.

(2) Prove that the set of all 3-vectors orthogonal to [2−3 1] forms a subspace of R3.
(3) Determine whether [−3 6 5] is in span() in R3, if

 = {[3−6−1] [4−8−3] [5−10−1]}

(4) Find a simplified form for all the vectors in span() in P3 if

 = {43 − 2 − 11+ 18−33 + 2 + 9− 14 53 − 2 − 13+ 22}

(5) Prove that the set½∙ −3 63
9 −46

¸


∙ −5 56
14 −41

¸


∙ −4 44
13 −32

¸


∙
5 14

−13 −10
¸¾

inM22 is linearly independent.

(6) Find a subset of

 =

½∙
3 −1
−2 4

¸


∙ −6 2
4 −8

¸


∙
2 1
−2 0

¸


∙ −1 −3
2 4

¸


∙
4 −3
−2 2

¸¾
inM22 that is a basis for span(). What is dim(span())?

(7) Let A be an × singular matrix and let  be the set of columns of A. Prove that dim(span())  .

(8) Enlarge the linearly independent set

 = {23 − 32 + 3+ 1−3 + 42 − 6− 2}

of P3 to a basis for P3.
(9) Let A 6= I be an ×  matrix having eigenvalue  = 1. Prove that dim(1)  .

(10) (a) Find the transition matrix from -coordinates to -coordinates if

 = ([10−17 8] [−4 10−5] [29−36 16]) and

 = ([12−12 5] [−5 3−1] [1−2 1])

are ordered bases for R3.
(b) Given v = [−109 155−71] ∈ R3, find [v], and use your answer to part (a) to find [v] .
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Test for Chapter 5 – Version A
(1) Prove that the mapping  : M → M given by (A) = BAB

−1, whereB is some fixed nonsingular
×  matrix, is a linear operator.

(2) Suppose : R3 → R3 is a linear transformation, and ([−2 5 2]) = [2 1−1], ([0 1 1]) = [1−1 0],
and ([1−2−1]) = [0 3−1]. Find ([2−3 1]).

(3) Find the matrix A for : R2 → P2 given by

([ ]) = (−2+ )2 − (2)+ (+ 2)

for the ordered bases  = ([3−7] [2−5]) for R2,
and  = (92 + 20− 21 42 + 9− 9 102 + 22− 23) for P2.

(4) For the linear transformation : R4 → R3 given by



⎛⎜⎜⎝
⎡⎢⎢⎣

1
2
3
4

⎤⎥⎥⎦
⎞⎟⎟⎠ =

⎡⎣ 4 −8 −1 −7
−3 6 1 6
−4 8 2 10

⎤⎦
⎡⎢⎢⎣

1
2
3
4

⎤⎥⎥⎦ 
find a basis for ker(), a basis for range(), and verify that the Dimension Theorem holds for .

(5) (a) Consider the linear transformation : P3 → R3 given by

(p()) =

∙
p(3) p0(1)

Z 1

0

p() 

¸


Prove that ker() is nontrivial.

(b) Use part (a) to prove that there is a nonzero polynomial p ∈ P3 such that p(3) = 0, p0(1) = 0,
and

R 1
0
p()  = 0.

(6) Prove that the mapping : R3 → R3 given by

([  ]) =

⎡⎣ −5 2 1
6 −3 −2
10 −3 −1

⎤⎦⎡⎣ 



⎤⎦
is one-to-one. Is  an isomorphism?

(7) Show that : P → P given by (p) = p− p0 is an isomorphism.
(8) Consider the diagonalizable operator : M22 →M22 given by (K) =K−K . Let A be the matrix

representation of  with respect to the standard basis  forM22.

(a) Find an ordered basis  of M22 consisting of fundamental eigenvectors for , and the diagonal
matrix D that is the matrix representation of  with respect to .

(b) Calculate the transition matrix P from  to , and verify that D = P−1AP.
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(9) Indicate whether each given statement is true or false.

(a) If  is a linear operator on a nontrivial finite dimensional vector space for which every root of

() is real, then  is diagonalizable.

(b) Let : V → V be an isomorphism with eigenvalue . Then  6= 0 and 1 is an eigenvalue for
−1.

(10) Prove that the linear operator on P3 given by (p()) = p(+ 1) is not diagonalizable.
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Test for Chapter 5 – Version B
(1) Prove that the mapping  : M → M given by (A) = A+A

 is a linear operator.

(2) Suppose : R3 −→ P3 is a linear transformation, and ([1−1 1]) = 23 − 2 + 3,
([2 5 6]) = −113 + 2 + 4− 2, and ([1 4 4]) = −3 − 32 + 2+ 10. Find ([6−4 7]).

(3) Find the matrix A for : M22 → R3 given by



µ∙
 
 

¸¶
= [−2+ −  − 2+  2− + ]

for the ordered bases

 =

µ∙
1 −2
−4 −1

¸


∙ −4 6
11 3

¸


∙ −2 1
3 1

¸


∙
1 4
5 1

¸¶
forM22 and  = ([−1 0 2] [2 2−1] [1 3 2]) for R3.

(4) For the linear transformation : R4 −→ R4 given by



⎛⎜⎜⎝
⎡⎢⎢⎣

1
2
3
4

⎤⎥⎥⎦
⎞⎟⎟⎠ =

⎡⎢⎢⎣
2 5 4 8
1 −1 −5 −1
−4 2 16 1
4 1 −10 2

⎤⎥⎥⎦
⎡⎢⎢⎣

1
2
3
4

⎤⎥⎥⎦ 
find a basis for ker(), a basis for range(), and verify that the Dimension Theorem holds for .

(5) Let A be a fixed ×  matrix, with  6= . Let 1: R → R be given by 1(x) = Ax, and let
2: R → R be given by 2(y) = Ay.

(a) Prove or disprove: dim(range(1)) = dim(range(2))

(b) Prove or disprove: dim(ker(1)) = dim(ker(2))

(6) Prove that the mapping : M22 → M22 given by



µ∙
 
 

¸¶
=

∙
3− 2− 3− 4 −− − 

−−  3− − − 

¸
is one-to-one. Is  an isomorphism?

(7) Let A be a fixed nonsingular  ×  matrix. Show that : M → M given by (B) = BA−1 is
an isomorphism.
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(8) Consider the diagonalizable operator : M22 → M22 given by



µ∙
 
 

¸¶
=

∙ −7 12
−4 7

¸ ∙
 
 

¸


Let A be the matrix representation of  with respect to the standard basis  forM22.

(a) Find an ordered basis  of M22 consisting of fundamental eigenvectors for , and the diagonal
matrix D that is the matrix representation of  with respect to .

(b) Calculate the transition matrix P from  to , and verify that
D = P−1AP.

(9) Indicate whether each given statement is true or false.

(a) If : V → V is an isomorphism on a nontrivial finite dimensional vector space V and  is an
eigenvalue for , then  = ±1.

(b) A linear operator  on an -dimensional vector space is diagonalizable if and only if  has 
distinct eigenvalues.

(10) Let  be the linear operator on R3 representing a counterclockwise rotation through an angle of 6
radians around an axis through the origin that is parallel to [4−2 3]. Explain in words why  is not
diagonalizable.
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Test for Chapter 5 – Version C
(1) Let A be a fixed ×  matrix. Prove that the function : P →M given by

(
 + −1−1 + · · ·+ 1+ 0)

= A
 + −1A−1 + · · ·+ 1A+ 0I

is a linear transformation.

(2) Suppose : R3 → M22 is a linear transformation such that ([6−1 1]) =
∙
35 −24
17 9

¸


([4−2−1]) =
∙
21 −18
5 11

¸
 and ([−7 3 1]) =

∙ −38 31
−11 −17

¸
 Find ([−3 1−4])

(3) Find the matrix A for : R3 −→ R4 given by

([  ]) = [3−  −  2+ 2 −  − − 2]

for the ordered bases

 = ([−5 1−2] [10−1 3] [41−12 20]) for R3 and
 = ([1 0−1−1] [0 1−2 1] [−1 0 2 1] [0−1 2 0]) for R4

(4) Consider : M22 → P2 given by



µ∙
11 12
21 22

¸¶
= (11 + 22)

2 + (11 − 21)+ 12

What is ker()? What is range()? Verify that the Dimension Theorem holds for .

(5) Suppose that 1: V →W and 2: W → Y are linear transformations, where V W, and Y are finite
dimensional vector spaces.

(a) Prove that ker(1) ⊆ ker(2 ◦ 1).
(b) Prove that dim(range(1)) ≥ dim(range(2 ◦ 1)).

(6) Prove that the mapping : P2 → R4 given by

(2 + + ) = [−5+ −  − 7−  2− −  − 2+ 5+ ]

is one-to-one. Is  an isomorphism?

(7) Let  = (v1    v) be an ordered basis for an -dimensional vector space V. Define : R → V by
([1     ]) = 1v1 + · · ·+ v. Prove that  is an isomorphism.
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(8) Consider the diagonalizable operator : P2 → P2 given by

(2 + + ) = (3+ − )2 + (−2+ )+ (4+ 2− )

Let A be the matrix representation of  with respect to the standard basis  for P2.

(a) Find an ordered basis  of P2 consisting of fundamental eigenvectors for , and the diagonal
matrix D that is the matrix representation of  with respect to .

(b) Calculate the transition matrix P from  to , and verify that
D = P−1AP.

(9) Indicate whether each given statement is true or false.

(a) If  is a diagonalizable linear operator on a nontrivial finite dimensional vector space, then the
algebraic multiplicity of  equals the geometric multiplicity of  for every eigenvalue  of .

(b) A linear operator  on a nontrivial finite dimensional vector space V is one-to-one if and only if
0 is not an eigenvalue for .

(10) Prove that the linear operator on P, for   0, defined by (p) = p0 is not diagonalizable.
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Test for Chapter 6 – Version A
(1) Use the Gram-Schmidt Process to enlarge the following set to an orthogonal basis for R3: {[4−3 2]}.
(2) Let : R3 → R3 be the orthogonal reflection through the plane − 2 + 2 = 0. Use eigenvalues and

eigenvectors to find the matrix representation of  with respect to the standard basis for R3. (Hint:
[1−2 2] is orthogonal to the given plane.)

(3) For the subspace W = span({[2−3 1] [−3 2 2]}) of R3, find a basis for W⊥. What is dim(W⊥)?
(Hint: The two given vectors are not orthogonal.)

(4) Suppose A is an ×  orthogonal matrix. Prove that for every x ∈ R, kAxk = kxk.
(5) Prove the following part of Corollary 6.14: Let W be a subspace of R. Then W ⊆ (W⊥)⊥.
(6) Let : R4 −→ R4 be the orthogonal projection onto the subspace

W = span({[2 1−3−1] [5 2 3 3]}) of R4. Find the characteristic polynomial of .
(7) Explain why : R3 → R3 given by the orthogonal projection onto the plane 3 + 5 − 6 = 0 is

orthogonally diagonalizable.

(8) Consider : R3 → R3 given by



⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 5 4 −2
4 5 2
−2 2 8

⎤⎦⎡⎣ 1
2
3

⎤⎦ 
Find an ordered orthonormal basis  of fundamental eigenvectors for , and the diagonal matrix D
that is the matrix for  with respect to .

(9) Use orthogonal diagonalization to find a symmetric matrix A such that

A3 =
1

5

∙
31 18
18 4

¸


(10) Let  be a symmetric operator on R and let 1 and 2 be distinct eigenvalues for  with corresponding
eigenvectors v1 and v2. Prove that v1 ⊥ v2.
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Test for Chapter 6 – Version B
(1) Use the Gram-Schmidt Process to find an orthogonal basis for R3, starting with the linearly independent

set {[2−3 1] [4−2−1]}. (Hint: The two given vectors are not orthogonal.)
(2) Let : R3 → R3 be the orthogonal projection onto the plane 3 + 4 = 0. Use eigenvalues and

eigenvectors to find the matrix representation of  with respect to the standard basis for R3. (Hint:
[3 0 4] is orthogonal to the given plane.)

(3) Let W = span({[2 2−3] [3 0−1]}) in R3. Decompose v = [−12−36−43] into w1 + w2, where
w1 ∈W and w2 ∈W⊥. (Hint: The two given vectors spanning W are not orthogonal.)

(4) Suppose that A and B are ×  orthogonal matrices. Prove that AB is an orthogonal matrix.

(5) Prove the following part of Corollary 6.14: Let W be a subspace of R. Assuming W ⊆ (W⊥)⊥ has
already been shown, prove that W = (W⊥)⊥.

(6) Let v = [−3 5 1 0], and let W be the subspace of R4 spanned by  = {[0 3 6−2] [−6 2 0 3]}. Find
projW⊥v.

(7) Is : R2 → R2 given by



µ∙
1
2

¸¶
=

∙
3 7
7 −5

¸ ∙
1
2

¸
orthogonally diagonalizable? Explain.

(8) Consider : R3 → R3 given by



⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 40 18 6
18 13 −12
6 −12 45

⎤⎦⎡⎣ 1
2
3

⎤⎦ 
Find an ordered orthonormal basis  of fundamental eigenvectors for , and the diagonal matrix D
that is the matrix for  with respect to .

(9) Use orthogonal diagonalization to find a symmetric matrix A such that

A2 =

∙
10 −6
−6 10

¸


(10) Let A be an × symmetric matrix. Prove that if all eigenvalues for A are ±1, then A is orthogonal.
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Test for Chapter 6 – Version C
(1) Use the Gram-Schmidt Process to enlarge the following set to an orthogonal basis for R4:

{[−3 1−1 2] [2 4 0 1]}.

(2) Let : R3 → R3 be the orthogonal projection onto the plane 2 − 2 −  = 0. Use eigenvalues and
eigenvectors to find the matrix representation of  with respect to the standard basis for R3. (Hint:
[2−2−1] is orthogonal to the given plane.)

(3) For the subspace W = span({[5 1−2] [−8−2 9]}) of R3, find a basis for W⊥. What is dim(W⊥)?
(Hint: The two given vectors are not orthogonal.)

(4) Let A be an ×  orthogonal skew-symmetric matrix. Show that  is even. (Hint: Assume  is odd
and calculate |A2| to reach a contradiction.)

(5) Prove that if W1 and W2 are two subspaces of R such that W1 ⊆W2, then W⊥2 ⊆W⊥1 .
(6) Let  = (5 1 0−4), and let

W = span({[2 1 0 2] [−2 0 1 2] [0 2 2−1]})

Find the minimum distance from  to W.
(7) Explain why the matrix for : R3 → R3 given by the orthogonal reflection through the plane 4 −

3 −  = 0 with respect to the standard basis for R3 is symmetric.

(8) Consider : R3 → R3 given by



⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 49 −84 −72
−84 23 −84
−72 −84 49

⎤⎦⎡⎣ 1
2
3

⎤⎦ 
Find an ordered orthonormal basis  of fundamental eigenvectors for , and the diagonal matrix D
that is the matrix for  with respect to .

(9) Use orthogonal diagonalization to find a symmetric matrix A such that

A2 =

∙
10 30
30 90

¸


(10) Let A and B be × symmetric matrices such that A() = B(). Prove that there is an orthogonal
matrix P such that A = PBP−1.
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Test for Chapter 7 – Version A
Note that there are more than 10 problems in this test, with at least three problems from
each section of Chapter 7.

(1) (Section 7.1) Verify that a ·b = b · a for the complex vectors a = [2  2+ ] and b = [1+  1−  2+ ].

(2) (Section 7.1) Suppose H and P are  ×  complex matrices and that H is Hermitian. Prove that

P∗HP is Hermitian.

(3) (Section 7.1) Indicate whether each given statement is true or false.

(a) If Z andW are ×  complex matrices, then ZW = (WZ).

(b) If an ×  complex matrix is normal, then it is either Hermitian or skew-Hermitian.

(4) (Section 7.2) Use Gaussian Elimination to solve the following system of linear equations:½
1 + (1 + 3)2 = 6 + 2

(2 + 3)1 + (7 + 7)2 = 20− 2 

(5) (Section 7.2) Give an example of a matrix having all real entries that is not diagonalizable when

thought of as a real matrix, but is diagonalizable when thought of as a complex matrix. Prove that

your example works.

(6) (Section 7.2) Find all eigenvalues and a basis of fundamental eigenvectors for each eigenspace for

: C3 → C3 given by



⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ =

⎡⎣ 1 0 −1− 
−1  
− 0 −1 + 

⎤⎦⎡⎣ 1
2
3

⎤⎦ 
Is  diagonalizable?

(7) (Section 7.3) Prove or disprove: For  ≥ 1, the set of polynomials in PC with real coefficients is a
complex subspace of PC .

(8) (Section 7.3) Find a basis  for span() that is a subset of

 = {[1 + 3 2 +  1− 2] [−2 + 4 1 + 3 3− ] [1 2 3 + ] [5 + 6 3−1− 2]}

(9) (Section 7.3) Find the matrix with respect to the standard bases for the complex linear transformation

: MC
22 → C2 given by



µ∙
 
 

¸¶
= [+  + ] 

Also, find the matrix for  with respect to the standard bases when thought of as a linear transformation
between real vector spaces.

(10) (Section 7.4) Use the Gram-Schmidt Process to find an orthogonal basis for the complex vector space

C3 starting with the linearly independent set {[1  1 + ] [3−−1− ]}.
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(11) (Section 7.4) Find a unitary matrix P such that

P∗
∙
0 
 0

¸
P

is diagonal.

(12) (Section 7.4) Show that if A and B are ×  unitary matrices, then AB is unitary and
¯̄̄
|A|
¯̄̄
= 1.

(13) (Section 7.5) Prove that

hf gi = f(0)g(0) + f(1)g(1) + f(2)g(2)
is a real inner product on P2. For f() = 2+ 1 and g() = 2 − 1, calculate hf gi and kfk.

(14) (Section 7.5) Find the distance between x = [4 1 2] and y = [3 3 5] in the real inner product space
consisting of R3 with inner product

hxyi = Ax ·Ay where A =

⎡⎣ 4 0 −1
3 3 1
1 2 1

⎤⎦ 
(15) (Section 7.5) Prove that in a real inner product space, for any vectors x and y,

kxk = kyk if and only if hx+ y x− yi = 0

(16) (Section 7.5) Use the Generalized Gram-Schmidt Process to find an orthogonal basis for P2 starting
with the linearly independent set {2 } using the real inner product given by

hf gi =
Z 1

−1
()() 

(17) (Section 7.5) Decompose v = [0 1−3] in R3 as w1 +w2, where
w1 ∈ W = span({[2 1−4] [4 3−8]}) and w2 ∈ W⊥, using the real inner product on R3 given by
hxyi = Ax ·Ay, with

A =

⎡⎣ 3 −1 1
0 3 1
1 2 1

⎤⎦ 
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Test for Chapter 7 – Version B
Note that there are more than 10 problems in this test, with at least three problems from
each section of Chapter 7.

(1) (Section 7.1) Calculate A∗B for the complex matrices

A =

∙
 3 + 2
5 −2

¸
and B =

∙
1−  3− 2
3 7

¸


(2) (Section 7.1) Prove that if H is a Hermitian matrix, then H is a skew-Hermitian matrix.

(3) (Section 7.1) Indicate whether each given statement is true or false.

(a) Every skew-Hermitian matrix must have all zeroes on its main diagonal.

(b) If x, y ∈ C, but each entry of x and y is real, then x · y produces the same answer if the dot
product is thought of as taking place in C as it would if the dot product were considered to be
taking place in R.

(4) (Section 7.2) Use the an inverse matrix to solve the given linear system:½
(4 + )1 + (2 + 14)2 = 21 + 4
(2− )1 + (6 + 5)2 = 10− 6 

(5) (Section 7.2) Explain why the sum of the algebraic multiplicities of a complex ×  matrix must
equal .

(6) (Section 7.2) Find all eigenvalues and a basis of fundamental eigenvectors for each eigenspace for

:C2 → C2 given by



µ∙
1
2

¸¶
=

∙ − 1
4 3

¸ ∙
1
2

¸


Is  diagonalizable?

(7) (Section 7.3) Prove or disprove: The set of ×  Hermitian matrices is a complex subspace ofMC
.

If it is a subspace, compute its dimension.

(8) (Section 7.3) If

 = {[−1−2 + ] [2−  2 + 2 5 + 2] [0 2 2− 2] [1 + 3−2 + 2−3 + 5]}

find a basis  for span() that uses vectors having a simpler form than those in .

(9) (Section 7.3) Show that : MC
22 →MC

22 given by (Z) = Z
∗ is not a complex linear transformation.

(10) (Section 7.4) Use the Gram-Schmidt Process to find an orthogonal basis for the complex vector space

C3 containing {[1 +  1−  2]}.

(11) (Section 7.4) Prove that Z =

∙
1 +  −1 + 
1−  1 + 

¸
is unitarily diagonalizable.

(12) (Section 7.4) Let A be an ×  unitary matrix. Prove that A2 = I if and only if A is Hermitian.
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(13) (Section 7.5) Let A be the 3× 3 nonsingular matrix⎡⎣ 4 3 1
−1 4 3
−1 1 1

⎤⎦ 
Prove that hxyi = Ax ·Ay is a real inner product on R3. For x = [2−1 1] and y = [1 4 2], calculate
hxyi and kxk for this inner product.

(14) (Section 7.5) Find the distance between w = [4+  5 4+  2+ 2] and z = [1+  2−2 2+ 3] in the
complex inner product space C3 using the usual complex dot product as an inner product.

(15) (Section 7.5) Prove that in a real inner product space, for any vectors x and y,

hxyi = 1
4(kx+ yk2 − kx− yk2)

(16) (Section 7.5) Use the Generalized Gram-Schmidt Process to find an orthogonal basis for P2 containing
2 using the real inner product given by

hf gi = f(0)g(0) + f(1)g(1) + f(2)g(2)

(17) (Section 7.5) Decompose v =  + 3 in P2 as w1 +w2, where w1 ∈ W = span({2}) and w2 ∈ W⊥,
using the real inner product on P2 given by

hf gi =
Z 1

0

()() 
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Test for Chapter 7 – Version C
Note that there are more than 10 problems in this test, with at least three problems from
each section of Chapter 7.

(1) (Section 7.1) Calculate AB∗ for the complex matrices

A =

∙
2 3− 

1 + 2 −
¸

and B =

∙
4 +  3
2 1− 2

¸


(2) (Section 7.1) LetH and J be × Hermitian matrices. Prove that ifHJ is Hermitian, thenHJ = JH.

(3) (Section 7.1) Indicate whether each given statement is true or false.

(a) If x, y ∈ C with x · y ∈ R, then x · y = y · x.
(b) If A is an ×  Hermitian matrix, and xy ∈ C, then Ax · y = x ·Ay.

(4) (Section 7.2) Use Cramer’s Rule to solve the following system of linear equations:½ −1 + (1− )2 = −3− 2
(1− 2)1 + (4− )2 = −5− 6 

(5) (Section 7.2) Show that a complex ×  matrix that is not diagonalizable must have an eigenvalue 
whose algebraic multiplicity is strictly greater than its geometric multiplicity.

(6) (Section 7.2) Find all eigenvalues and a basis of fundamental eigenvectors for each eigenspace for

: C2 −→ C2 given by



µ∙
1
2

¸¶
=

∙
0 2
−2 2 + 2

¸ ∙
1
2

¸


Is  diagonalizable?

(7) (Section 7.3) Prove that the set of normal 2×2 matrices is not a complex subspace ofMC
22 by showing

that it is not closed under matrix addition.

(8) (Section 7.3) Find a basis  for C4 that contains

{[1 3 +   1− ] [1 +  3 + 4−1 +  2]}

(9) (Section 7.3) Let w ∈ C be a fixed nonzero vector. Show that : C → C given by (z) = w · z is
not a complex linear transformation.

(10) (Section 7.4) Use the Gram-Schmidt Process to find an orthogonal basis for the complex vector space

C3, starting with the basis {[2−  1 + 2 1] [0 1 0] [−1 0 2 + ]}.
(11) (Section 7.4) Let Z be an ×  complex matrix whose rows form an orthonormal basis for C. Prove

that the columns of Z also form an orthonormal basis for C
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(12) (Section 7.4)

(a) Show that A =

∙ −23 36
−36 −2

¸
is normal, and hence unitarily diagonalizable.

(b) Find a unitary matrix P such that P−1AP is diagonal.

(13) (Section 7.5) For x = [1 2] and y = [1 2] in R2, prove that hxyi = 211 − 12 − 21 + 22
is a real inner product on R2. For x = [2 3] and y = [4−4], calculate hxyi and kxk for this inner
product.

(14) (Section 7.5) Find the distance between f() = sin2  and g() = − cos2  in the real inner product
space consisting of the set of all real-valued continuous functions defined on the interval [0 ] with
inner product

hf gi =
Z 

0

()() 

(15) (Section 7.5) Prove that in a real inner product space, vectors x and y are orthogonal if and only if
kx+ yk2 = kxk2 + kyk2.

(16) (Section 7.5) Use the Generalized Gram-Schmidt Process to find an orthogonal basis for R3, starting
with the linearly independent set {[−1 1 1] [3−4−1]} using the real inner product given by

hxyi = Ax ·Ay where A =

⎡⎣ 3 2 1
2 1 2
2 1 1

⎤⎦ 
(17) (Section 7.5) Decompose v = 2 in P2 as w1 + w2, where w1 ∈ W = span({ − 5 6 − 5}) and

w2 ∈W⊥, using the real inner product on P2 given by

hf gi = f(0)g(0) + f(1)g(1) + f(2)g(2)
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Answers to Test for Chapter 1 – Version A

(1) The net velocity vector is [5
√
2

2  2− 5
√
2
2 ] ≈ [354−154] km/hr. The net speed is approximately 385

km/hr.

(2) The angle (to the nearest degree) is 137◦.

(3) kx+ yk2 + kx− yk2 = (x+ y) · (x+ y) + (x− y) · (x− y)
= x · (x+ y) + y · (x+ y) + x · (x− y) − y · (x− y)
= x · x + x · y + y · x + y · y + x · x − x · y − y · x + y · y
= 2(x · x) + 2(y · y) = 2

³
kxk2 + kyk2

´
(4) The vector x = [−3 4 2] can be expressed as [−6535  1335 −3935 ] + [−4035  12735  10935 ], where the first vector

(projax) of the sum is parallel to a (since it equals − 13
35a), and the second vector (x−projax) of the

sum is easily seen to be orthogonal to a.

(5) Contrapositive: If x is parallel to y, then kx+ yk = kxk+ kyk.
Converse: If x is not parallel to y, then kx+ yk 6= kxk+ kyk.
Inverse: If kx+ yk = kxk+ kyk, then x is parallel to y.
Only the contrapositive is logically equivalent to the original statement.

(6) The negation is: kxk 6= kyk and (x− y) · (x+ y) = 0.
(7) Base Step: Assume A and B are any two diagonal × matrices. Then, C = A + B is also diagonal

because for  6= ,  =  +  = 0 + 0 = 0, since A and B are both diagonal.

Inductive Step: Assume that the sum of any  diagonal ×matrices is diagonal. We must show for any
diagonal × matrices A1    A+1 that

P+1
=1 A is diagonal. Now,

P+1
=1 A = (

P
=1A)+A+1.

Let B =
P

=1A. Then B is diagonal by the inductive hypothesis. Hence,
P+1

=1 A = B + A+1 is

the sum of two diagonal matrices, and so is diagonal by the Base Step.

(8) A = S + V, where S =

⎡⎢⎢⎣
−4 9

2 0

9
2 −1 11

2

0 11
2 −3

⎤⎥⎥⎦, V =

⎡⎢⎢⎣
0 −32 −2
3
2 0 3

2

2 −32 0

⎤⎥⎥⎦, S is symmetric, and V is skew-

symmetric.

(9)

TV Show 1
TV Show 2
TV Show 3
TV Show 4

Salary Perks⎡⎢⎢⎣
$1000000 $650000
$860000 $535000
$880000 $455000
$770000 $505000

⎤⎥⎥⎦
(10) AssumeA andB are both × symmetric matrices. ThenAB is symmetric if and only if (AB) = AB

if and only if BA = AB (by Theorem 1.18) if and only if BA = AB (since A and B are symmetric)
if and only if A and B commute.
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Answers to Test for Chapter 1 – Version B
(1) Player B is pulling with a force of 100

√
3 lbs, or about 57735 lbs. Player C is pulling with a force of

200
√
3 lbs, or about 11547 lbs.

(2) The angle (to the nearest degree) is 152◦.

(3) See the proof in the textbook directly before Theorem 1.11 in Section 1.2.

(4) The vector x = [5−2−4] can be expressed as [ 822 −1222  1222 ] + [10222 −3222 −10022 ], where the first vector
(projax) of the sum is parallel to a (since it equals − 4

22a), and the second vector (x− projax)
of the sum is easily seen to be orthogonal to a.

(5) Contrapositive: If kx+ yk ≤ kyk, then kxk2 + 2(x · y) ≤ 0.
Converse: If kx+ yk  kyk, then kxk2 + 2(x · y)  0.
Inverse: If kxk2 + 2(x · y) ≤ 0, then kx+ yk ≤ kyk.
Only the contrapositive is logically equivalent to the original statement.

(6) The negation is: No unit vector x ∈ R3 is parallel to [−2 3 1].
(7) Base Step: Assume A and B are any two lower triangular ×  matrices. Then, C = A + B is also

lower triangular because for   ,  = +  = 0+0 = 0, since A and B are both lower triangular.

Inductive Step: Assume that the sum of any  lower triangular ×  matrices is lower triangular. We
must show for any lower triangular  ×  matrices A1    A+1 that

P+1
=1 A is lower triangular.

Now,
P+1

=1 A = (
P

=1A) +A+1. Let B =
P

=1A. Then B is lower triangular by the inductive

hypothesis. Hence,
P+1

=1 A = B + A+1 is the sum of two lower triangular matrices, and so is lower

triangular by the Base Step.

(8) A = S + V, where S =

⎡⎢⎢⎣
5 1 7

2

1 3 1
2

7
2

1
2 1

⎤⎥⎥⎦  V =

⎡⎢⎢⎣
0 7 −112
− 7 0 −72
11
2

7
2 0

⎤⎥⎥⎦  S is symmetric, and V is skew-

symmetric.

(9)

Cat 1

Cat 2

Cat 3

Nutrient 1 Nutrient 2 Nutrient 3⎡⎣ 164 062 186
150 053 146
155 052 154

⎤⎦ (All figures are in ounces.)

(10) Assume A and B are both × skew-symmetric matrices. Then (AB) = BA (by Theorem 1.18)

= (−B)(−A) (since A, B are skew-symmetric) = BA (by part (4) of Theorem 1.16).
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Answers to Test for Chapter 1 – Version C
(1) The acceleration vector is approximately [−0435 0870−0223] m/sec2. This can also be expressed

as 1202[−0362 0724−0186] m/sec2, where the latter vector is a unit vector.
(2) The angle (to the nearest degree) is 118◦.

(3) See the proof of Theorem 1.8 in Section 1.2 of the textbook.

(4) The vector x = [−4 2−7] can be expressed as £−24662  20562 −4162¤+ £− 2
62 − 8162 −39362

¤
 where the first

vector (projax) of the sum is parallel to a (since it equals − 41
62a ) and the second vector (x−projax)

of the sum is easily seen to be orthogonal to a.

(5) Assume y = x, for some  ∈ R. We must prove that y = projxy. Now, if y = x, then

projxy =
³
x·y
kxk2

´
x =

³
x·(x)
kxk2

´
x =

³
(x·x)
kxk2

´
x (by part (4) of Theorem 1.5) = x (by part (2) of

Theorem 1.5) = y.

(6) The negation is: For some vector x ∈ R, there is no vector y ∈ R such that kyk  kxk.

(7) A = S + V, where S =

⎡⎢⎢⎣
−3 13

2
1
2

13
2 5 3

1
2 3 −4

⎤⎥⎥⎦  V =

⎡⎢⎢⎣
0 −12 5

2

1
2 0 −1

− 5
2 1 0

⎤⎥⎥⎦  S is symmetric, and V is

skew-symmetric.

(8) The third row of AB is [35 18−13], and the second column of BA is [−32 52 42−107].
(9) Base Step: Suppose A and B are two × diagonal matrices. Let C = AB. Then,  =

P
=1  .

But if  6= , then  = 0. Thus,  =  . Then, if  6= ,  = 0, hence  = 0 = 0. Hence C is

diagonal.

Inductive Step: Assume that the product of any  diagonal ×  matrices is diagonal. We must show
that for any diagonal  ×  matrices A1    A+1 that the product A1 · · ·A+1 is diagonal. Now,

A1 · · ·A+1 = (A1 · · ·A)A+1. Let B = A1 · · ·A. Then B is diagonal by the inductive hypothesis.

Hence, A1 · · ·AA+1 = BA+1 is the product of two diagonal matrices, and so is diagonal by the

Base Step.

(10) Assume that A is skew-symmetric. Then (A3) = (A2A) = A (A2) (by Theorem 1.18) =
A (AA) = AAA (again by Theorem 1.18) = (−A)(−A)(−A) (since A is skew-symmetric)

= −(A3) (by part (4) of Theorem 1.16). Hence, A3 is skew-symmetric.
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Answers to Test for Chapter 2 – Version A
(1) The quadratic equation is  = 32 − 4− 8.
(2) The solution set is {(−2− 4− 5  3+ 2  4) |   ∈ R}.
(3) The solution set is {(−2 4 1 0) |  ∈ R}.
(4) The rank of A is 2, and so A is not row equivalent to I3.

(5) The solution sets are, respectively, {(3−4 2)} and {(1−2 3)}.
(6) First, th row of (AB)

= (th row of (AB))
= (th row of A)B (by the hint)

= (th row of (A))B
= th row of ((A)B) (by the hint).

Now, if  6= , th row of (AB)
= th row of (AB)
= (th row of A)B (by the hint)

= (th row of (A))B
= th row of ((A)B) (by the hint).

Hence, (AB) = (A)B, since they are equal on each row.

(7) Yes: [−15 10−23] = (−2) (row 1) + (−3) (row 2) + (−1) (row 3).

(8) The inverse of A is

⎡⎣ −9 −4 15
−4 −2 7
12 5 −19

⎤⎦.
(9) The inverse of A is − 1

14

∙ −9 8
−5 6

¸
=

" 9
14 −47
5
14 −37

#
.

(10) Suppose A and B are nonsingular  ×  matrices. If A and B commute, then AB = BA. Hence,
A(AB)B = A(BA)B, and so A2B2 = (AB)2.

Conversely, suppose A2B2 = (AB)2. Since both A and B are nonsingular, we know that A−1 and
B−1 exist. Multiply both sides of A2B2 = ABAB by A−1 on the left and by B−1 on the right to
obtain AB = BA. Hence, A and B commute.
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Answers to Test for Chapter 2 – Version B
(1) The equation of the circle is 2 + 2 − 6+ 8 + 12 = 0, or, (− 3)2 + ( + 4)2 = 13.
(2) The solution set is {(−5− 3+  + 6 2+ − 3 − 2   2 + 1 ) |    ∈ R}.
(3) The solution set is {(3 1 0 0) + (−4 0−2 1) |   ∈ R}.
(4) The rank of A is 3, and so A is row equivalent to I3.

(5) The solution sets are, respectively, {(−2 3−4)} and {(3−1 2)}.
(6) First, th row of (AB)

= (th row of (AB)) + (th row of (AB))
= (th row of A)B + (th row of A)B (by the hint)

= ((th row of A) + (th row of A))B
= (th row of (A))B
= th row of ((A)B) (by the hint).

Now, if  6= , th row of (AB)
= th row of (AB)
= (th row of A)B (by the hint)

= (th row of (A))B
= th row of ((A)B) (by the hint).

Hence, (AB) = (A)B, since they are equal on each row.

(7) The vector [−2 3 1] is not in the row space of A.

(8) The inverse of A is

⎡⎣ 1 −6 1
−2 13 −2
4 −21 3

⎤⎦.
(9) The solution set is {(4−7−2)}.
(10) (a) To prove that the inverse of (A) is ( 1


)A−1, simply note that the product (A) times ( 1


)A−1

equals I (by part (4) of Theorem 1.16).

(b) Now, assume A is a nonsingular skew-symmetric matrix. Then,

(A−1) = (A )−1 by part (4) of Theorem 2.12

= (−1A)−1 since A is skew-symmetric

= ( 1−1)A
−1 by part (a)

= −(A−1)

Hence, A−1 is skew-symmetric.
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Answers to Test for Chapter 2 – Version C
(1)  = 3,  = −2,  = 1, and  = 4.

(2) The solution set is {(−4− 3+ 3  2− 3 5− 2  4) |   ∈ R}.
(3) The solution set is {(12−5 1 0 0) + (−1−1 0 3 1) |   ∈ R}.
(4) The rank of A is 3, and so A is not row equivalent to I4.

(5) The reduced row echelon form matrix for A is B = I3. One possible sequence of row operations

converting B to A is:

(II):  2  ← 11
10  3  +  2 

(II):  1  ← 2
5  3  +  1 

(I):  3  ← − 1
10  3 

(II):  3  ← −4  2  +  3 

(II):  1  ← 1  2  +  1 

(I):  2  ← 5  2 

(II):  3  ← 5  1  +  3 

(II):  2  ← −3  1  +  2 

(I):  1  ← 2  1 

(6) Yes: [25 12−19] = 4[7 3 5] + 2[3 3 4]− 3[3 2 3].

(7) The inverse of A is

⎡⎢⎢⎣
1 3 −4 1
3 21 −34 8
4 14 −21 5
1 8 −13 3

⎤⎥⎥⎦.
(8) The solution set is {(4−6−5)}.
(9) Base Step: Assume A and B are two ×  nonsingular matrices. Then (AB)−1 = B−1A−1, by part

(3) of Theorem 2.12.

Inductive Step: Assume that for any set of  nonsingular × matrices, the inverse of their product is
found by multiplying the inverses of the matrices in reverse order. We must show that if A1    A+1

are nonsingular ×  matrices, then

(A1 · · ·A+1)
−1 = (A+1)

−1 · · · (A1)
−1

Now, let B = A1 · · ·A. Then by the Base Step, or by part (3) of Theorem 2.12,

(A1 · · ·A+1)
−1 = (BA+1)

−1 = (A+1)
−1B−1

= (A+1)
−1(A1 · · ·A)

−1

= (A+1)
−1(A)

−1 · · · (A1)
−1

by the inductive hypothesis.

(10) Now, (1(2(· · · ((A)) · · · )))B = 1(2(· · · ((AB)) · · · )) (by part (2) of Theorem 2.1) = I
(given). Hence 1(2(· · · ((A)) · · · )) = B−1.
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Answers for Test for Chapter 3 – Version A
(1) The area of the parallelogram is 24 square units.

(2) The determinant of 6A is 65(4) = 31104.

(3) The determinant of A is −2.
(4) Note that |AB | = |A||B | (by Theorem 3.7) = |A ||B| (by Theorem 3.10) = |AB| (again by

Theorem 3.7).

(5) The determinant of A is 1070.

(6) IfA andB−1 are similar square matrices, there is some nonsingular matrixP such thatB−1 = P−1AP.
Then, |B−1| = |P−1AP|. Since

|B−1| = 1

|B| 

by Corollary 3.8, and since

|P−1AP| =|P−1||A||P| (by Theorem 3.7) =
1

|P| |A||P| = (
1

|P| |P|)|A| = |A|

we have
1

|B| = |A|

which means |A||B| = 1
(7) The solution set is {(−2 3 5)}.

(8) (Optional hint: A() = 3 − .) Answer: P =

⎡⎣ −1 −1 −1
0 1 1
1 0 1

⎤⎦  D =

⎡⎣ 1 0 0
0 −1 0
0 0 0

⎤⎦
(9)  = 0 is an eigenvalue for A⇐⇒ A(0) = 0 ⇐⇒ |0I−A| = 0⇐⇒ |−A| = 0 ⇐⇒ (−1)|A| = 0 ⇐⇒

|A| = 0 ⇐⇒ A is singular.

(10) Let X be an eigenvector for A corresponding to the eigenvalue 1 = 2. Hence, AX = 2X. Therefore,

A3X = A2(AX) = A2(2X) = 2(A2X) = 2A(AX) = 2A(2X) = 4AX = 4(2X) = 8X

This shows that X is an eigenvector corresponding to the eigenvalue 2 = 8 for A
3.
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Answers for Test for Chapter 3 – Version B
(1) The volume of the parallelepiped is 59 cubic units.

(2) The determinant of 5A is 54(7) = 4375.

(3) The determinant of A is −1.
(4) Assume A and B are  ×  matrices and that AB = −BA, with  odd. Then, |AB| = | − BA|.

Now, |−BA| = (−1)|BA| (by Corollary 3.4) = −|BA|, since  is odd. Hence, |AB| = −|BA|. By
Theorem 3.7, this means that |A| · |B| = −|B| · |A|. Since |A| and |B| are real numbers, this can only
be true if either |A| or |B| equals zero. Hence, either A or B is singular (by Theorem 3.5).

(5) The determinant of A is −916.
(6) Case 1: Suppose  6= . Then, the (th row of ((A)) ) = th column of (A) = th column of A

(since  6= , C does not affect the th column of any matrix) = th row of A = th row of 
¡
A
¢

(since  6= ,  does not affect the th row of any matrix).

Case 2: Consider the th row of ( (A))

. The th row of ( (A))


= th column of  (A)

= (th column of A)+(th column of A) = (th row of A )+(th row of A ) = th row of 
¡
A
¢
.

Hence, every row of ( (A))

equals the corresponding row of 

¡
A
¢
, and so the matrices are equal.

(7) The solution set is {(−3−2 2)}.

(8) Optional hint: A() = 3 − 22 + . Answer: P =

⎡⎣ −1 3 1
1 0 1
0 1 1

⎤⎦  D =

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦
(9) (a) Because A is upper triangular, we can easily see that

A() = (− 2)4. Hence  = 2 is the only eigenvalue for A.

(b) The reduced row echelon form for 2I4 −A is

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦. There is only 1 non-pivot
column (column 1), and so Step 3 of the Diagonalization Method will produce only 1 fundamental
eigenvector. That fundamental eigenvector is [1 0 0 0].

(10) From the algebraic perspective, A() = 2− 6
5+1, which has no roots, since its discriminant is −6425 .

Hence, A has no eigenvalues, and so A can not be diagonalized. From the geometric perspective, for

any nonzero vector X, AX will be rotated away from X through an angle . Hence, X and AX can

not be parallel. Thus, A can not have any eigenvectors. This makes A nondiagonalizable.
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Answers for Test for Chapter 3 – Version C
(1) The volume of the parallelepiped is 2 cubic units.

(2) The determinant of A is 3.

(3) One possibility: |A| = 5

¯̄̄̄
¯̄̄̄ 0 12 0 9
0 0 0 8
0 14 11 7
15 13 10 6

¯̄̄̄
¯̄̄̄ = 5(8)

¯̄̄̄
¯̄ 0 12 0
0 14 11
15 13 10

¯̄̄̄
¯̄ = 5(8)(−12)

¯̄̄̄
0 11
15 10

¯̄̄̄
= 5(8)(−12)(−11) |15| = 79200. Cofactor expansions were used along the first row in each case, except
for the 4× 4 matrix, where the cofactor expansion was along the second row.

(4) Assume that A = A−1. Then |A | = |A−1|. By Corollary 3.8 and Theorem 3.10, we have |A| =
1|A|. Hence, |A|2 = 1, and so |A| = ±1.

(5) By the hint,  (AB) =
³

³
(AB)


´´

=
¡

¡
BA

¢¢
(by Theorem 1.18) =

¡

¡
B
¢
A
¢
(by

part (1) of Theorem 2.1) = A
¡

¡
B
¢¢

(by Theorem 1.18) = A ((B)) (by the hint).

(6) Base Step ( = 2): Let A =

∙
11 12
21 22

¸
 Note that |A| = 1122 − 1221. Since A has only two

rows, there are only two possible forms for the row operation .

Case 1:  = h1i ← h2i + h1i. Then (A) =

∙
11 + 21 12 + 22

21 22

¸
 Hence |(A)| =

(11 + 21)22 − (12 + 22)21 = 1122 + 2122 − 1221 − 2221 = 1122 − 1221 = |A|.
Case 2:  = h2i ← h1i + h2i. Then (A) =

∙
11 12

21 + 11 22 + 12

¸
 Hence |(A)| =

11(22 + 12)− 12(21 + 11) = 1122 + 1112 − 1221 − 1211 = 1122 − 1221 = |A|.
Therefore |A| = |(A)| in all possible cases when  = 2, thus completing the Base Step.

(7) The solution set is {(3−3 2)}.

(8) If P =

∙
1 2
1 1

¸
, then A = P

∙ −1 0
0 2

¸
P−1. Thus,

A9 = P

∙ −1 0
0 2

¸9
P−1 = P

∙ −1 0
0 512

¸
P−1 =

∙
1025 −1026
513 −514

¸


(9) (Optional hint: A() = (+ 1)(− 2)2.) Answer: P =

⎡⎣ −2 1 −1
0 1 0
1 0 1

⎤⎦  D =

⎡⎣ −1 0 0
0 2 0
0 0 2

⎤⎦
(10) We will show that A() = A (). (Then the linear factor ( − ) will appear exactly  times in

A () since it appears exactly  times in A().) Now, A () = |I−A | = |(I) −A | (since
(I) is diagonal, hence symmetric) = |(I −A) | (by part (2) of Theorem 1.13) = |I −A| (by
Theorem 3.10) = A().
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Answers for Test for Chapter 4 – Version A
(1) Clearly the operation ⊕ is commutative. Also, ⊕ is associative because

(x⊕ y)⊕ z = (5 + 5)15 ⊕ z = (((5 + 5)15)5 + 5)15

= ((5 + 5) + 5)15 = (5 + (5 + 5))15

= (5 + ((5 + 5)15)5)15 = x⊕ (5 + 5)15

= x⊕ (y ⊕ z)

Clearly, the real number 0 acts as the additive identity, and, for any real number , the additive inverse
of  is −, because (5 + (−)5)15 = 015 = 0, the additive identity.
Also, the first distributive law holds because

¯ (x⊕ y) = ¯ (5 + 5)15 = 15(5 + 5)15

= ((5 + 5))15 = (5 + 5)15

= ((15)5 + (15)5)15 = (15)⊕ (15)
= (¯ x)⊕ (¯ y)

Similarly, the other distributive law holds because

(+ )¯ x = (+ )15 = (+ )15(5)15

= (5 + 5)15 = ((15)5 + (15)5)15

= (15)⊕ (15) = (¯ x)⊕ (¯ x)

Associativity of scalar multiplication holds because

()¯ x = ()15 = 1515 = 15(15) = ¯ (15) = ¯ (¯ x)

Finally, 1¯ x = 115 = 1 = x.
(2) Since the set of  ×  skew-symmetric matrices is nonempty, for any  ≥ 1, it is enough to prove

closure under addition and scalar multiplication. That is, we must show that if A and B are any

two ×  skew-symmetric matrices, and if  is any real number, then A + B is skew-symmetric, and

A is skew-symmetric. However, A+B is skew-symmetric since (A+B) = A +B (by part (2)

of Theorem 1.13) = −A − B (since A and B are skew-symmetric) = −(A + B). Similarly, A is

skew-symmetric because (A) = A (by part (3) of Theorem 1.13) = (−A) = −A.

(3) Form the matrix A whose rows are the given vectors:

⎡⎣ 5 −2 −1
2 −1 −1
8 −2 1

⎤⎦. It is easily shown that A
row reduces to I3. Hence, the given vectors span R3. (Alternatively, the vectors span R3 since |A| is
nonzero.)

(4) A simplified form for the vectors in span() is:

{(3 − 52 − 2) + (+ 3) |   ∈ R} = {3 − 52 + + (−2+ 3) |   ∈ R}
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(5) Use the Independence Test Method (in Section 4.4). Note that the matrix whose columns are the

given vectors row reduces to I4. Thus, there is a pivot in every column, and the vectors are linearly

independent.

(6) The given set is a basis for M22. Since the set contains four vectors, it is only necessary to check

either that it spans M22 or that it is linearly independent (see Theorem 4.12). To check for linear

independence, form the matrix whose columns are the entries of the given matrices. (Be sure to take

the entries from each matrix in the same order.) Since this matrix row reduces to I4, the set of vectors
is linearly independent, hence a basis forM22.

(7) Using the Independence Test Method, as explained in Section 4.6, produces the basis

 = {33 − 22 + 3− 1 3 − 32 + 2− 1 113 − 122 + 13+ 3}

for span(). Since  has 3 elements, dim(span()) = 3.

(8) Let  be the set of columns of A. Because A is nonsingular, it row reduces to I. Hence, the Inde-
pendence Test Method applied to  shows that  is linearly independent. Thus,  itself is a basis for
span(). Since  has  elements, dim(span()) = , and so span() = R, by Theorem 4.13. Hence 
spans R.

(9) One possibility is  = {[2 1 0] [1 0 0] [0 0 1]}.

(10) (a) The transition matrix from  to  is

⎡⎣ −2 3 −1
4 −3 2
−3 −2 −4

⎤⎦.
(b) For v = [−63−113 62], [v] = [3−2 2], and [v] = [−14 22−13].

Copyright c° 2016 Elsevier Ltd. All rights reserved. 229



Andrilli/Hecker - Answers to Chapter Tests Chapter 4 - Version B

Answers for Test for Chapter 4 – Version B
(1) The operation ⊕ is not associative in general because

(x⊕ y)⊕ z = (3(+ ))⊕ z = 3(3(+ )) + ) = 9+ 9 + 3

while

x⊕ (y ⊕ z) = x⊕ (3( + )) = 3(+ 3( + )) = 3+ 9 + 9

instead. For a particular counterexample, (1⊕ 2)⊕ 3 = 9⊕ 3 = 30, but 1⊕ (2⊕ 3) = 1⊕ 15 = 48.
(2) The set of all polynomials in P4 for which the coefficient of the second-degree term equals the coefficient

of the fourth-degree term has the form {4 + 3 + 2 +  + }. To show this set is a subspace
of P4, it is enough to show that it is closed under addition and scalar multiplication, as it is clearly
nonempty. Clearly, this set is closed under addition because

(4 + 3 + 2 + + ) + (4 + 3 + 2 + + )

= (+ )4 + (+ )3 + (+ )2 + (+ )+ (+ )

which has the correct form because this latter polynomial has the coefficients of its second-degree and

fourth-degree terms equal. Similarly,

(4 + 3 + 2 + + ) = ()4 + ()3 + ()2 + ()+ ()

which also has the coefficients of its second-degree and fourth-degree terms equal.

(3) Let V be a vector space with subspaces W1 and W2. Let W = W1 ∩W2. First, W is clearly nonempty

because 0 ∈ W since 0 must be in both W1 and W2 due to the fact that they are subspaces Thus,
to show that W is a subspace of V, it is enough to show that W is closed under addition and scalar

multiplication. Let x and y be elements of W, and let  be any real number. Then, x and y are
elements of both W1 and W2, and since W1 and W2 are both subspaces of V, hence closed under
addition, we know that x+y is in both W1 and W2. Thus x+y is in W. Similarly, since W1 and W2

are both subspaces of V, then x is in both W1 and W2, and hence x is in W.
(4) The vector [2−4 3] is not in span(). Note that⎡⎣ 5 −2 −9

−15 6 27
−4 1 7

¯̄̄̄
¯̄ 2
−4
3

⎤⎦ row reduces to

⎡⎢⎣ 1 0 −53
0 1 1

3

0 0 0

¯̄̄̄
¯̄̄ −

8
3

−233
2

⎤⎥⎦ .
(5) A simplified form for the vectors in span() is:½



∙
1 −3
0 0

¸
+ 

∙
0 0
1 0

¸
+ 

∙
0 0
0 1

¸ ¯̄̄̄
   ∈ R

¾
=

½∙
 −3
 

¸ ¯̄̄̄
   ∈ R

¾


(6) Form the matrix A whose columns are the coefficients of the polynomials in . Row reducing A shows

that there is a pivot in every column. Hence  is linearly independent by the Independence Test

Method in Section 4.4. Hence, since  has four elements and dim(P3) = 4, Theorem 4.12 shows that 
is a basis for P3. Therefore,  spans P3, showing that p() can be expressed as a linear combination of
the elements in . Finally, since  is linearly independent, the uniqueness assertion is true by Theorem
4.9.
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(7) A basis for span() is
{[2−3 4−1] [3 1−2 2] [2 8−12 3]}

Hence, dim(span()) = 3. Since dim(R4) = 4,  does not span R4.

(8) Since A is nonsingular, A is also nonsingular (by part (4) of Theorem 2.12). Therefore A row

reduces to I, giving a pivot in every column. The Independence Test Method from Section 4.4 now

shows the columns of A , and hence the rows of A, are linearly independent.

(9) One possible answer:  = {[2 1 0 0] [−3 0 1 0] [1 0 0 0], [0 0 0 1]}

(10) (a) The transition matrix from  to  is

⎡⎣ 3 −1 1
2 4 −3
−4 2 3

⎤⎦.
(b) For v = −1002 + 64− 181, [v] = [2−4−1], and [v] = [9−9−19].
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Answers for Test for Chapter 4 – Version C
(1) From part (2) of Theorem 4.1, we know 0v = 0 in any general vector space. Thus,

0¯ [ ] = [0+ 3(0)− 3 0 − 4(0) + 4] = [−3 4]
is the additive identity 0 in this given vector space. Similarly, by part (3) of Theorem 4.1, (−1)v is
the additive inverse of v. Hence, the additive inverse of [ ] is

(−1)¯ [ ] = [−− 3− 3− + 4 + 4] = [−− 6− + 8]

(2) Let W be the set of all 3-vectors orthogonal to [2−3 1]. First, [0 0 0] ∈W because

[0 0 0] · [2−3 1] = 0
Hence W is nonempty. Thus, to show that W is a subspace of R3, it is enough to show that W is

closed under addition and scalar multiplication. Let xy ∈W; that is, let x and y both be orthogonal
to [2−3 1]. Then, x+ y is also orthogonal to [2−3 1], because

(x+ y) · [2−3 1] = (x · [2−3 1]) + (y · [2−3 1]) = 0 + 0 = 0
Similarly, if  is any real number, and x is in W, then x is also in W because

(x) · [2−3 1] = (x · [2−3 1]) (by part (4) of Theorem 1.5)

= (0) = 0

(3) The vector [−3 6 5] is in span() since it equals
11
5 [3−6−1]− 12

5 [4−8−3] + 0[5−10−1]

(4) A simplified form for the vectors in span() is:

{(3 − 2+ 4) + (2 + 3− 2) |   ∈ R} = {3 + 2 + (−2+ 3)+ (4− 2) |   ∈ R}

(5) Form the matrix A whose columns are the entries of each given matrix (taking the entries in the same

order each time). Noting that every column in the reduced row echelon form for A contains a pivot,

the Independence Test Method from Section 4.4 shows that the given set is linearly independent.

(6) Using the Independence Test Method, as explained in Section 4.6, produces the basis

 =

½∙
3 −1
−2 4

¸


∙
2 1
−2 0

¸


∙
4 −3
−2 2

¸¾


for span(). Since  has 3 elements, dim(span()) = 3.

(7) Note that span() is the row space of A . Now A is also singular (use Theorem 2.12), and so

rank(A )   by Theorem 2.15. Hence, the Simplified Span Method as explained in Section 4.6 for

finding a basis for span() will produce fewer than  basis elements (the nonzero rows of the reduced
row echelon form of A ), showing that dim(span())  .

(8) One possible answer is {23 − 32 + 3+ 1−3 + 42 − 6− 2 3 }. (This is obtained by enlarging
 with the standard basis for P3 and then eliminating 2 and 1 for redundancy.)
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(9) First, by Theorem 4.4, 1 is a subspace of R, and so by Theorem 4.13, dim(1) ≤ dim(R) = . But,
if dim(1) = , then Theorem 4.13 shows that 1 = R. Hence, for every vector X ∈ R, AX = X.
In particular, this is true for each vector e1     e. Using these vectors as columns forms the matrix
I. Thus we see that AI = I. implying A = I. This contradicts the given condition A 6= I. Hence
dim(1) 6= , and so dim(1)  .

(10) (a) The transition matrix from  to  is

⎡⎣ 2 −1 3
3 −2 2
1 −2 3

⎤⎦.
(b) For v = [−109 155−71], [v] = [−1 3−3], and [v] = [−14−15−16].
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Answers to Test for Chapter 5 – Version A
(1) To show  is a linear operator, we must show that (A1+A2) = (A1)+(A2), for all A1A2 ∈M,

and that (A) = (A), for all  ∈ R and all A ∈M. However, the first equation holds since

B(A1 +A2)B
−1 = BA1B

−1 +BA2B
−1

by the distributive laws of matrix multiplication over addition. Similarly, the second equation holds

true since

B(A)B−1 = BAB−1

by part (4) of Theorem 1.16.

(2) ([2−3 1]) = [−1−11 4].

(3) The matrix A =

⎡⎣ 167 117
46 32

−170 −119

⎤⎦.
(4) The kernel of  = {[2 +  −3 ] |   ∈ R}. Hence, a basis for ker() = {[2 1 0 0] [1 0−3 1]}.

A basis for range() is the set {[4−3 4] [−1 1 2]}, the first and third columns of the original matrix.
Thus, dim(ker()) + dim(range()) = 2 + 2 = 4 = dim(R4), and the Dimension Theorem is verified.

(5) (a) Now, dim(range()) ≤ dim(R3) = 3. Hence dim(ker()) = dim(P3) − dim(range()) (by the
Dimension Theorem) = 4− dim(range()) ≥ 4− 3 = 1. Thus, ker() is nontrivial.

(b) Any nonzero polynomial p in ker() satisfies the given conditions.

(6) The 3× 3 matrix given in the definition of  is clearly the matrix for  with respect to the standard
basis for R3. Since the determinant of this matrix is −1, it is nonsingular. Theorem 5.16 thus shows

that  is an isomorphism, implying also that it is one-to-one.

(7) First,  is a linear operator, because

(p1 + p2) = (p1 + p2)− (p1 − p2)0 = (p1 − p10) + (p2 − p20) = (p1) + (p2)

and because

(p) = p− (p)0 = p− p0 = (p− p0) = (p)

Since the domain and codomain of  have the same dimension, in order to show  is an isomorphism,
it is only necessary to show either  is one-to-one, or  is onto (by Corollary 5.13). We show  is

one-to-one. Suppose (p) = 0 (the zero polynomial). Then, p − p0 = 0, and so p = p0. But these

polynomials have different degrees unless p is constant, in which case p0 = 0. Therefore, p = p0 = 0.
Hence, ker() = {0}, and  is one-to-one.

(8)  =

µ∙
1 0
0 0

¸


∙
0 1
1 0

¸


∙
0 0
0 1

¸


∙
0 −1
1 0

¸¶
, P =

⎡⎢⎢⎣
1 0 0 0
0 1 0 −1
0 1 0 1
0 0 1 0

⎤⎥⎥⎦, D =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

⎤⎥⎥⎦
Other answers for  and P are possible since the eigenspace 0 is three-dimensional.

(9) (a) False

(b) True
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(10) The matrix for  with respect to the standard basis for P3 is lower triangular with all 1’s on the main
diagonal. (The th column of this matrix consists of the coefficients of (+1)4− in order of descending
degree.) Thus, () = (−1)4, and  = 1 is the only eigenvalue for . Now, if  were diagonalizable,
the geometric multiplicity of  = 1 would have to be 4, and we would have 1 = P3. This would imply
that (p) = p for all p ∈ P3. But this is clearly false since the image of the polynomial  is + 1.
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Answers to Test for Chapter 5 – Version B
(1) To show  is a linear operator, we must show that (A1+A2) = (A1)+(A2), for all A1A2 ∈M,

and that (A) = (A), for all  ∈ R and all A ∈M. However, the first equation holds since

(A1 +A2) + (A1 +A2)
 = A1 +A2 +A1

 +A2
 (by part (2) of Theorem 1.13)

= (A1 +A2) + (A1 +A2)
 = A1 +A2 +A1

 +A2


= (A1 +A1
 ) + (A2 +A2

 ) (by commutativity of matrix addition).

Similarly,

(A) = (A) + (A) = A+ A = (A+A ) = (A)

(2) ([6−4 7]) = −2 + 2+ 3

(3) The matrix A =

⎡⎣ −55 165 49 56
−46 139 42 45
32 −97 −29 −32

⎤⎦.
(4) The kernel of  = {[3−2  0] |  ∈ R}. Hence, a basis for ker() = {[3−2 1 0]}. The range of  is

spanned by columns 1, 2, and 4 of the original matrix. Since these columns are linearly independent, a
basis for range() = {[2 1−4 4] [5−1 2 1] [8−1 1 2]}. The Dimension Theorem is verified because
dim(ker()) = 1, dim(range()) = 3, and the sum of these dimensions equals the dimension of R4 the
domain of .

(5) (a) This statement is true. For, dim(range(1)) = rank(A) (by part (1) of Theorem 5.9) = rank(A
 )

(by Corollary 5.11) = dim(range(2)) (by part (1) of Theorem 5.9).

(b) This statement is false. For a particular counterexample, use A = O, in which case

dim(ker(1)) =  6=  = dim(ker(2))

In general, using the Dimension Theorem,

dim(ker(1)) = − dim(range(1))
and

dim(ker(2)) = − dim(range(1))
But, by part (a),

dim(range(1)) = dim(range(2))

and since  6= , dim(ker(1)) can never equal dim(ker(2)).

(6) Solving the appropriate homogeneous system to find the kernel of  gives ker() =

½∙
0 0
0 0

¸¾
.

Hence,  is one-to-one by part (1) of Theorem 5.12. Since the domain and codomain of  have the
same dimension,  is also an isomorphism by Corollary 5.13.

(7) First,  is a linear operator, since

(B1 +B2) = (B1 +B2)A
−1 = B1A−1 +B2A−1 = (B1) + (B2)

and since

(B) = (B)A−1 = (BA−1) = (B)
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Since the domain and codomain of  have the same dimension, in order to show that  is an isomor-
phism, by Corollary 5.13 it is enough to show either that  is one-to-one, or that  is onto. We show 
is one-to-one. Suppose (B1) = (B2). Then B1A

−1 = B2A−1. Multiplying both sides on the right
by A gives B1 = B2. Hence,  is one-to-one.

(8) (Optional Hint: () = 4 − 22 + 1 = (− 1)2(+ 1)2.)
Answer:

 =

µ∙
3 0
2 0

¸


∙
0 3
0 2

¸


∙
2 0
1 0

¸


∙
0 2
0 1

¸¶


A =

⎡⎢⎢⎣
−7 0 12 0
0 −7 0 12
−4 0 7 0
0 −4 0 7

⎤⎥⎥⎦, P =
⎡⎢⎢⎣
3 0 2 0
0 3 0 2
2 0 1 0
0 2 0 1

⎤⎥⎥⎦, D =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎦
Other answers for  and P are possible since the eigenspaces 1 and −1 are both two-dimensional.

(9) (a) False

(b) False

(10) All vectors parallel to [4−2 3] are mapped to themselves under , and so  = 1 is an eigenvalue for
. Now, all other nonzero vectors in R3 are rotated around the axis through the origin parallel to
[4−2 3], and so their images under  are not parallel to themselves. Hence 1 is the one-dimensional
subspace spanned by [4−2 3], and there are no other eigenvalues. Therefore, the sum of the geometric
multiplicities of all eigenvalues is 1, which is less than 3, the dimension of R3. Thus Theorem 5.28

shows that  is not diagonalizable.
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Answers to Test for Chapter 5 – Version C
(1) To show that  is a linear transformation, we must prove that (p+q) = (p)+(q) and that (p) =

(p) for all pq ∈ P and all  ∈ R. Let p = 
+ · · ·+1+0 and let q = 

+ · · ·+ 1+ 0.
Then

(p+ q) = (
 + · · ·+ 1+ 0 + 

 + · · ·+ 1+ 0)

= (( + )
 + · · ·+ (1 + 1)+ (0 + 0))

= ( + )A
 + · · ·+ (1 + 1)A+ (0 + 0)I

= A
 + · · ·+ 1A+ 0I + A

 + · · ·+ 1A+ 0I

= (p) + (q)

Similarly,

(p) = ((
 + · · ·+ 1+ 0))

= (
 + · · ·+ 1+ 0)

= A
 + · · ·+ 1A+ 0I

= (A
 + · · ·+ 1A+ 0I)

= (p)

(2) ([−3 1−4]) =
∙ −29 21
−2 6

¸
.

(3) The matrix A =

⎡⎢⎢⎣
−44 91 350
−13 23 118
−28 60 215
−10 16 97

⎤⎥⎥⎦.

(4) The matrix for  with respect to the standard bases forM22 and P2 is A =

⎡⎣ 1 0 0 1
1 0 −1 0
0 1 0 0

⎤⎦, which
row reduces to

⎡⎣ 1 0 0 1
0 1 0 0
0 0 1 1

⎤⎦. Hence ker() = ½


∙ −1 0
−1 1

¸ ¯̄̄̄
 ∈ R

¾
, which has dimension 1. A

basis for range() consists of the first three “columns” of A, and hence dim(range()) = 3, implying
range() = P2. Note that dim(ker()) + dim(range()) = 1 + 3 = 4 = dim(M22), thus verifying the
Dimension Theorem.

(5) (a) v ∈ ker(1) =⇒ 1(v) = 0W =⇒ 2(1(v)) = 2(0W) =⇒ (2 ◦ 1)(v) = 0Y
=⇒ v ∈ ker(2 ◦ 1). Hence, ker(1) ⊆ ker(2 ◦ 1).

(b) By part (a) and Theorem 4.13, dim(ker(1)) ≤ dim(ker(2 ◦ 1)). Hence, by the Dimension
Theorem, dim(range(1)) = dim(V)− dim(ker(1)) ≥ dim(V)− dim(ker(2 ◦ 1))
= dim(range(2 ◦ 1)).

(6) Solving the appropriate homogeneous system to find the kernel of  shows that ker() consists only
of the zero polynomial. Hence,  is one-to-one by part (1) of Theorem 5.12. Also, dim(ker()) = 0.
However,  is not an isomorphism, because by the Dimension Theorem, dim(range()) = 3, which is
less than the dimension of the codomain R4.
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(7) First, we must show that  is a linear transformation. Now

([1     ] + [1     ]) = ([1 + 1      + ])

= (1 + 1)v1 + · · ·+ ( + )v

= 1v1 + 1v1 + · · ·+ v + v

= 1v1 + · · ·+ v + 1v1 + · · ·+ v

= ([1     ]) + ([1     ])

Also,

([1     ]) = ([1     ])

= 1v1 + · · ·+ v

= (1v1 + · · ·+ v)

= ([1     ])

In order to prove that  is an isomorphism, it is enough to show that  is one-to-one or that  is onto
(by Corollary 5.13), since the dimensions of the domain and the codomain are the same. We show

that  is one-to-one. Suppose ([1     ]) = 0V . Then 1v1 + 2v2 + · · ·+ v = 0V , implying
1 = 2 = · · · =  = 0 because  is a linearly independent set (since  is a basis for V). Hence
[1     ] = [0     0]. Therefore, ker() = {[0     0]}, and  is one-to-one by part (1) of Theorem
5.12.

(8)  = (2 − + 2 2 − 2 2 + 2), P =
⎡⎣ 1 1 1
−1 −2 0
2 0 2

⎤⎦, D =

⎡⎣ 0 0 0
0 1 0
0 0 1

⎤⎦
Other answers for  and P are possible since the eigenspace 1 is two-dimensional.

(9) (a) True

(b) True

(10) If p is a nonconstant polynomial, then p0 is nonzero and has a degree lower than that of p. Hence
p0 6= p, for any  ∈ R. Hence, nonconstant polynomials can not be eigenvectors. All constant

polynomials, however, are in the eigenspace 0 of  = 0. Thus, 0 is one-dimensional. Therefore, the
sum of the geometric multiplicities of all eigenvalues is 1, which is less than dim(P) =  + 1, since
  0. Hence  is not diagonalizable by Theorem 5.28.
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Answers for Test for Chapter 6 – Version A
(1) Performing the Gram-Schmidt Process as outlined in the text and using appropriate multiples to avoid

fractions leads to the following basis: {[4−3 2] [13 12−8] [0 2 3]}.

(2) Matrix for  = 1
9

⎡⎣ 7 4 −4
4 1 8
−4 8 1

⎤⎦.
(3) Performing the Gram-Schmidt Process as outlined in the text and using appropriate multiples to avoid

fractions leads to the following basis for W: {[2−3 1] [−11−1 19]}. Continuing the process leads to
the following basis for W⊥: {[8 7 5]}. Also, dim(W⊥) = 1.

(4) kAxk2 = Ax ·Ax = x · x (by Theorem 6.9) = kxk2. Taking square roots yields kAxk = kxk.
(5) Let w ∈ W. We need to show that w ∈ (W⊥)⊥. To do this, we need only prove that w⊥v for all

v ∈W⊥. But, by the definition of W⊥, w · v = 0, since w ∈W, which completes the proof.
(6) The characteristic polynomial is () = 2( − 1)2 = 4 − 23 + 2. (This is the characteristic

polynomial for every orthogonal projection onto a 2-dimensional subspace of R4.)

(7) If v1 and v2 are unit vectors in the given plane with v1 ⊥ v2, then the matrix for  with respect to
the ordered orthonormal basisµ

1√
70
[3 5−6]v1v2

¶
is

⎡⎣ 0 0 0
0 1 0
0 0 1

⎤⎦ 
(8) (Optional Hint: () = 3 − 182 + 81.)

Answer:  = (13 [2−2 1] 13 [1 2 2] 13 [2 1−2]), D =

⎡⎣ 0 0 0
0 9 0
0 0 9

⎤⎦ 
Other answers for  are possible since the eigenspace 9 is two-dimensional. Another likely answer

for  is (13 [2−2 1] 1√
2
[1 1 0] 1√

18
[−1 1 4]).

(9) A3 =

µ
1√
5

∙ −1 2
2 1

¸¶ ∙ −1 0
0 8

¸µ
1√
5

∙ −1 2
2 1

¸¶
.

Hence, one possible answer is

A =

µ
1√
5

∙ −1 2
2 1

¸¶ ∙ −1 0
0 2

¸µ
1√
5

∙ −1 2
2 1

¸¶
= 1

5

∙
7 6
6 −2

¸


(10) (Optional Hint: Use the definition of a symmetric operator to show that (2 − 1)(v1 · v2) = 0.)
Answer:  symmetric =⇒ v1·(v2) = (v1)·v2 =⇒ v1·(2v2) = (1v1)·v2 =⇒ 2(v1·v2) = 1(v1·v2)
=⇒ (2 − 1)(v1 · v2) = 0 =⇒ (v1 · v2) = 0 (since 2 6= 1) =⇒ v1⊥v2.
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Answers for Test for Chapter 6 – Version B
(1) Performing the Gram-Schmidt Process as outlined in the text and using appropriate multiples to avoid

fractions leads to the following basis: {[2−3 1] [30 11−27] [5 6 8]}.

(2) Matrix for  = 1
25

⎡⎣ 16 0 −12
0 25 0

−12 0 9

⎤⎦.
(3) Performing the Gram-Schmidt Process as outlined in the text and using appropriate multiples to avoid

fractions leads to the following basis for W: {[2 2−3] [33−18 10]}. Continuing the process leads to
the following basis for W⊥: {[2 7 6]}. Using this information, we can show that [−12−36−43] =
[0 6 7] + [−12−42−36], where the first vector of this sum is in W, and the second is in W⊥.

(4) Because A and B are orthogonal, AA = BB = I. Hence,

(AB)(AB) = (AB)(BA )

= A(BB )A

= AIA
 = AA = I

Thus, AB is orthogonal.

(5) By Corollary 6.13, dim(W) =  − dim(W⊥) =  − ( − dim((W⊥)⊥)) = dim((W⊥)⊥). Thus, by
Theorem 4.13, W = (W⊥)⊥.

(6) Now  is an orthogonal basis for W, and so

projWv =
v · [0 3 6−2]

[0 3 6−2] · [0 3 6−2] [0 3 6−2] +
v · [−6 2 0 3]

[−6 2 0 3] · [−6 2 0 3] [−6 2 0 3] =
1
7 [−24 17 18 6]

Thus, projW⊥v = v− projWv = 1
7 [3 18−11−6].

(7) Yes, by Theorems 6.19 and 6.22, because the matrix for  with respect to the standard basis is

symmetric.

(8) (Optional Hint: 1 = 0, 2 = 49)

Answer:  = (17 [−3 6 2] 17 [6 2 3] 17 [2 3−6]), D =

⎡⎣ 0 0 0
0 49 0
0 0 49

⎤⎦ 
Other answers for  are possible since the eigenspace 49 is two-dimensional. Another likely answer

for  is (17 [−3 6 2] 1√
5
[2 1 0] 1√

245
[2−4 15]).

(9) A2 =

µ
1√
2

∙
1 −1
1 1

¸¶ ∙
4 0
0 16

¸µ
1√
2

∙
1 1
−1 1

¸¶
.

Hence, one possible answer is

A =

µ
1√
2

∙
1 −1
1 1

¸¶ ∙
2 0
0 4

¸µ
1√
2

∙
1 1
−1 1

¸¶
=

∙
3 −1
−1 3

¸
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(10) (Optional Hint: Consider the orthogonal diagonalization of A and the fact that A2 = AA .)

Answer: Since A is symmetric, it is orthogonally diagonalizable. So there is an orthogonal matrix P
and a diagonal matrix D such that D = P−1AP, or equivalently,

A = PDP−1 = PDP 

Since all eigenvalues of A are ±1, D has only these values on its main diagonal, and hence D2 = I.
Therefore,

AA = PDP (PDP )

= PDP ((P )DP )

= PDP (PDP )

= PD(PP)DP

= PDIDP


= PD2P

= PIP


= PP

= I

Thus, A = A−1, and A is orthogonal.
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Answers for Test for Chapter 6 – Version C
(1) (Optional Hint: The two given vectors are orthogonal. Therefore, only two additional vectors need

to be found.) Performing the Gram-Schmidt Process as outlined in the text and using appropriate

multiples to avoid fractions leads to the following basis:

{[−3 1−1 2] [2 4 0 1] [22−19−21 32] [0 1−7−4]}

(2) Matrix for  = 1
9

⎡⎣ 5 −4 2
−4 5 2
2 2 8

⎤⎦.
(3) Performing the Gram-Schmidt Process as outlined in the text and using appropriate multiples to avoid

fractions leads to the following basis for W: {[5 1−2] [2 0 5]}. Continuing the process leads to the
following basis for W⊥: {[5−29−2]}. Also, dim(W⊥) = 1.

(4) Suppose  is odd. Then

|A|2 = |A2| = |AA| = |A(−A )| = |−AA | = (−1)|AA | = (−1)|I| = −1

But |A|2 can not be negative. This contradiction shows that  is even.
(5) Let w2 ∈W⊥2 . We must show that w2 ∈W⊥1 . To do this, we show that w2 ·w1 = 0 for all w1 ∈W1.

So, let w1 ∈ W1 ⊆ W2. Thus, w1 ∈ W2. Hence, w1 ·w2 = 0, because w2 ∈ W⊥2 . This completes the
proof.

(6) Let v = [5 1 0−4]. Then, projWv = 1
3 [14 5−2−12]; projW⊥v = 1

3 [1−2 2 0]; minimum distance

=
°°1
3 [1−2 2 0]

°° = 1.
(7) If v1 and v2 are unit vectors in the given plane with v1 ⊥ v2, then the matrix for  with respect to

the ordered orthonormal basisµ
1√
26
[4−3−1]v1v2

¶
is

⎡⎣ −1 0 0
0 1 0
0 0 1

⎤⎦ 
Hence,  is orthogonally diagonalizable. Therefore,  is a symmetric operator, and so its matrix with
respect to any orthonormal basis is symmetric. In particular, this is true of the matrix for  with

respect to the standard basis.

(8) (Optional Hint: 1 = 121, 2 = −121) Answer:

 =
¡
1
11 [2 6−9] 111 [−9 6 2] 111 [6 7 6]

¢
; D =

⎡⎣ 121 0 0
0 121 0
0 0 −121

⎤⎦ 
Other answers for  are possible since the eigenspace 121 is two-dimensional. Another likely answer
for  is µ

1√
85
[−7 6 0] 1

11
√
85
[−36−42 85] 111 [6 7 6]

¶
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(9) A2 =

µ
1√
10

∙
3 1
−1 3

¸¶ ∙
0 0
0 100

¸µ
1√
10

∙
3 −1
1 3

¸¶
.

Hence, one possible answer is

A =

µ
1√
10

∙
3 1
−1 3

¸¶ ∙
0 0
0 10

¸µ
1√
10

∙
3 −1
1 3

¸¶
=

∙
1 3
3 9

¸


(10) (Optional Hint: First show that A and B orthogonally diagonalize to the same matrix.)

Answer: First, because A and B are symmetric, they are orthogonally diagonalizable by Corollary

6.23. But, since the characteristic polynomials of A and B are equal, these matrices have the same

eigenvalues with the same algebraic multiplicities. Thus, there is a single diagonal matrix D having
these eigenvalues on its main diagonal, such thatD = P−11 AP1 andD = P−12 BP2, for some orthogonal
matrices P1 and P2. Hence P

−1
1 AP1 = P−12 BP2, or A = P1P

−1
2 BP2P

−1
1 . Let P = P1P

−1
2  Then

A = PBP−1, where P is orthogonal by parts (2) and (3) of Theorem 6.6.
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Answers to Test for Chapter 7 – Version A
(1) a · b = b · a = [2− 2−1 +  5]

(2) (P∗HP)∗ = P∗H∗(P∗)∗ (by part (5) of Theorem 7.2) = P∗H∗P (by part (1) of Theorem 7.2) =
P∗HP (since H is Hermitian). Hence P∗HP is Hermitian.

(3) (a) False

(b) False

(4) 1 = 1 + , 2 = 1− 2

(5) Let A =

∙
0 1
1 0

¸
. Then A() = 2 + 1, which has no real roots. Hence A has no real eigenvalues,

and so is not diagonalizable as a real matrix. However, A() has complex roots  and −. Thus, this
2× 2 matrix has two complex distinct eigenvalues, and thus must be diagonalizable.

(6) (Optional Hint: () = 3 − 22 − .)
Answer: 1 = 0, 2 = ; basis for 0 = {[1 + − 1]}, basis for  = {[ 0 1] [0 1 0]}.
 is diagonalizable.

(7) The statement is false. The polynomial  is in the given subset, but  is not. Hence, the subset is not
closed under scalar multiplication.

(8)  = {[1 + 3 2 +  1− 2] [1 2 3 + ]}

(9)
As a complex linear

transformation:
As a real linear transformation:

∙
1  0 0
0 0 1 

¸ ⎡⎢⎢⎣
1 0 0 −1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 1 0

⎤⎥⎥⎦
(10) (Optional Hint: The two given vectors are already orthogonal.)

Answer: {[1  1 + ] [3−−1− ] [0 2−1 + ]}

(11) P =
√
2
2

∙
1 1
1 −1

¸
(12) (AB)∗ = B∗A∗ = B−1A−1 = (AB)−1, and so AB is unitary. Also,

¯̄̄
|A|
¯̄̄2
= |A| |A| = |A| |A∗| (by

part (3) of Theorem 7.5) = |AA∗| = |I| = 1.
(13) Proofs for the five properties of an inner product:

(1) hf  fi = f2(0) + f2(1) + f2(2) ≥ 0, since the sum of squares is always nonnegative.

(2) Suppose f() = 2 + + . Then hf  fi = 0
=⇒ f(0) = 0 f(1) = 0 f(2) = 0 (since a sum of squares of real numbers can only be zero if

each number is zero)

=⇒ (  ) satisfies ⎧⎨⎩  = 0
 +  +  = 0
4 + 2 +  = 0
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=⇒  =  =  = 0 (since the coefficient matrix of the homogeneous system has determinant −2 ).
Conversely, it is clear that h00i = 0.

(3) hf gi = f(0)g(0) + f(1)g(1) + f(2)g(2)
= g(0)f(0) + g(1)f(1) + g(2)f(2) = hg fi

(4) hf + ghi = (f(0) + g(0))h(0) + (f(1) + g(1))h(1) + (f(2) + g(2))h(2)
= f(0)h(0) + g(0)h(0) + f(1)h(1) + g(1)h(1) + f(2)h(2) + g(2)h(2)
= f(0)h(0) + f(1)h(1) + f(2)h(2) + g(0)h(0) + g(1)h(1) + g(2)h(2)
= hf hi + hghi

(5) hf gi = (f)(0)g(0) + (f)(1)g(1) + (f)(2)g(2)
= f(0)g(0) + f(1)g(1) + f(2)g(2)
= (f(0)g(0) + f(1)g(1) + f(2)g(2))
= hf gi

Also, hf gi = 14 and kfk = √35.
(14) The distance between x and y is 11.

(15) Note that hx+ yx− yi = hxxi + hx−yi + hyxi + hy−yi = kxk2 − kyk2. So, if kxk = kyk, then
hx+ yx− yi = kxk2 − kyk2 = 0.
Conversely, hx+ yx− yi = 0 =⇒ kxk2 − kyk2 = 0 =⇒ kxk2 = kyk2 =⇒ kxk = kyk.

(16) {2  3− 52}
(17) w1 = [−8−5 16], w2 = [8 6−19]
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Answers to Test for Chapter 7 – Version B

(1) A∗B =
∙ −1 + 14 33− 3
−5− 5 5 + 2

¸
(2) (H)∗ = H∗ (by part (3) of Theorem 7.2) = (−)H∗ = (−)H (sinceH is Hermitian) = −(H). Hence,

H is skew-Hermitian.

(3) (a) False

(b) True

(4) The determinant of the matrix of coefficients is 1, and so the inverse matrix is

∙
6 + 5 −2− 14
−2 +  4 + 

¸
.

Using this gives 1 = 2 +  and 2 = −.
(5) Let A be an  ×  complex matrix. By the Fundamental Theorem of Algebra, A() factors into 

linear factors. Hence, A() = ( − 1)
1 · · · ( − )

 , where 1      are the eigenvalues of A,
and 1      are their corresponding algebraic multiplicities. But, since the degree of A() is ,P

=1  = .

(6)  = ; basis for  = {[1 2]}.  is not diagonalizable.
(7) The set of Hermitian × matrices is not closed under scalar multiplication, and so is not a subspace

ofMC
. To see this, note that 

∙
1 0
0 0

¸
=

∙
 0
0 0

¸
. However,

∙
1 0
0 0

¸
is Hermitian and

∙
 0
0 0

¸
is not. Since the set of Hermitian ×  matrices is not a vector space, it does not have a dimension.

(8)  = {[1 0 ] [0 1 1− ]}

(9) Note that 

µ


∙
1 0
0 0

¸¶
= 

µ∙
 0
0 0

¸¶
=

∙
 0
0 0

¸∗
=

∙ − 0
0 0

¸
, but 

µ∙
1 0
0 0

¸¶
=



∙
1 0
0 0

¸∗
= 

∙
1 0
0 0

¸
=

∙
 0
0 0

¸
.

(10) {[1 +  1−  2] [3 −1 + ] [0 2−1− ]}

(11) Now, Z∗ =
∙

1−  1 + 
−1−  1− 

¸
and ZZ∗ =

∙
4 4

−4 4

¸
= Z∗Z. Hence, Z is normal. Thus, by Theorem

7.9, Z is unitarily diagonalizable.

(12) Now, A unitary implies AA∗ = I. Suppose A
2 = I. Hence AA

∗ = AA. Multiplying both sides
by A−1 (= A∗) on the left yields A∗ = A, and A is Hermitian. Conversely, if A is Hermitian, then

A = A∗. Hence AA∗ = I yields A2 = I.

(13) Proofs for the five properties of an inner product:

(1) hxxi = Ax ·Ax ≥ 0, since · is an inner product.
(2) hxxi = 0 =⇒ Ax ·Ax = 0 =⇒ Ax = 0 (since · is an inner product)

=⇒ x = 0 (since A is nonsingular)

Conversely, h00i = A0 ·A0 = 0 · 0 = 0.
(3) hxyi = Ax ·Ay = Ay ·Ax = hyxi
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(4) hx+ y zi = A(x+ y) ·Az = (Ax+Ay) ·Az = Ax ·Az+Ay ·Az = hx zi + hy zi
(5) hxyi = A(x) ·Ay = (Ax) · (Ay) = ((Ax) · (Ay)) = hxyi
Also, hxyi = 35 and kxk = 7.

(14) The distance between w and z is 8.

(15) 1
4(kx+ yk2 − kx− yk2) = 1

4(hx+ yx+ yi − hx− yx− yi)
= 1

4(hx+ yxi + hx+ yyi − hx− yxi + hx− yyi)
= 1

4(hxxi + hyxi + hxyi + hyyi − hxxi + hyxi + hxyi − hyyi)
= 1

4(4hxyi) = hxyi.
(16) {2 17− 92 2− 3+ 2}
(17) w1 =

25
4 

2, w2 = + 3− 25
4 

2
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Answers to Test for Chapter 7 – Version C

(1) AB∗ =
∙
14− 5 1 + 4
8− 7 8− 3

¸
(2) HJ = (HJ)∗ = J∗H∗ = JH, because H, J, and HJ are all Hermitian.

(3) (a) True

(b) True

(4) 1 = 4− 3, 2 = −1 + 

(5) LetA be an × complex matrix that is not diagonalizable. By the Fundamental Theorem of Algebra,
A() factors into  linear factors. Hence, A() = ( − 1)

1 · · · ( − )
 , where 1      are

the eigenvalues of A, and 1      are their corresponding algebraic multiplicities. Now, since the

degree of A() is ,
P

=1  = . Hence, if each geometric multiplicity actually equaled each algebraic
multiplicity for each eigenvalue, then the sum of the geometric multiplicities would also be , implying
that A is diagonalizable. However, since A is not diagonalizable, some geometric multiplicity must be

less than its corresponding algebraic multiplicity.

(6) 1 = 2, 2 = 2; basis for 2 = {[1 1]}, basis for 2 = {[1 ]}.  is diagonalizable.

(7) We need to find normal matrices Z andW such that (Z+W) is not normal. Note that Z =

∙
1 1
1 0

¸
and W =

∙
0 
 0

¸
are normal matrices (Z is Hermitian and W is skew-Hermitian). Let Y =

Z+W =

∙
1 1 + 

1 +  0

¸
. Then YY∗ =

∙
1 1 + 

1 +  0

¸ ∙
1 1− 

1−  0

¸
=

∙
2 1− 

1 +  2

¸
, while

Y∗Y =

∙
1 1− 

1−  0

¸ ∙
1 1 + 

1 +  0

¸
=

∙
2 1 + 

1−  2

¸
, and so Y is not normal.

(8) One possibility:  = {[1 3 +   1− ] [1 +  3 + 4−1 +  2] [1 0 0 0] [0 0 1 0]}
(9) Let  be such that  , the th entry of w, does not equal zero. Then, (e) = () = 1(−).

However, (e) = ()(1). Setting these equal gives − =  , which implies 0 = 2 , and thus

 = 0. But this contradicts the assumption that  6= 0.
(10) (Optional Hint: The last vector in the given basis is already orthogonal to the first two.)

Answer: {[2−  1 + 2 1] [5 6−1 + 2] [−1 0 2 + ]}
(11) Because the rows of Z form an orthonormal basis for C, by part (1) of Theorem 7.7, Z is a unitary

matrix. Hence, by part (2) of Theorem 7.7, the columns of Z form an orthonormal basis for C.

(12) (a) Note that AA∗ = A∗A =

∙
1825 900
−900 1300

¸
.

(b) (Optional Hint: A() = 2 − 25+ 1250, or, 1 = 25 and 2 = −50.)
Answer: P = 1

5

∙
3 4
4 −3

¸
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(13) Proofs for the five properties of an inner product:

Property 1: hxxi = 211 − 12 − 21 + 22 = 21 + 21 − 212 + 22 = 21 + (1 − 2)
2 ≥ 0.

Property 2: hxxi = 0 precisely when 1 = 0 and 1 − 2 = 0, which is when 1 = 2 = 0.
Property 3: hyxi = 211 − 12 − 21 + 22 = 211 − 12 − 21 + 22 = hxyi
Property 4: Let z = [1 2]. Then, hx+ y zi

= 2(1 + 1)1 − (1 + 1)2 − (2 + 2)1 + (2 + 2)2
= 211 + 211 − 12 − 12 − 21 − 21 + 22 + 21
= 211 − 12 − 21 + 22 + 211 − 12 − 21 + 21
= hx zi + hy zi

Property 5: hxyi = 2(1)1 − (1)2 − (2)1 + (2)2
= (211 − 12 − 21 + 22) = hxyi

Also, hxyi = 0 and kxk = √5.
(14) Distance between f and g is

√
.

(15) x ⊥ y ⇐⇒ hxyi = 0 ⇐⇒ 2hxyi = 0⇐⇒ kxk2 + 2hxyi + kyk2 = kxk2 + kyk2
⇐⇒ hxxi + hxyi + hyxi + hyyi = kxk2 + kyk2 ⇐⇒ hxx+ yi + hyx+ yi = kxk2 + kyk2
⇐⇒ hx+ yx+ yi = kxk2 + kyk2 ⇐⇒ kx+ yk2 = kxk2 + kyk2

(16) (Optional Hint: h[−1 1 1] [3−4−1]i = 0) Answer: {[−1 1 1] [3−4−1] [−1 2 0]}
(17) w1 = 2− 1

3 , w2 = 2 − 2+ 1
3
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