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First Order Differential Equations

2.1

5.(a)

(b) If y(0) > −3, solutions eventually have positive slopes, and hence increase with-
out bound. If y(0) ≤ −3, solutions have negative slopes and decrease without
bound.

(c) The integrating factor is µ(t) = e−
∫

2dt = e−2t. The differential equation can
be written as e−2ty ′ − 2e−2ty = 3e−t, that is, (e−2ty)′ = 3e−t. Integration of both
sides of the equation results in the general solution y(t) = −3et + c e2t. It follows
that all solutions will increase exponentially if c > 0 and will decrease exponentially
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14 Chapter 2. First Order Differential Equations

if c ≤ 0. Letting c = 0 and then t = 0, we see that the boundary of these behaviors
is at y(0) = −3.

9.(a)

(b) All solutions eventually have positive slopes, and hence increase without bound.

(c) The integrating factor is µ(t) = e
∫

(1/2) dt = et/2. The differential equation can
be written as et/2y ′ + et/2y/2 = 3t et/2/2 , that is, (et/2 y/2)′ = 3t et/2/2. Integra-
tion of both sides of the equation results in the general solution y(t) = 3t− 6 +
c e−t/2. All solutions approach the specific solution y0(t) = 3t− 6 .

10.(a)

(b) For y > 0 , the slopes are all positive, and hence the corresponding solutions
increase without bound. For y < 0 , almost all solutions have negative slopes, and
hence solutions tend to decrease without bound.

(c) First divide both sides of the equation by t (t > 0). From the resulting standard
form, the integrating factor is µ(t) = e−

∫
(1/t) dt = 1/t . The differential equation

can be written as y ′/t− y/t2 = t e−t , that is, ( y/t)′ = t e−t. Integration leads to
the general solution y(t) = −te−t + c t . For c 6= 0 , solutions diverge, as implied by
the direction field. For the case c = 0 , the specific solution is y(t) = −te−t, which
evidently approaches zero as t → ∞ .
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12.(a)

(b) All solutions eventually have positive slopes, and hence increase without bound.

(c) The integrating factor is µ(t) = et/2. The differential equation can be written
as et/2y ′ + et/2y/2 = 3t2/2 , that is, (et/2 y/2)′ = 3t2/2. Integration of both sides
of the equation results in the general solution y(t) = 3t2 − 12t+ 24 + c e−t/2. It
follows that all solutions converge to the specific solution 3t2 − 12t+ 24 .

14. The integrating factor is µ(t) = e2t. After multiplying both sides by µ(t),
the equation can be written as (e2t y)′ = t . Integrating both sides of the equation
results in the general solution y(t) = t2e−2t/2 + c e−2t. Invoking the specified con-
dition, we require that e−2/2 + c e−2 = 0 . Hence c = −1/2 , and the solution to
the initial value problem is y(t) = (t2 − 1)e−2t/2 .

16. The integrating factor is µ(t) = e
∫

(2/t) dt = t2 . Multiplying both sides by µ(t),
the equation can be written as (t2 y)′ = cos t . Integrating both sides of the equation
results in the general solution y(t) = sin t/t2 + c t−2. Substituting t = π and setting
the value equal to zero gives c = 0 . Hence the specific solution is y(t) = sin t/t2.

17. The integrating factor is µ(t) = e−2t, and the differential equation can be
written as (e−2t y)′ = 1 . Integrating, we obtain e−2t y(t) = t+ c . Invoking the
specified initial condition results in the solution y(t) = (t+ 2)e2t.

19. After writing the equation in standard form, we find that the integrating
factor is µ(t) = e

∫
(4/t) dt = t4 . Multiplying both sides by µ(t), the equation can be

written as (t4 y)′ = t e−t . Integrating both sides results in t4y(t) = −(t+ 1)e−t +
c . Letting t = −1 and setting the value equal to zero gives c = 0 . Hence the
specific solution of the initial value problem is y(t) = −(t−3 + t−4)e−t.
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22.(a)

The solutions eventually increase or decrease, depending on the initial value a .
The critical value seems to be a0 = −2 .

(b) The integrating factor is µ(t) = e−t/2, and the general solution of the differential
equation is y(t) = −3et/3 + c et/2. Invoking the initial condition y(0) = a , the
solution may also be expressed as y(t) = −3et/3 + (a+ 3) et/2. The critical value
is a0 = −3 .

(c) For a0 = −3 , the solution is y(t) = −3et/3, which diverges to −∞ as t→∞.

23.(a)

Solutions appear to grow infinitely large in absolute value, with signs depending on
the initial value y(0) = a0 . The direction field appears horizontal for a0 ≈ −1/8 .

(b) Dividing both sides of the given equation by 3, the integrating factor is µ(t) =
e−2t/3 . Multiplying both sides of the original differential equation by µ(t) and inte-
grating results in y(t) = (2 e2t/3 − 2 e−πt/2 + a(4 + 3π) e2t/3)/(4 + 3π). The quali-
tative behavior of the solution is determined by the terms containing e2t/3 : 2 e2t/3 +
a(4 + 3π) e2t/3. The nature of the solutions will change when 2 + a(4 + 3π) = 0 .
Thus the critical initial value is a0 = −2/(4 + 3π) .

(c) In addition to the behavior described in part (a), when y(0) = −2/(4 + 3π),
the solution is y(t) = (−2 e−πt/2)/(4 + 3π), and that specific solution will converge
to y = 0 .
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24.(a)

As t → 0 , solutions increase without bound if y(1) = a > 0.4 , and solutions de-
crease without bound if y(1) = a < 0.4 .

(b) The integrating factor is µ(t) = e
∫

(t+1)/t dt = t et. The general solution of the
differential equation is y(t) = t e−t + c e−t/t . Since y(1) = a, we have that 1 +
c = ae. That is, c = ae− 1. Hence the solution can also be expressed as y(t) =
t e−t + (ae− 1) e−t/t . For small values of t , the second term is dominant. Setting
ae− 1 = 0 , the critical value of the parameter is a0 = 1/e .

(c) When a = 1/e , the solution is y(t) = t e−t, which approaches 0 as t → 0 .

27. The integrating factor is µ(t) = e
∫

(1/2) dt = et/2. Therefore the general solution
is y(t) = (4 cos t+ 8 sin t)/5 + c e−t/2. Invoking the initial condition, the specific so-
lution is y(t) = (4 cos t+ 8 sin t− 9 e−t/2)/5 . Differentiating, it follows that y ′(t) =
(−4 sin t+ 8 cos t+ 4.5 e−t/2)/5 and y ′′(t) = (−4 cos t− 8 sin t− 2.25 e−t/2)/5. Set-
ting y ′(t) = 0 , the first solution is t1 = 1.3643 , which gives the location of the first
stationary point. Since y ′′(t1) < 0 , the first stationary point in a local maximum.
The coordinates of the point are (1.3643 , 0.82008).

28. The integrating factor is µ(t) = e
∫

(2/3) dt = e2t/3, and the differential equa-
tion can be written as (e2t/3 y)′ = e2t/3 − t e2t/3/2 . The general solution is y(t) =
(21− 6t)/8 + c e−2t/3. Imposing the initial condition, we have y(t) = (21− 6t)/8 +
(y0 − 21/8)e−2t/3. Since the solution is smooth, the desired intersection will be
a point of tangency. Taking the derivative, y ′(t) = −3/4− (2y0 − 21/4)e−2t/3/3.
Setting y ′(t) = 0 , the solution is t1 = (3/2) ln [(21− 8y0)/9]. Substituting into the
solution, the respective value at the stationary point is y(t1) = 3/2 + (9/4) ln 3−
(9/8) ln(21− 8y0). Setting this result equal to zero, we obtain the required initial
value y0 = (21− 9 e4/3)/8 ≈ −1.643 .

29.(a) The integrating factor is µ(t) = et/4, and the differential equation can be
written as (et/4 y)′ = 3 et/4 + 2 et/4 cos 2t. After integration, we get that the general
solution is y(t) = 12 + (8 cos 2t+ 64 sin 2t)/65 + ce−t/4. Invoking the initial condi-
tion, y(0) = 0 , the specific solution is y(t) = 12 + (8 cos 2t+ 64 sin 2t− 788 e−t/4)/65.
As t → ∞ , the exponential term will decay, and the solution will oscillate about
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an average value of 12 , with an amplitude of 8/
√

65 .

(b) Solving y(t) = 12, we obtain the desired value t ≈ 10.0658.

31. The integrating factor is µ(t) = e−3t/2, and the differential equation can be
written as (e−3t/2 y)′ = 3t e−3t/2 + 2 e−t/2. The general solution is y(t) = −2t−
4/3− 4 et + c e3t/2. Imposing the initial condition, y(t) = −2t− 4/3− 4 et + (y0 +
16/3) e3t/2. Now as t → ∞ , the term containing e3t/2 will dominate the solution.
Its sign will determine the divergence properties. Hence the critical value of the
initial condition is y0 = −16/3. The corresponding solution, y(t) = −2t− 4/3−
4 et, will also decrease without bound.

Note on Problems 34-37 :

Let g(t) be given, and consider the function y(t) = y1(t) + g(t), in which y1(t)→ 0
as t→∞ . Differentiating, y ′(t) = y ′1(t) + g ′(t) . Letting a be a constant, it follows
that y ′(t) + ay(t) = y ′1(t) + ay1(t) + g ′(t) + ag(t). Note that the hypothesis on the
function y1(t) will be satisfied, if y ′1(t) + ay1(t) = 0 . That is, y1(t) = c e−at. Hence
y(t) = c e−at + g(t), which is a solution of the equation y ′ + ay = g ′(t) + ag(t). For
convenience, choose a = 1 .

34. Here g(t) = 3 , and we consider the linear equation y ′ + y = 3 . The integrating
factor is µ(t) = et, and the differential equation can be written as (et y)′ = 3et. The
general solution is y(t) = 3 + c e−t.

36. Here g(t) = 2t− 5. Consider the linear equation y ′ + y = 2 + 2t− 5. The
integrating factor is µ(t) = et, and the differential equation can be written as
(et y)′ = (2t− 3)et. The general solution is y(t) = 2t− 5 + c e−t.

37. g(t) = 4− t2. Consider the linear equation y ′ + y = 4− 2t− t2 .The integrating
factor is µ(t) = et, and the equation can be written as (et y)′ = (4− 2t− t2)et. The
general solution is y(t) = 4− t2 + c e−t.

38.(a) Differentiating y and using the fundamental theorem of calculus we obtain
that y′ = Ae−

∫
p(t)dt · (−p(t)), and then y′ + p(t)y = 0.

(b) Differentiating y we obtain that

y′ = A′(t)e−
∫
p(t)dt +A(t)e−

∫
p(t)dt · (−p(t)).

If this satisfies the differential equation then

y′ + p(t)y = A′(t)e−
∫
p(t)dt = g(t)

and the required condition follows.

(c) Let us denote µ(t) = e
∫
p(t)dt. Then clearly A(t) =

∫
µ(t)g(t)dt, and after sub-

stitution y =
∫
µ(t)g(t)dt · (1/µ(t)), which is just Eq. (33).



2.2 19

40. We assume a solution of the form y = A(t)e−
∫

(1/t) dt = A(t)e− ln t = A(t)t−1,
where A(t) satisfies A′(t) = 3t cos 2t. This implies that

A(t) =
3 cos 2t

4
+

3t sin 2t

2
+ c

and the solution is

y =
3 cos 2t

4t
+

3 sin 2t

2
+
c

t
.

41. First rewrite the differential equation as

y ′ +
2

t
y =

sin t

t
.

Assume a solution of the form y = A(t)e−
∫

(2/t) dt = A(t)t−2, where A(t) satisfies
the ODE A ′(t) = t sin t. It follows that A(t) = sin t − t cos t + c and thus y =
(sin t − t cos t + c)/t2 .

2.2

Problems 1 through 20 follow the pattern of the examples worked in this section.
The first eight problems, however, do not have an initial condition, so the integra-
tion constant c cannot be found.

2. For x 6= −1 , the differential equation may be written as y dy =
[
x2/(1 + x3)

]
dx.

Integrating both sides, with respect to the appropriate variables, we obtain the
relation y2/2 = (1/3) ln

∣∣1 + x3
∣∣+ c . That is, y(x) = ±

√
(2/3) ln |1 + x3|+ c .

3. The differential equation may be written as y−2dy = − sin x dx . Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation −y−1 = cos x+ c . That is, (c− cos x)y = 1, in which c is an arbitrary
constant. Solving for the dependent variable, explicitly, y(x) = 1/(c− cos x) .

5. Write the differential equation as cos−2 2y dy = cos2 x dx, which also can be writ-
ten as sec2 2y dy = cos2 x dx. Integrating both sides of the equation, with respect
to the appropriate variables, we obtain the relation tan 2y = sin x cos x+ x+ c .

7. The differential equation may be written as (y + ey)dy = (x− e−x)dx . Inte-
grating both sides of the equation, with respect to the appropriate variables, we
obtain the relation y2 + 2 ey = x2 + 2 e−x + c .

8. Write the differential equation as (1 + y2)dy = x2 dx . Integrating both sides of
the equation, we obtain the relation y + y3/3 = x3/3 + c.

9.(a) The differential equation is separable, with y−2dy = (1− 2x)dx. Integration
yields −y−1 = x− x2 + c. Substituting x = 0 and y = −1/6, we find that c = 6.
Hence the specific solution is y = 1/(x2 − x− 6).
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(b)

(c) Note that x2 − x− 6 = (x+ 2)(x− 3) . Hence the solution becomes singular at
x = −2 and x = 3 , so the interval of existence is (−2, 3).

11.(a) Rewrite the differential equation as x exdx = −y dy . Integrating both sides
of the equation results in x ex − ex = −y2/2 + c . Invoking the initial condition, we
obtain c = −1/2 . Hence y2 = 2ex − 2x ex − 1. The explicit form of the solution is
y(x) =

√
2ex − 2x ex − 1 . The positive sign is chosen, since y(0) = 1.

(b)

(c) The function under the radical becomes negative near x ≈ −1.7 and x ≈ 0.77.

12.(a) Write the differential equation as r−2dr = θ−1 dθ . Integrating both sides of
the equation results in the relation −r−1 = ln θ + c . Imposing the condition r(1) =
2 , we obtain c = −1/2 . The explicit form of the solution is r = 2/(1− 2 ln θ).
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(b)

(c) Clearly, the solution makes sense only if θ > 0 . Furthermore, the solution
becomes singular when ln θ = 1/2 , that is, θ =

√
e .

14.(a) Write the differential equation as y−3dy = x(1 + x2)−1/2 dx . Integrating
both sides of the equation, with respect to the appropriate variables, we obtain
the relation −y−2/2 =

√
1 + x2 + c . Imposing the initial condition, we obtain

c = −3/2 . Hence the specific solution can be expressed as y−2 = 3− 2
√

1 + x2 .

The explicit form of the solution is y(x) = 1/
√

3− 2
√

1 + x2. The positive sign is
chosen to satisfy the initial condition.

(b)

(c) The solution becomes singular when 2
√

1 + x2 = 3 . That is, at x = ±
√

5 /2 .

16.(a) Rewrite the differential equation as 4y3dy = x(x2 + 1)dx. Integrating both
sides of the equation results in y4 = (x2 + 1)2/4 + c. Imposing the initial condition,
we obtain c = 0. Hence the solution may be expressed as (x2 + 1)2 − 4y4 = 0. The
explicit form of the solution is y(x) = −

√
(x2 + 1)/2. The sign is chosen based on

y(0) = −1/
√

2.
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(b)

(c) The solution is valid for all x ∈ R .

18.(a) Write the differential equation as (3 + 4y)dy = (e−x − ex)dx . Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation 3y + 2y2 = −(ex + e−x) + c . Imposing the initial condition, y(0) = 1 , we
obtain c = 7. Thus, the solution can be expressed as 3y + 2y2 = −(ex + e−x) + 7.
Now by completing the square on the left hand side, 2(y + 3/4)2 = −(ex + e−x) +
65/8. Hence the explicit form of the solution is y(x) = −3/4 +

√
65/16− coshx.

(b)

(c) Note the 65− 16 coshx ≥ 0 as long as |x| > 2.1 (approximately). Hence the
solution is valid on the interval −2.1 < x < 2.1.

20.(a) Rewrite the differential equation as y2dy = arcsin x/
√

1− x2 dx. Integrat-
ing both sides of the equation results in y3/3 = (arcsin x)2/2 + c. Imposing the
condition y(0) = 1, we obtain c = 1/3. The explicit form of the solution is y(x) =
(3(arcsinx)2/2 + 1)1/3.
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(b)

(c) Since arcsinx is defined for −1 ≤ x ≤ 1, this is the interval of existence.

22. The differential equation can be written as (3y2 − 4)dy = 3x2dx. Integrating
both sides, we obtain y3 − 4y = x3 + c. Imposing the initial condition, the specific
solution is y3 − 4y = x3 − 1. Referring back to the differential equation, we find
that y ′ →∞ as y → ±2/

√
3. The respective values of the abscissas are x ≈ −1.276,

1.598 . Hence the solution is valid for −1.276 < x < 1.598 .

24. Write the differential equation as (3 + 2y)dy = (2− ex)dx. Integrating both
sides, we obtain 3y + y2 = 2x− ex + c. Based on the specified initial condition, the
solution can be written as 3y + y2 = 2x− ex + 1. Completing the square, it follows
that y(x) = −3/2 +

√
2x− ex + 13/4. The solution is defined if 2x− ex + 13/4 ≥

0, that is, −1.5 ≤ x ≤ 2 (approximately). In that interval, y ′ = 0 for x = ln 2. It
can be verified that y ′′(ln 2) < 0. In fact, y ′′(x) < 0 on the interval of definition.
Hence the solution attains a global maximum at x = ln 2.

26. The differential equation can be written as (1 + y2)−1dy = 2(1 + x)dx. In-
tegrating both sides of the equation, we obtain arctan y = 2x+ x2 + c. Imposing
the given initial condition, the specific solution is arctan y = 2x+ x2. Therefore,
y = tan(2x+ x2). Observe that the solution is defined as long as −π/2 < 2x+ x2 <
π/2. It is easy to see that 2x+ x2 ≥ −1. Furthermore, 2x+ x2 = π/2 for x ≈ −2.6
and 0.6. Hence the solution is valid on the interval −2.6 < x < 0.6. Referring back
to the differential equation, the solution is stationary at x = −1. Since y ′′(−1) > 0,
the solution attains a global minimum at x = −1.

28.(a) Write the differential equation as y−1(4− y)−1dy = t(1 + t)−1dt . Integrat-
ing both sides of the equation, we obtain ln |y| − ln |y − 4| = 4t− 4 ln |1 + t|+ c .
Taking the exponential of both sides |y/(y − 4)| = c e4t/(1 + t)4. It follows that as
t → ∞ , |y/(y − 4)| = |1 + 4/(y − 4)| → ∞ . That is, y(t) → 4 .

(b) Setting y(0) = 2 , we obtain that c = 1. Based on the initial condition, the
solution may be expressed as y/(y − 4) = −e4t/(1 + t)4. Note that y/(y − 4) < 0 ,
for all t ≥ 0. Hence y < 4 for all t ≥ 0. Referring back to the differential equation,
it follows that y ′ is always positive. This means that the solution is monotone
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increasing. We find that the root of the equation e4t/(1 + t)4 = 399 is near t =
2.844 .

(c) Note the y(t) = 4 is an equilibrium solution. Examining the local direction
field we see that if y(0) > 0 , then the corresponding solutions converge to y =
4 . Referring back to part (a), we have y/(y − 4) = [y0/(y0 − 4)] e4t/(1 + t)4, for
y0 6= 4 . Setting t = 2 , we obtain y0/(y0 − 4) = (3/e2)4y(2)/(y(2)− 4). Now since
the function f(y) = y/(y − 4) is monotone for y < 4 and y > 4 , we need only
solve the equations y0/(y0 − 4) = −399(3/e2)4 and y0/(y0 − 4) = 401(3/e2)4. The
respective solutions are y0 = 3.6622 and y0 = 4.4042 .

32.(a) Observe that (x2 + 3y2)/2xy = (1/2)(y/x)−1 + (3/2)(y/x). Hence the dif-
ferential equation is homogeneous.

(b) The substitution y = x v results in v + x v ′ = (x2 + 3x2v2)/2x2v . The trans-
formed equation is v ′ = (1 + v2)/2xv . This equation is separable, with general
solution v2 + 1 = c x . In terms of the original dependent variable, the solution is
x2 + y2 = c x3.

(c) The integral curves are symmetric with respect to the origin.

34.(a) Observe that −(4x+ 3y)/(2x+ y) = −2− (y/x) [2 + (y/x)]
−1

. Hence the
differential equation is homogeneous.

(b) The substitution y = x v results in v + x v ′ = −2− v/(2 + v). The transformed
equation is v ′ = −(v2 + 5v + 4)/(2 + v)x . This equation is separable, with general
solution (v + 4)2 |v + 1| = c/x3. In terms of the original dependent variable, the
solution is (4x+ y)2 |x+ y| = c.
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(c) The integral curves are symmetric with respect to the origin.

36.(a) Divide by x2 to see that the equation is homogeneous. Substituting y = x v ,
we obtain x v ′ = (1 + v)2. The resulting differential equation is separable.

(b) Write the equation as (1 + v)−2dv = x−1dx . Integrating both sides of the
equation, we obtain the general solution−1/(1 + v) = ln |x|+ c . In terms of the
original dependent variable, the solution is y = x (c− ln |x|)−1 − x.

(c) The integral curves are symmetric with respect to the origin.

37.(a) The differential equation can be expressed as y ′ = (1/2)(y/x)−1 − (3/2)(y/x).
Hence the equation is homogeneous. The substitution y = xv results in xv ′ =
(1− 5v2)/2v. Separating variables, we have 2vdv/(1− 5v2) = dx/x.

(b) Integrating both sides of the transformed equation yields −(ln |1− 5v2|)/5 =

ln |x|+ c, that is, 1− 5v2 = c/ |x|5. In terms of the original dependent variable,

the general solution is 5y2 = x2 − c/ |x|3.
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(c) The integral curves are symmetric with respect to the origin.

38.(a) The differential equation can be expressed as y ′ = (3/2)(y/x)− (1/2)(y/x)−1.
Hence the equation is homogeneous. The substitution y = x v results in x v ′ =
(v2 − 1)/2v, that is, 2vdv/(v2 − 1) = dx/x.

(b) Integrating both sides of the transformed equation yields ln
∣∣v2 − 1

∣∣ = ln |x|+ c,
that is, v2 − 1 = c |x|. In terms of the original dependent variable, the general
solution is y2 = c x2 |x|+ x2.

(c) The integral curves are symmetric with respect to the origin.

2.3

1. Let Q(t) be the amount of dye in the tank at time t. Clearly, Q(0) = 200 g.
The differential equation governing the amount of dye is Q′(t) = −2Q(t)/200. The
solution of this separable equation is Q(t) = Q(0)e−t/100 = 200e−t/100. We need
the time T such that Q(T ) = 2 g. This means we have to solve 2 = 200e−T/100 and
we obtain that T = −100 ln(1/100) = 100 ln 100 ≈ 460.5 min.

5.(a) Let Q be the amount of salt in the tank. Salt enters the tank of water at a
rate of 2 (1/4)(1 + (1/2) sin t) = 1/2 + (1/4) sin t oz/min. It leaves the tank at a
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rate of 2Q/100 oz/min. Hence the differential equation governing the amount of
salt at any time is

dQ

dt
=

1

2
+

1

4
sin t− Q

50
.

The initial amount of salt is Q0 = 50 oz. The governing differential equation is
linear, with integrating factor µ(t) = et/50. Write the equation as (et/50Q)′ =
et/50(1/2 + (1/4) sin t). The specific solution is Q(t) = 25 + (12.5 sin t− 625 cos t+
63150 e−t/50)/2501 oz.

(b)

(c) The amount of salt approaches a steady state, which is an oscillation of approx-
imate amplitude 1/4 about a level of 25 oz.

6.(a) Using the Principle of Conservation of Energy, the speed v of a particle falling
from a height h is given by

1

2
mv2 = mgh .

(b) The outflow rate is (outflow cross-section area)×(outflow velocity): αa
√

2gh .

At any instant, the volume of water in the tank is V (h) =
∫ h

0
A(u)du. The time rate

of change of the volume is given by dV/dt = (dV/dh)(dh/dt) = A(h)dh/dt. Since
the volume is decreasing, dV/dt = −αa

√
2gh .

(c) With A(h) = π, a = 0.01π , α = 0.6 , the differential equation for the water level
h is π(dh/dt) = −0.006π

√
2gh , with solution h(t) = 0.000018gt2 − 0.006

√
2gh(0) t+

h(0). Setting h(0) = 3 and g = 9.8 , h(t) = 0.0001764 t2 − 0.046 t+ 3, resulting in
h(t) = 0 for t ≈ 130.4 s.

7.(a) The equation governing the value of the investment is dS/dt = r S . The value
of the investment, at any time, is given by S(t) = S0e

rt. Setting S(T ) = 2S0 , the
required time is T = ln(2)/r .

(b) For the case r = .07 , T ≈ 9.9 yr.
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(c) Referring to part (a), r = ln(2)/T . Setting T = 8 , the required interest rate is
to be approximately r = 8.66%.

12.(a) Using Eq.(15) we have dS/dt− 0.005S = −(800 + 10t), S(0) = 150, 000. Us-
ing an integrating factor and integration by parts we obtain that S(t) = 560, 000−
410, 000e0.005t + 2000t. Setting S(t) = 0 and solving numerically for t yields t =
146.54 months.

(b) The solution we obtained in part (a) with a general initial condition S(0) =
S0 is S(t) = 560, 000− 560, 000e0.005t + S0e

0.005t + 2000t. Solving the equation
S(240) = 0 yields S0 = 246, 758.

13.(a) Let Q ′ = −r Q . The general solution is Q(t) = Q0e
−rt. Based on the

definition of half-life, consider the equation Q0/2 = Q0e
−5730 r. It follows that

−5730 r = ln(1/2), that is, r = 1.2097× 10−4 per year.

(b) The amount of carbon-14 is given by Q(t) = Q0 e
−1.2097×10−4t.

(c) Given that Q(T ) = Q0/5 , we have the equation 1/5 = e−1.2097×10−4T . Solving
for the decay time, the apparent age of the remains is approximately T = 13, 305
years.

15.(a) The differential equation dy/dt = r(t) y − k is linear, with integrating factor
µ(t) = e−

∫
r(t)dt. Write the equation as (µ y)′ = −k µ(t) . Integration of both sides

yields the general solution y =
[
−k
∫
µ(τ)dτ + y0 µ(0)

]
/µ(t) . In this problem, the

integrating factor is µ(t) = e(cos t−t)/5.

(b) The population becomes extinct, if y(t∗) = 0 , for some t = t∗. Referring to
part (a), we find that y(t∗) = 0 when∫ t∗

0

e(cos τ−τ)/5dτ = 5 e1/5yc.

It can be shown that the integral on the left hand side increases monotonically, from
zero to a limiting value of approximately 5.0893 . Hence extinction can happen only
if 5 e1/5y0 < 5.0893 . Solving 5e1/5yc = 5.0893 yields yc = 0.8333.
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(c) Repeating the argument in part (b), it follows that y(t∗) = 0 when∫ t∗

0

e(cos τ−τ)/5dτ =
1

k
e1/5yc.

Hence extinction can happen only if e1/5y0/k < 5.0893 , so yc = 4.1667 k .

(d) Evidently, yc is a linear function of the parameter k .

17.(a) The solution of the governing equation satisfies u3 = u 3
0 /( 3αu 3

0 t+ 1 ). With
the given data, it follows that u(t) = 2000/ 3

√
6 t/125 + 1 .

(b)

(c) Numerical evaluation results in u(t) = 600 for t ≈ 750.77 s.

22.(a) The differential equation for the upward motion is mdv/dt = −µv2 −mg,
in which µ = 1/1325. This equation is separable, with m/(µ v2 +mg) dv = −dt .
Integrating both sides and invoking the initial condition, v(t) = 44.133 tan(0.425−
0.222 t). Setting v(t1) = 0 , the ball reaches the maximum height at t1 = 1.916 s .
Integrating v(t) , the position is given by x(t) = 198.75 ln [cos(0.222 t− 0.425)] +
48.57 . Therefore the maximum height is x(t1) = 48.56 m.

(b) The differential equation for the downward motion is mdv/dt = +µv2 −mg .
This equation is also separable, with m/(mg − µ v2) dv = −dt . For convenience,
set t = 0 at the top of the trajectory. The new initial condition becomes v(0) = 0 .
Integrating both sides and invoking the initial condition, we obtain ln((44.13−
v)/(44.13 + v)) = t/2.25. Solving for the velocity, v(t) = 44.13(1− et/2.25)/(1 +
et/2.25). Integrating v(t), we obtain x(t) = 99.29 ln(et/2.25/(1 + et/2.25)2) + 186.2.
To estimate the duration of the downward motion, set x(t2) = 0, resulting in
t2 = 3.276 s. Hence the total time that the ball spends in the air is t1 + t2 = 5.192 s.
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(c)

24.(a) Setting −µv2 = v(dv/dx), we obtain dv/dx = −µv.

(b) The speed v of the sled satisfies ln(v/v0) = −µx. Noting that the unit conversion
factors cancel, solution of ln(15/150) = −2000µ results in µ = ln(10)/2000 ft−1 ≈
0.00115 ft−1 ≈ 6.0788 mi−1.

(c) Solution of dv/dt = −µv2 can be expressed as 1/v − 1/v0 = µt. Noting that
1 mi/hr = 5280/3600 ft/s , the elapsed time is

t = (1/15− 1/150)/((5280/3600)(ln(10)/2000)) ≈ 35.53 s.

25.(a) Measure the positive direction of motion upward . The equation of motion
is given by mdv/dt = −k v −mg . The initial value problem is dv/dt = −kv/m −
g , with v(0) = v0 . The solution is v(t) = −mg/k + (v0 +mg/k)e−kt/m. Setting
v(tm) = 0, the maximum height is reached at time tm = (m/k) ln [(mg + k v0)/mg].
Integrating the velocity, the position of the body is

x(t) = −mg t/k +
[
(
m

k
)2g +

mv0

k

]
(1− e−kt/m).

Hence the maximum height reached is

xm = x(tm) =
mv0

k
− g(

m

k
)2 ln

[
mg + k v0

mg

]
.

(b) Recall that for δ � 1 , ln(1 + δ) = δ − δ2/2 + δ3/3− δ4/4 + . . ..

(c) The dimensions of the quantities involved are [k] = MT−1, [v0] = LT−1, [m] =
M and [g] = LT−2. This implies that kv0/mg is dimensionless.

31.(a) Both equations are linear and separable. Initial conditions: v(0) = u cosA
and w(0) = u sinA. We obtain the solutions v(t) = (u cosA)e−rt and w(t) = −g/r +
(u sinA+ g/r)e−rt.

(b) Integrating the solutions in part (a), and invoking the initial conditions, the
coordinates are x(t) = u cosA(1− e−rt)/r and

y(t) = −gt
r

+
g + ur sin A+ hr2

r2
− (

u

r
sin A+

g

r2
)e−rt.
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(c)

(d) Let T be the time that it takes the ball to go 350 ft horizontally. Then from
above, e−T/5 = (u cos A− 70)/u cos A . At the same time, the height of the ball
is given by

y(T ) = −160T + 803 + 5u sinA− (800 + 5u sinA)(u cosA− 70)

u cosA
.

Hence A and u must satisfy the equality

800 ln

[
u cos A− 70

u cos A

]
+ 803 + 5u sin A− (800 + 5u sinA)(u cosA− 70)

u cosA
= 10

for the ball to touch the top of the wall. To find the optimal values for u and A,
consider u as a function of A and use implicit differentiation in the above equation
to find that

du

dA
= −u(u2 cosA− 70u− 11200 sinA)

11200 cosA
.

Solving this equation simultaneously with the above equation yields optimal values
for u and A: u ≈ 145.3 ft/s, A ≈ 0.644 rad.

32.(a) Solving equation (i), y ′(x) =
[
(k2 − y)/y

]1/2
. The positive answer is chosen,

since y is an increasing function of x .

(b) Let y = k2 sin2 t. Then dy = 2k2 sin t cos tdt. Substituting into the equation in
part (a), we find that

2k2 sin t cos tdt

dx
=

cos t

sin t
.

Hence 2k2 sin2 tdt = dx.

(c) Setting θ = 2t, we further obtain k2 sin2(θ/2) dθ = dx. Integrating both sides
of the equation and noting that t = θ = 0 corresponds to the origin, we obtain the
solutions x(θ) = k2(θ − sin θ)/2 and (from part (b)) y(θ) = k2(1− cos θ)/2.
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(d) Note that y/x = (1− cos θ)/(θ − sin θ). Setting x = 1 , y = 2 , the solution of
the equation (1− cos θ)/(θ − sin θ) = 2 is θ ≈ 1.401 . Substitution into either of
the expressions yields k ≈ 2.193 .

2.4

2. Rewrite the differential equation as y ′ + 1/(t(t− 4)) y = 0. It is evident that the
coefficient 1/t(t− 4) is continuous everywhere except at t = 0 , 4 . Since the initial
condition is specified at t = 2 , Theorem 2.4.1 assures the existence of a unique
solution on the interval 0 < t < 4 .

3. The function tan t is discontinuous at odd multiples of π/2. Since π/2 < π <
3π/2, the initial value problem has a unique solution on the interval (π/2, 3π/2).

5. p(t) = 2t/(4− t2) and g(t) = 3t2/(4− t2). These functions are discontinuous at
x = ±2 . The initial value problem has a unique solution on the interval (−2 , 2).

6. The function ln t is defined and continuous on the interval (0 ,∞) . At t = 1,
ln t = 0, so the normal form of the differential equation has a singularity there.
Also, cot t is not defined at integer multiples of π, so the initial value problem will
have a solution on the interval (1, π).

7. The function f(t , y) is continuous everywhere on the plane, except along the
straight line y = −2t/5 . The partial derivative ∂f/∂y = −7t/(2t+ 5y)2 has the
same region of continuity.

9. The function f(t , y) is discontinuous along the coordinate axes, and on the
hyperbola t2 − y2 = 1 . Furthermore,

∂f

∂y
=

±1

y(1− t2 + y2)
− 2

y ln |ty|
(1− t2 + y2)2

has the same points of discontinuity.

10. f(t , y) is continuous everywhere on the plane. The partial derivative ∂f/∂y is
also continuous everywhere.

12. The function f(t , y) is discontinuous along the lines t = ±k π for k = 0, 1, 2, . . .
and y = −1 . The partial derivative ∂f/∂y = cot t/(1 + y)2 has the same region of
continuity.

14. The equation is separable, with dy/y2 = 2t dt . Integrating both sides, the
solution is given by y(t) = y0/(1− y0t

2). For y0 > 0 , solutions exist as long as
t2 < 1/y0 . For y0 ≤ 0 , solutions are defined for all t .

15. The equation is separable, with dy/y3 = − dt . Integrating both sides and
invoking the initial condition, y(t) = y0/

√
2y2

0t+ 1 . Solutions exist as long as
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2y2
0t+ 1 > 0 , that is, 2y2

0t > −1 . If y0 6= 0 , solutions exist for t > −1/2y2
0 . If

y0 = 0 , then the solution y(t) = 0 exists for all t .

16. The function f(t , y) is discontinuous along the straight lines t = −1 and y = 0 .
The partial derivative ∂f/∂y is discontinuous along the same lines. The equa-
tion is separable, with y dy = t2 dt/(1 + t3). Integrating and invoking the initial

condition, the solution is y(t) =
[
(2/3) ln

∣∣1 + t3
∣∣+ y2

0

]1/2
. Solutions exist as long

as (2/3) ln
∣∣1 + t3

∣∣+ y2
0 ≥ 0, that is, y2

0 ≥ −(2/3) ln
∣∣1 + t3

∣∣. For all y0 (it can be
verified that y0 = 0 yields a valid solution, even though Theorem 2.4.2 does not
guarantee one) , solutions exist as long as

∣∣1 + t3
∣∣ ≥ e−3y20/2. From above, we must

have t > −1 . Hence the inequality may be written as t3 ≥ e−3y20/2 − 1 . It follows
that the solutions are valid for (e−3y20/2 − 1)1/3 < t <∞ .

18.

Based on the direction field, and the differential equation, for y0 < 0 , the slopes
eventually become negative, and hence solutions tend to −∞ . For y0 > 0, solutions
increase without bound if t0 < 0 . Otherwise, the slopes eventually become negative,
and solutions tend to zero. Furthermore, y0 = 0 is an equilibrium solution. Note
that slopes are zero along the curves y = 0 and ty = 3 .

19.

For initial conditions (t0, y0) satisfying ty < 3 , the respective solutions all tend to
zero . For y0 ≤ 9, the solutions tend to 0; for y0 > 9, the solutions tend to∞. Also,
y0 = 0 is an equilibrium solution.
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20.

Solutions with t0 < 0 all tend to −∞ . Solutions with initial conditions (t0, y0)
to the right of the parabola t = 1 + y2 asymptotically approach the parabola as
t → ∞ . Integral curves with initial conditions above the parabola (and y0 > 0)
also approach the curve. The slopes for solutions with initial conditions below the
parabola (and y0 < 0) are all negative. These solutions tend to −∞ .

21.(a) No. There is no value of t0 ≥ 0 for which (2/3)(t− t0)2/3 satisfies the con-
dition y(1) = 1.

(b) Yes. Let t0 = 1/2 in Eq.(19).

(c) For t0 > 0, |y(2)| ≤ (4/3)3/2 ≈ 1.54.

24. The assumption is φ′(t) + p(t)φ(t) = 0. But then cφ′(t) + p(t)cφ(t) = 0 as well.

26.(a) Recalling Eq.(33) in Section 2.1,

y =
1

µ(t)

∫ t

t0

µ(s)g(s) ds+
c

µ(t)
.

It is evident that y1(t) = 1/µ(t) and y2(t) = (1/µ(t))
∫ t
t0
µ(s)g(s) ds.

(b) By definition, 1/µ(t) = e−
∫
p(t)dt. Hence y ′1 = −p(t)/µ(t) = −p(t)y1. That is,

y ′1 + p(t)y1 = 0.

(c) y ′2 = (−p(t)/µ(t))
∫ t

0
µ(s)g(s) ds+ µ(t)g(t)/µ(t) = −p(t)y2 + g(t). This implies

that y ′2 + p(t)y2 = g(t).

30. Since n = 3, set v = y−2. It follows that v′ = −2y−3y′ and y′ = −(y3/2)v′. Sub-
stitution into the differential equation yields −(y3/2)v′ − εy = −σy3, which further
results in v ′ + 2εv = 2σ. The latter differential equation is linear, and can be writ-
ten as (ve2εt)′ = 2σe2εt. The solution is given by v(t) = σ/ε+ ce−2εt. Converting
back to the original dependent variable, y = ±v−1/2 = ±(σ/ε+ ce−2εt)−1/2.

31. Since n = 3, set v = y−2. It follows that v′ = −2y−3y′ and y′ = −(y3/2)v′. The
differential equation is written as −(y3/2)v′ − (Γ cos t+ T )y = σy3, which upon
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further substitution is v ′ + 2(Γ cos t+ T )v = 2. This ODE is linear, with integrat-
ing factor µ(t) = e2

∫
(Γ cos t+T )dt = e2Γ sin t+2Tt. The solution is

v(t) = 2e−(2Γ sin t+2Tt)

∫ t

0

e2Γ sin τ+2Tτdτ + ce−(2Γ sin t+2Tt).

Converting back to the original dependent variable, y = ±v−1/2.

33. The solution of the initial value problem y ′1 + 2y1 = 0, y1(0) = 1 is y1(t) = e−2t.
Therefore y(1−) = y1(1) = e−2. On the interval (1,∞), the differential equation
is y ′2 + y2 = 0, with y2(t) = ce−t. Therefore y(1+) = y2(1) = ce−1. Equating the
limits y(1−) = y(1+), we require that c = e−1. Hence the global solution of the
initial value problem is

y(t) =

{
e−2t , 0 ≤ t ≤ 1

e−1−t, t > 1
.

Note the discontinuity of the derivative

y′(t) =

{
−2e−2t , 0 < t < 1

−e−1−t, t > 1
.

2.5

1.
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0

For y0 ≥ 0 , the only equilibrium point is y∗ = 0, and y′ = ay + by2 > 0 when y > 0,
hence the equilibrium solution y = 0 is unstable.

2.

0

-a/b

The equilibrium points are y∗ = −a/b and y∗ = 0, and y′ > 0 when y > 0 or y <
−a/b, and y′ < 0 when −a/b < y < 0, therefore the equilibrium solution y = −a/b
is asymptotically stable and the equilibrium solution y = 0 is unstable.
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4.

0

The only equilibrium point is y∗ = 0, and y′ > 0 when y > 0, y′ < 0 when y < 0,
hence the equilibrium solution y = 0 is unstable.

6.
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0

The only equilibrium point is y∗ = 0, and y′ > 0 when y < 0, y′ < 0 when y > 0,
hence the equilibrium solution y = 0 is asymptotically stable.

8.

1

The only equilibrium point is y∗ = 1, and y ′ < 0 for y 6= 1. As long as y0 6= 1,
the corresponding solution is monotone decreasing. Hence the equilibrium solution
y = 1 is semistable.
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10.

0

-1

1

The equilibrium points are y∗ = 0,±1 , and y′ > 0 for y < −1 or 0 < y < 1 and
y′ < 0 for −1 < y < 0 or y > 1. The equilibrium solution y = 0 is unstable, and the
remaining two are asymptotically stable.

12.
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0

-2

2

The equilibrium points are y∗ = 0 ,±2, and y′ < 0 when y < −2 or y > 2, and
y′ > 0 for −2 < y < 0 or 0 < y < 2. The equilibrium solutions y = −2 and y = 2
are unstable and asymptotically stable, respectively. The equilibrium solution y = 0
is semistable.

13.

0

1

The equilibrium points are y∗ = 0, 1. y′ > 0 for all y except y = 0 and y = 1. Both
equilibrium solutions are semistable.

15.(a) Inverting Eq.(11), Eq.(13) shows t as a function of the population y and the
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carrying capacity K. With y0 = K/3,

t = −1

r
ln

∣∣∣∣ (1/3) [1− (y/K)]

(y/K) [1− (1/3)]

∣∣∣∣ .
Setting y = 2y0,

τ = −1

r
ln

∣∣∣∣ (1/3) [1− (2/3)]

(2/3) [1− (1/3)]

∣∣∣∣ .
That is, τ = (ln 4)/r. If r = 0.025 per year, τ ≈ 55.45 years.

(b) In Eq.(13), set y0/K = α and y/K = β. As a result, we obtain

T = −1

r
ln

∣∣∣∣α [1− β]

β [1− α]

∣∣∣∣ .
Given α = 0.1, β = 0.9 and r = 0.025 per year, τ ≈ 175.78 years.

19.(a) The rate of increase of the volume is given by rate of flow in−rate of flow out.
That is, dV/dt = k − αa

√
2gh . Since the cross section is constant, dV/dt = Adh/dt.

Hence the governing equation is dh/dt = (k − αa
√

2gh )/A.

(b) Setting dh/dt = 0, the equilibrium height is he = (1/2g)(k/αa)2. Furthermore,
since dh/dt < 0 for h > he and dh/dt > 0 for h < he, it follows that the equilibrium
height is asymptotically stable.

22.(a) The equilibrium points are at y∗ = 0 and y∗ = 1. Since f ′(y) = α− 2αy ,
the equilibrium solution y = 0 is unstable and the equilibrium solution y = 1 is
asymptotically stable.

(b) The differential equation is separable, with [y(1− y)]
−1
dy = αdt . Integrating

both sides and invoking the initial condition, the solution is

y(t) =
y0 e

αt

1− y0 + y0 eαt
=

y0

y0 + (1− y0)e−αt
.

It is evident that (independent of y0) limt→−∞ y(t) = 0 and limt→∞ y(t) = 1 .

23.(a) y(t) = y0 e
−βt.

(b) From part (a), dx/dt = −αxy0e
−βt. Separating variables, dx/x = −αy0e

−βtdt.

Integrating both sides, the solution is x(t) = x0 e
−αy0(1−e−βt)/β .

(c) As t → ∞ , y(t) → 0 and x(t) → x0 e
−αy0/β . Over a long period of time,

the proportion of carriers vanishes. Therefore the proportion of the population that
escapes the epidemic is the proportion of susceptibles left at that time, x0 e

−αy0/β .

26.(a) For a < 0 , the only critical point is at y = 0 , which is asymptotically stable.
For a = 0 , the only critical point is at y = 0 , which is asymptotically stable. For
a > 0 , the three critical points are at y = 0 , ±

√
a . The critical point at y = 0 is

unstable, whereas the other two are asymptotically stable.
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(b) Below, we graph solutions in the case a = −1, a = 0 and a = 1 respectively.
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(c)

27.(a) f(y) = y(a− y); f ′(y) = a− 2y. For a < 0, the critical points are at y = a
and y = 0. Observe that f ′(a) > 0 and f ′(0) < 0 . Hence y = a is unstable and
y = 0 asymptotically stable. For a = 0 , the only critical point is at y = 0 , which is
semistable since f(y) = −y2 is concave down. For a > 0 , the critical points are at
y = 0 and y = a . Observe that f ′(0) > 0 and f ′(a) < 0 . Hence y = 0 is unstable
and y = a asymptotically stable.

(b) Below, we graph solutions in the case a = −1, a = 0 and a = 1 respectively.
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(c)

2.6

1. M(x, y) = 2x+ 3 and N(x, y) = 2y − 2 . Since My = Nx = 0 , the equation is
exact. Integrating M with respect to x , while holding y constant, yields ψ(x, y) =
x2 + 3x+ h(y) . Now ψy = h ′(y) , and equating with N results in the possible
function h(y) = y2 − 2y . Hence ψ(x, y) = x2 + 3x+ y2 − 2y , and the solution is
defined implicitly as x2 + 3x+ y2 − 2y = c .

2. M(x, y) = 2x+ 4y and N(x, y) = 2x− 2y . Note that My 6= Nx , and hence the
differential equation is not exact.

4. First divide both sides by (2xy + 2). We now have M(x, y) = y and N(x, y) = x .
Since My = Nx = 0 , the resulting equation is exact. Integrating M with respect
to x , while holding y constant, results in ψ(x, y) = xy + h(y) . Differentiating with
respect to y , ψy = x+ h ′(y) . Setting ψy = N , we find that h ′(y) = 0 , and hence
h(y) = 0 is acceptable. Therefore the solution is defined implicitly as xy = c . Note
that if xy + 1 = 0 , the equation is trivially satisfied.

6. Write the equation as (ax− by)dx+ (bx− cy)dy = 0. Now M(x, y) = ax− by
and N(x, y) = bx− cy. Since My 6= Nx , the differential equation is not exact.
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8. M(x, y) = ex sin y + 3y and N(x, y) = −3x+ ex sin y . Note that My 6= Nx , and
hence the differential equation is not exact.

10. M(x, y) = y/x+ 6x and N(x, y) = ln x− 2. Since My = Nx = 1/x, the given
equation is exact. Integrating N with respect to y , while holding x constant,
results in ψ(x, y) = y ln x− 2y + h(x) . Differentiating with respect to x, ψx =
y/x+ h′(x). Setting ψx = M , we find that h′(x) = 6x , and hence h(x) = 3x2.
Therefore the solution is defined implicitly as 3x2 + y ln x− 2y = c .

11. M(x, y) = x ln y + xy and N(x, y) = y ln x+ xy. Note that My 6= Nx , and
hence the differential equation is not exact.

13. M(x, y) = 2x− y and N(x, y) = 2y − x. Since My = Nx = −1, the equa-
tion is exact. Integrating M with respect to x , while holding y constant, yields
ψ(x, y) = x2 − xy + h(y). Now ψy = −x+ h′(y). Equating ψy with N results in
h′(y) = 2y, and hence h(y) = y2. Thus ψ(x, y) = x2 − xy + y2 , and the solution
is given implicitly as x2 − xy + y2 = c . Invoking the initial condition y(1) = 3 ,
the specific solution is x2 − xy + y2 = 7. The explicit form of the solution is
y(x) = (x+

√
28− 3x2 )/2. Hence the solution is valid as long as 3x2 ≤ 28 .

16. M(x, y) = y e2xy + x and N(x, y) = bx e2xy. Note that My = e2xy + 2xy e2xy,
and Nx = b e2xy + 2bxy e2xy. The given equation is exact, as long as b = 1 . In-
tegrating N with respect to y , while holding x constant, results in ψ(x, y) =
e2xy/2 + h(x) . Now differentiating with respect to x, ψx = y e2xy + h′(x). Set-
ting ψx = M , we find that h′(x) = x , and hence h(x) = x2/2 . We conclude that
ψ(x, y) = e2xy/2 + x2/2 . Hence the solution is given implicitly as e2xy + x2 = c .

17. Note that ψ is of the form ψ(x , y) = f(x) + g(y), since each of the integrands
is a function of a single variable. It follows that ψx = f ′(x) and ψy = g′(y). That
is, ψx = M(x , y0) and ψy = N(x0 , y). Furthermore,

∂2ψ

∂x∂y
(x0 , y0 ) =

∂M

∂y
(x0 , y0 ) and

∂2ψ

∂y∂x
(x0 , y0 ) =

∂N

∂x
(x0 , y0 ) ,

based on the hypothesis and the fact that the point (x0, y0) is arbitrary, ψxy = ψyx
and My(x, y) = Nx(x, y).

18. Observe that (M(x))y = (N(y))x = 0 .

20. My = y−1 cos y − y−2 sin y and Nx = −2 e−x(cos x+ sin x)/y . Multiplying
both sides by the integrating factor µ(x, y) = y ex, the given equation can be written
as (ex sin y − 2y sin x)dx+ (ex cos y + 2 cos x)dy = 0 . Let M̃ = µM and Ñ = µN .
Observe that M̃y = Ñx , and hence the latter ODE is exact. Integrating Ñ with
respect to y , while holding x constant, results in ψ(x, y) = ex sin y + 2y cos x+
h(x) . Now differentiating with respect to x, ψx = ex sin y − 2y sin x+ h′(x). Set-
ting ψx = M̃ , we find that h′(x) = 0 , and hence h(x) = 0 is feasible. Hence the
solution of the given equation is defined implicitly by ex sin y + 2y cos x = c.
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21. My = 1 and Nx = 2 . Multiply both sides by the integrating factor µ(x, y) = y

to obtain y2dx+ (2xy − y2ey)dy = 0. Let M̃ = yM and Ñ = yN . It is easy to see
that M̃y = Ñx , and hence the latter ODE is exact. Integrating M̃ with respect

to x yields ψ(x, y) = xy2 + h(y) . Equating ψy with Ñ results in h′(y) = −y2ey,
and hence h(y) = −ey(y2 − 2y + 2). Thus ψ(x, y) = xy2 − ey(y2 − 2y + 2), and the
solution is defined implicitly by xy2 − ey(y2 − 2y + 2) = c .

24. The equation µM + µNy ′ = 0 has an integrating factor if (µM)y = (µN)x ,
that is, µyM − µxN = µNx − µMy . Suppose that Nx −My = R (xM − yN), in
which R is some function depending only on the quantity z = xy . It follows that
the modified form of the equation is exact, if µyM − µxN = µR (xM − yN) =
R (µxM − µ yN). This relation is satisfied if µy = (µx)R and µx = (µ y)R . Now
consider µ = µ(xy). Then the partial derivatives are µx = µ′y and µy = µ′x . Note
that µ′ = dµ/dz . Thus µ must satisfy µ′(z) = R(z). The latter equation is sepa-
rable, with dµ = R(z)dz , and µ(z) =

∫
R(z)dz . Therefore, given R = R(xy), it is

possible to determine µ = µ(xy) which becomes an integrating factor of the differ-
ential equation.

28. The equation is not exact, since Nx −My = 2y − 1 . However, (Nx −My)/M =
(2y − 1)/y is a function of y alone. Hence there exists µ = µ(y) , which is a solution
of the differential equation µ′ = (2− 1/y)µ . The latter equation is separable, with
dµ/µ = 2− 1/y . One solution is µ(y) = e2y−ln y = e2y/y . Now rewrite the given
ODE as e2ydx+ (2x e2y − 1/y)dy = 0 . This equation is exact, and it is easy to see
that ψ(x, y) = x e2y − ln |y|. Therefore the solution of the given equation is defined
implicitly by x e2y − ln |y| = c .

30. The given equation is not exact, since Nx −My = 8x3/y3 + 6/y2. But note that
(Nx −My)/M = 2/y is a function of y alone, and hence there is an integrating fac-
tor µ = µ(y). Solving the equation µ′ = (2/y)µ , an integrating factor is µ(y) = y2.
Now rewrite the differential equation as (4x3 + 3y)dx+ (3x+ 4y3)dy = 0. By in-
spection, ψ(x, y) = x4 + 3xy + y4, and the solution of the given equation is defined
implicitly by x4 + 3xy + y4 = c .

32. Multiplying both sides of the ODE by µ = [xy(2x+ y)]
−1

, the given equation is
equivalent to

[
(3x+ y)/(2x2 + xy)

]
dx+

[
(x+ y)/(2xy + y2)

]
dy = 0 . Rewrite the

differential equation as[
2

x
+

2

2x+ y

]
dx+

[
1

y
+

1

2x+ y

]
dy = 0 .

It is easy to see that My = Nx. Integrating M with respect to x, while keep-
ing y constant, results in ψ(x, y) = 2 ln |x|+ ln |2x+ y|+ h(y) . Now taking the
partial derivative with respect to y , ψy = (2x+ y)−1 + h ′(y) . Setting ψy = N ,
we find that h ′(y) = 1/y , and hence h(y) = ln |y| . Therefore ψ(x, y) = 2 ln |x|+
ln |2x+ y|+ ln |y|, and the solution of the given equation is defined implicitly by
2x3y + x2y2 = c .
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2.7

2. The Euler formula is given by yn+1 = yn + h(2yn − 1) = (1 + 2h)yn − h.

(a) 1.1, 1.22, 1.364, 1.5368

(b) 1.105, 1.23205, 1.38578, 1.57179

(c) 1.10775, 1.23873, 1.39793, 1.59144

(d) The differential equation is linear with solution y(t) = (1 + e2t)/2. The values
are 1.1107, 1.24591, 1.41106, 1.61277.

5.

All solutions seem to converge to y = 25/9 .

7.

All solutions seem to converge to a specific function.
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8.

Solutions with initial conditions |y(0)| > 2.5 seem to diverge. On the other hand,
solutions with initial conditions |y(0)| < 2.5 seem to converge to zero. Also, y = 0
is an equilibrium solution.

10.

Solutions with positive initial conditions increase without bound. Solutions with
negative initial conditions decrease without bound. Note that y = 0 is an equilib-
rium solution.

11. The Euler formula is yn+1 = yn − 3h
√
yn + 5h. The initial value is y0 = 2.

(a) 2.30800, 2.49006, 2.60023, 2.66773, 2.70939, 2.73521

(b) 2.30167, 2.48263, 2.59352, 2.66227, 2.70519, 2.73209

(c) 2.29864, 2.47903, 2.59024, 2.65958, 2.70310, 2.73053

(d) 2.29686, 2.47691, 2.58830, 2.65798, 2.70185, 2.72959

12. The Euler formula is yn+1 = (1 + 3h)yn − htny2
n. The initial value is (t0, y0) =

(0, 0.5).

(a) 1.70308, 3.06605, 2.44030, 1.77204, 1.37348, 1.11925
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(b) 1.79548, 3.06051, 2.43292, 1.77807, 1.37795, 1.12191

(c) 1.84579, 3.05769, 2.42905, 1.78074, 1.38017, 1.12328

(d) 1.87734, 3.05607, 2.42672, 1.78224, 1.38150, 1.12411

14. The Euler formula is yn+1 = (1− htn)yn + hy3
n/10, with (t0, y0) = (0, 1).

(a) 0.950517, 0.687550, 0.369188, 0.145990, 0.0421429, 0.00872877

(b) 0.938298, 0.672145, 0.362640, 0.147659, 0.0454100, 0.0104931

(c) 0.932253, 0.664778, 0.359567, 0.148416, 0.0469514, 0.0113722

(d) 0.928649, 0.660463, 0.357783, 0.148848, 0.0478492, 0.0118978

17. The Euler formula is yn+1 = yn + h(y2
n + 2tn yn)/(3 + t2n). The initial point is

(t0, y0) = (1 , 2). Using this iteration formula with the specified h values, the value
of the solution at t = 2.5 is somewhere between 18 and 19. At t = 3 there is no
reliable estimate.

19.(a)

(b) The iteration formula is yn+1 = yn + h y2
n − h t2n . The critical value α0 appears

to be between 0.67 and 0.68. For y0 > α0 , the iterations diverge.

20.(a) The ODE is linear, with general solution y(t) = t+ cet. Invoking the spec-
ified initial condition, y(t0) = y0, we have y0 = t0 + cet0 . Hence c = (y0 − t0)e−t0 .
Thus the solution is given by φ(t) = (y0 − t0)et−t0 + t.

(b) The Euler formula is yn+1 = (1 + h)yn + h− h tn . Now set k = n+ 1 .

(c) We have y1 = (1 + h)y0 + h− ht0 = (1 + h)y0 + (t1 − t0)− ht0. Rearranging
the terms, y1 = (1 + h)(y0 − t0) + t1. Now suppose that yk = (1 + h)k(y0 − t0) +
tk, for some k ≥ 1. Then yk+1 = (1 + h)yk + h− htk. Substituting for yk, we find
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that

yk+1 = (1 + h)k+1(y0 − t0) + (1 + h)tk + h− htk = (1 + h)k+1(y0 − t0) + tk + h.

Noting that tk+1 = tk + h, the result is verified.

(d) Substituting h = (t− t0)/n , with tn = t , yn = (1 + (t− t0)/n)n(y0 − t0) + t.
Taking the limit of both sides, and using the fact that limn→∞(1 + a/n)n = ea,
pointwise convergence is proved.

21. The exact solution is y(t) = et. The Euler formula is yn+1 = (1 + h)yn . It is
easy to see that yn = (1 + h)ny0 = (1 + h)n. Given t > 0 , set h = t/n . Taking the
limit, we find that limn→∞ yn = limn→∞(1 + t/n)n = et.

23. The exact solution is y(t) = t/2 + e2t. The Euler formula is yn+1 = (1 +
2h)yn + h/2− h tn. Since y0 = 1 , y1 = (1 + 2h) + h/2 = (1 + 2h) + t1/2 . It is
easy to show by mathematical induction, that yn = (1 + 2h)n + tn/2 . For t >
0 , set h = t/n and thus tn = t . Taking the limit, we find that limn→∞ yn =
limn→∞ [(1 + 2t/n)n + t/2] = e2t + t/2. Hence pointwise convergence is proved.

2.8

2. Let z = y − 3 and τ = t+ 1 . It follows that dz/dτ = (dz/dt)(dt/dτ) = dz/dt .
Furthermore, dz/dt = dy/dt = 1− y3 . Hence dz/dτ = 1− (z + 3)3. The new ini-
tial condition is z(0) = 0 .

3.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

2 [φn(s) + 1] ds .

Setting φ0(t) = 0 , φ1(t) = 2t . Continuing, φ2(t) = 2t2 + 2t , φ3(t) = 4t3/3 + 2t2 +
2t , φ4(t) = 2t4/3 + 4t3/3 + 2t2 + 2t , . . . . Based upon these we conjecture that
φn(t) =

∑n
k=1 2ktk/k! and use mathematical induction to verify this form for φn(t).

First, let n = 1, then φn(t) = 2t, so it is certainly true for n = 1. Then, using Eq.(7)
again we have

φn+1(t) =

∫ t

0

2 [φn(s) + 1] ds =

∫ t

0

2

[
n∑
k=1

2k

k !
sk + 1

]
ds =

n+1∑
k=1

2k

k !
tk,

and we have verified our conjecture.
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(b)

(c) Recall from calculus that eat = 1 +
∑∞
k=1 a

ktk/k!. Thus

φ(t) =

∞∑
k=1

2k

k !
tk = e2t − 1 .

(d)

From the plot it appears that φ4 is a good estimate for |t| < 1/2.

5.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[−φn(s)/2 + s] ds .

Setting φ0(t) = 0, φ1(t) = t2/2. Continuing, φ2(t) = t2/2− t3/12, φ3(t) = t2/2−
t3/12 + t4/96, φ4(t) = t2/2− t3/12 + t4/96− t5/960, . . .. Based upon these we
conjecture that φn(t) =

∑n
k=1 4(−1/2)k+1tk+1/(k + 1)! and use mathematical in-

duction to verify this form for φn(t).
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(b)

(c) Recall from calculus that eat = 1 +
∑∞
k=1 a

ktk/k!. Thus

φ(t) =

∞∑
k=1

4
(−1/2)k+1

k + 1 !
tk+1 = 4e−t/2 + 2t− 4 .

(d)

From the plot it appears that φ4 is a good estimate for |t| < 2.

6.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[φn(s) + 1− s] ds .

Setting φ0(t) = 0, φ1(t) = t− t2/2, φ2(t) = t− t3/6, φ3(t) = t− t4/24, φ4(t) = t−
t5/120, . . . . Based upon these we conjecture that φn(t) = t− tn+1/(n+ 1)! and
use mathematical induction to verify this form for φn(t).
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(b)

(c) Clearly φ(t) = t.

(d)

From the plot it appears that φ4 is a good estimate for |t| < 1.

8.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[
s2φn(s)− s

]
ds .

Set φ0(t) = 0. The iterates are given by φ1(t) = −t2/2 , φ2(t) = −t2/2− t5/10 ,
φ3(t) = −t2/2− t5/10− t8/80 , φ4(t) = −t2/2− t5/10− t8/80− t11/880 ,. . . . Upon
inspection, it becomes apparent that

φn(t) = −t2
[

1

2
+

t3

2 · 5
+

t6

2 · 5 · 8
+ . . .+

(t3)n−1

2 · 5 · 8 . . . [2 + 3(n− 1)]

]
=

= −t2
n∑
k=1

(t3)k−1

2 · 5 · 8 . . . [2 + 3(k − 1)]
.
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(b)

(c) Using the identity φn(t) = φ1(t) + [φ2(t)− φ1(t)] + [φ3(t)− φ2(t)] + . . .+ [φn(t)−
φn−1(t)], consider the series φ1(t) +

∑∞
k=1[φk+1(t)− φk(t)]. Fix any t value now.

We use the Ratio Test to prove the convergence of this series:

∣∣∣∣φk+1(t)− φk(t)

φk(t)− φk−1(t)

∣∣∣∣ =

∣∣∣∣∣∣
(−t2)(t3)k

2·5···(2+3k)

(−t2)(t3)k−1

2·5···(2+3(k−1))

∣∣∣∣∣∣ =
|t|3

2 + 3k
.

The limit of this quantity is 0 for any fixed t as k →∞, and we obtain that φn(t)
is convergent for any t.

9.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[
s2 + φ2

n(s)
]
ds .

Set φ0(t) = 0. The first three iterates are given by φ1(t) = t3/3, φ2(t) = t3/3 +
t7/63, φ3(t) = t3/3 + t7/63 + 2t11/2079 + t15/59535 .

(b)

The iterates appear to be converging.
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12.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[
3s2 + 4s+ 2

2(φn(s)− 1)

]
ds .

Note that 1/(2y − 2) = −(1/2)
∑6
k=0 y

k +O(y7). For computational purposes, use
the geometric series sum to replace the above iteration formula by

φn+1(t) = −1

2

∫ t

0

[
(3s2 + 4s+ 2)

6∑
k=0

φkn(s)

]
ds .

Set φ0(t) = 0. The first four approximations are given by φ1(t) = −t− t2 − t3/2,
φ2(t) = −t− t2/2 + t3/6 + t4/4− t5/5− t6/24 + . . ., φ3(t) = −t− t2/2 + t4/12−
3t5/20 + 4t6/45 + . . ., φ4(t) = −t− t2/2 + t4/8− 7t5/60 + t6/15 + . . .

(b)

The approximations appear to be converging to the exact solution, which can be
found by separating the variables: φ(t) = 1−

√
1 + 2t+ 2t2 + t3 .

14.(a) φn(0) = 0, for every n ≥ 1 . Let a ∈ (0 , 1]. Then φn(a) = 2na e−na
2

=

2na/ena
2

. Using l’Hospital’s rule, limz→∞ 2az/eaz
2

= limz→∞ 1/zeaz
2

= 0. Hence
limn→∞ φn(a) = 0 .

(b)
∫ 1

0
2nx e−nx

2

dx = −e−nx2∣∣1
0

= 1− e−n. Therefore,

lim
n→∞

∫ 1

0

φn(x)dx 6=
∫ 1

0

lim
n→∞

φn(x)dx .

15. Let t be fixed, such that (t , y1), (t , y2) ∈ D . Without loss of generality, assume
that y1 < y2 . Since f is differentiable with respect to y, the mean value theorem as-
serts that there exists ξ ∈ (y1 , y2) such that f(t , y1)− f(t , y2) = fy(t , ξ)(y1 − y2).
This means that |f(t , y1)− f(t , y2)| = |fy(t , ξ)| |y1 − y2|. Since, by assumption,
∂f/∂y is continuous in D, fy attains a maximum K on any closed and bounded
subset of D . Hence |f(t , y1)− f(t , y2)| ≤ K |y1 − y2|.

16. For a sufficiently small interval of t, φn−1(t), φn(t) ∈ D. Since f satisfies a
Lipschitz condition, |f(t, φn(t))− f(t, φn−1(t))| ≤ K |φn(t)− φn−1(t)|. Here K =
max |fy|.



56 Chapter 2. First Order Differential Equations

17.(a) φ1(t) =
∫ t

0
f(s , 0)ds . Hence |φ1(t)| ≤

∫ |t|
0
|f(s , 0)| ds ≤

∫ |t|
0
Mds = M |t| , in

which M is the maximum value of |f(t , y)| on D .

(b) By definition, φ2(t)− φ1(t) =
∫ t

0
[f(s , φ1(s))− f(s , 0)] ds . Taking the absolute

value of both sides, |φ2(t)− φ1(t)| ≤
∫ |t|

0
|[f(s , φ1(s))− f(s , 0)]| ds . Based on the

results in Problems 16 and 17,

|φ2(t)− φ1(t)| ≤
∫ |t|

0

K |φ1(s)− 0| ds ≤ KM
∫ |t|

0

|s| ds .

Evaluating the last integral, we obtain that |φ2(t)− φ1(t)| ≤MK |t|2 /2 .

(c) Suppose that

|φi(t)− φi−1(t)| ≤ MKi−1 |t|i

i!

for some i ≥ 1 . By definition,

φi+1(t)− φi(t) =

∫ t

0

[f(s, φi(s))− f(s, φi−1(s))] ds .

It follows that

|φi+1(t)− φi(t)| ≤
∫ |t|

0

|f(s, φi(s))− f(s, φi−1(s))| ds

≤
∫ |t|

0

K |φi(s)− φi−1(s)| ds ≤
∫ |t|

0

K
MK i−1 |s|i

i!
ds =

=
MK i |t|i+1

(i+ 1)!
≤ MK ihi+1

(i+ 1)!
.

Hence, by mathematical induction, the assertion is true.

18.(a) Use the triangle inequality, |a+ b| ≤ |a|+ |b| .

(b) For |t| ≤ h , |φ1(t)| ≤Mh , and |φn(t)− φn−1(t)| ≤MK n−1hn/(n !) . Hence

|φn(t)| ≤M
n∑
i=1

K i−1hi

i !
=
M

K

n∑
i=1

(Kh)i

i !
.

(c) The sequence of partial sums in (b) converges to M(eKh − 1)/K. By the com-
parison test, the sums in (a) also converge. Since individual terms of a convergent
series must tend to zero, |φn(t)− φn−1(t)| → 0 , and it follows that the sequence
|φn(t)| is convergent.

19.(a) Let φ(t) =
∫ t

0
f(s , φ(s))ds and ψ(t) =

∫ t
0
f(s , ψ(s))ds . Then by linearity of

the integral, φ(t)− ψ(t) =
∫ t

0
[f(s , φ(s))− f(s , ψ(s))] ds .

(b) It follows that |φ(t)− ψ(t)| ≤
∫ t

0
|f(s , φ(s))− f(s , ψ(s))| ds .
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(c) We know that f satisfies a Lipschitz condition, |f(t , y1)− f(t , y2)| ≤ K |y1 − y2|,
based on |∂f/∂y| ≤ K in D. Therefore,

|φ(t)− ψ(t)| ≤
∫ t

0

|f(s , φ(s))− f(s , ψ(s))| ds ≤
∫ t

0

K |φ(s)− ψ(s)| ds.

2.9

1. Writing the equation for each n ≥ 0 , y1 = −0.9 y0 , y2 = −0.9 y1 = (−0.92)y0,
y3 = −0.9 y2 = (−0.9)3y0 and so on, it is apparent that yn = (−0.9)n y0 . The terms
constitute an alternating series, which converge to zero, regardless of y0 .

3. Write the equation for each n ≥ 0, y1 =
√

3 y0, y2 =
√

4/2 y1, y3 =
√

5/3 y2, . . .

Upon substitution, we find that y2 =
√

(4 · 3)/2 y1, y3 =
√

(5 · 4 · 3)/(3 · 2) y0, . . .
It can be proved by mathematical induction, that

yn =
1√
2

√
(n+ 2)!

n!
y0 =

1√
2

√
(n+ 1)(n+ 2) y0 .

This sequence is divergent, except for y0 = 0 .

4. Writing the equation for each n ≥ 0 , y1 = −y0 , y2 = y1 , y3 = −y2 , y4 = y3 ,
and so on. It can be shown that

yn =

{
y0, for n = 4k or n = 4k − 1

−y0, for n = 4k − 2 or n = 4k − 3

The sequence is convergent only for y0 = 0 .

6. Writing the equation for each n ≥ 0 ,

y1 = −0.5 y0 + 6

y2 = −0.5 y1 + 6 = −0.5(−0.5 y0 + 6) + 6 = (−0.5)2y0 + 6 + (−0.5)6

y3 = −0.5 y2 + 6 = −0.5(−0.5 y1 + 6) + 6 = (−0.5)3y0 + 6
[
1 + (−0.5) + (−0.5)2

]
...

yn = (−0.5)ny0 + 4 [1− (−0.5)n ]

which follows from Eq.(13) and (14). The sequence is convergent for all y0 , and in
fact yn → 4.

8. Let yn be the balance at the end of the nth month. Then yn+1 = (1 + r/12)yn +
25. We have yn = ρn[y0 − 25/(1− ρ)] + 25/(1− ρ), in which ρ = (1 + r/12). Here
r is the annual interest rate, given as 8%. Thus y36 = (1.0066)36 [1000 + 12 · 25/r]−
12 · 25/r = $2, 283.63.

9. Let yn be the balance due at the end of the nth month. The appropriate
difference equation is yn+1 = (1 + r/12) yn − P . Here r is the annual interest rate
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and P is the monthly payment. The solution, in terms of the amount borrowed,
is given by yn = ρn[y0 + P/(1− ρ)]− P/(1− ρ), in which ρ = (1 + r/12) and y0 =
8, 000 . To figure out the monthly payment P , we require that y36 = 0. That is,
ρ36[y0 + P/(1− ρ)] = P/(1− ρ). After the specified amounts are substituted, we
find that P = $258.14.

11. Let yn be the balance due at the end of the nth month. The appropriate differ-
ence equation is yn+1 = (1 + r/12) yn − P , in which r = .09 and P is the monthly
payment. The initial value of the mortgage is y0 = $100, 000. Then the balance
due at the end of the n-th month is yn = ρn[y0 + P/(1− ρ)]− P/(1− ρ), where
ρ = (1 + r/12). In terms of the specified values, yn = (1.0075)n[105 − 12P/r] +
12P/r. Setting n = 30 · 12 = 360 , and y360 = 0 , we find that P = $804.62. For the
monthly payment corresponding to a 20 year mortgage, set n = 240 and y240 = 0
to find that P = $899.73. The total amount paid during the term of the loan is
360× 804.62 = $289, 663.20 for the 30-year loan and is 240× 899.73 = $215, 935.20
for the 20-year loan.

12. Let yn be the balance due at the end of the nth month, with y0 the initial value
of the mortgage. The appropriate difference equation is yn+1 = (1 + r/12) yn − P ,
in which r = 0.1 and P = $1000 is the maximum monthly payment. Given that the
life of the mortgage is 20 years, we require that y240 = 0. The balance due at the end
of the n-th month is yn = ρn[y0 + P/(1− ρ)]− P/(1− ρ). In terms of the specified
values for the parameters, the solution of (1.00833)240[y0 − 12 · 1000/0.1] = −12 ·
1000/0.1 is y0 = $103, 624.62.

19.(a) δ2 = (ρ2 − ρ1)/(ρ3 − ρ2) = (3.449− 3)/(3.544− 3.449) = 4.7263 .

(b) diff= (|δ − δ2|/δ) · 100 = (|4.6692− 4.7363|/4.6692) · 100 ≈ 1.22%.

(c) Assuming (ρ3 − ρ2)/(ρ4 − ρ3) = δ , ρ4 ≈ 3.5643

(d) A period 16 solution appears near ρ ≈ 3.565 .

(e) Note that (ρn+1 − ρn) = δ−1
n (ρn − ρn−1). With the assumption that δn = δ, we

have (ρn+1 − ρn) = δ−1(ρn − ρn−1), which is of the form yn+1 = α yn , n ≥ 3 . It
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follows that (ρk − ρk−1) = δ3−k(ρ3 − ρ2) for k ≥ 4 . Then

ρn = ρ1 + (ρ2 − ρ1) + (ρ3 − ρ2) + (ρ4 − ρ3) + . . .+ (ρn − ρn−1)

= ρ1 + (ρ2 − ρ1) + (ρ3 − ρ2)
[
1 + δ−1 + δ−2 + . . .+ δ3−n]

= ρ1 + (ρ2 − ρ1) + (ρ3 − ρ2)

[
1− δ4−n

1− δ−1

]
.

Hence limn→∞ ρn = ρ2 + (ρ3 − ρ2)
[

δ
δ−1

]
. Substitution of the appropriate values

yields
lim
n→∞

ρn = 3.5699

PROBLEMS

1. The equation is linear. It can be written in the form y′ + 2y/x = x2, and the
integrating factor is µ(x) = e

∫
(2/x) dx = e2 ln x = x2. Multiplication by µ(x) yields

x2y′ + 2yx = (yx2)′ = x4. Integration with respect to x and division by x2 gives
that y = x3/5 + c/x2.

5. The equation is exact. Algebraic manipulations give the symmetric form of
the equation, (2xy + y2 + 1)dx+ (x2 + 2xy)dy = 0. We can check that My = 2x+
2y = Nx, so the equation is really exact. Integrating M with respect to x gives that
ψ(x, y) = x2y + xy2 + x+ g(y), then ψy = x2 + 2xy + g′(y) = x2 + 2xy, so we get
that g′(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is
defined implicitly as x2y + xy2 + x = c.

6. The equation is linear. It can be written in the form y′ + (1 + (1/x))y = 1/x
and the integrating factor is µ(x) = e

∫
1+(1/x) dx = ex+ln x = xex. Multiplication by

µ(x) yields xexy′ + (xex + ex)y = (xexy)′ = ex. Integration with respect to x and
division by xex shows that the general solution of the equation is y = 1/x+ c/(xex).
The initial condition implies that 0 = 1 + c/e, which means that c = −e and the
solution is y = 1/x− e/(xex) = x−1(1− e1−x).

7. The equation is separable. Separation of variables gives the differential equation
y(2 + 3y)dy = (4x3 + 1)dx, and then after integration we obtain that the solution
is x4 + x− y2 − y3 = c.

8. The equation is linear. It can be written in the form y′ + 2y/x = sinx/x2 and the
integrating factor is µ(x) = e

∫
(2/x) dx = e2 ln x = x2. Multiplication by µ(x) gives

x2y′ + 2xy = (x2y)′ = sinx, and after integration with respect to x and division by
x2 we obtain the general solution y = (c− cosx)/x2. The initial condition implies
that c = 4 + cos 2 and the solution becomes y = (4 + cos 2− cosx)/x2.

11. The equation is exact. It is easy to check that My = 1 = Nx. Integrating
M with respect to x gives that ψ(x, y) = x3/3 + xy + g(y), then ψy = x+ g′(y) =
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x+ ey, which means that g′(y) = ey, so we obtain that g(y) = ey. Therefore the
solution is defined implicitly as x3/3 + xy + ey = c.

13. The equation is separable. Factoring the right hand side leads to the equa-
tion y′ = (1 + y2)(1 + 2x). We separate the variables to obtain dy/(1 + y2) =
(1 + 2x)dx, then integration gives us arctan y = x+ x2 + c. The solution is y =
tan(x+ x2 + c).

14. The equation is exact. We can check that My = 1 = Nx. Integrating M with
respect to x gives that ψ(x, y) = x2/2 + xy + g(y), then ψy = x+ g′(y) = x+ 2y,
which means that g′(y) = 2y, so we obtain that g(y) = y2. Therefore the general
solution is defined implicitly as x2/2 + xy + y2 = c. The initial condition gives us
c = 17, so the solution is x2 + 2xy + 2y2 = 34.

15. The equation is separable. Separation of variables leads us to the equation

dy

y
=

1− ex

1 + ex
dx.

Note that 1 + ex − 2ex = 1− ex. We obtain that

ln |y| =
∫

1− ex

1 + ex
dx =

∫
1− 2ex

1 + ex
dx = x− 2 ln(1 + ex) + c̃.

This means that y = cex(1 + ex)−2, which also can be written as y = c/ cosh2(x/2)
after some algebraic manipulations.

16. The equation is exact. The symmetric form is (−e−x cos y + e2y cosx)dx+
(−e−x sin y + 2e2y sinx)dy = 0. We can check that My = e−x sin y + 2e2y cosx =
Nx. Integrating M with respect to x gives that ψ(x, y) = e−x cos y + e2y sinx+
g(y), then ψy = −e−x sin y + 2e2y sinx+ g′(y) = −e−x sin y + 2e2y sinx, so we get
that g′(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is
defined implicitly as e−x cos y + e2y sinx = c.

17. The equation is linear. The integrating factor is µ(x) = e−
∫

3 dx = e−3x, which
turns the equation into e−3xy′ − 3e−3xy = (e−3xy)′ = e−x. We integrate with re-
spect to x to obtain e−3xy = −e−x + c, and the solution is y = ce3x − e2x after
multiplication by e3x.

18. The equation is linear. The integrating factor is µ(x) = e
∫

2 dx = e2x, which

gives us e2xy′ + 2e2xy = (e2xy)′ = e−x
2

. The antiderivative of the function on the
right hand side can not be expressed in a closed form using elementary functions,
so we have to express the solution using integrals. Let us integrate both sides of
this equation from 0 to x. We obtain that the left hand side turns into∫ x

0

(e2sy(s))′ds = e2xy(x)− e0y(0) = e2xy − 3.

The right hand side gives us
∫ x

0
e−s

2

ds. So we found that

y = e−2x

∫ x

0

e−s
2

ds+ 3e−2x.
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19. The equation is exact. Algebraic manipulations give us the symmetric form
(y3 + 2y − 3x2)dx+ (2x+ 3xy2)dy = 0. We can check that My = 3y2 + 2 = Nx.
Integrating M with respect to x gives that ψ(x, y) = xy3 + 2xy − x3 + g(y), then
ψy = 3xy2 + 2x+ g′(y) = 2x+ 3xy2, which means that g′(y) = 0, so we obtain that
g(y) = 0 is acceptable. Therefore the solution is xy3 + 2xy − x3 = c.

20. The equation is separable, because y′ = ex+y = exey. Separation of variables
yields the equation e−ydy = exdx, which turns into −e−y = ex + c after integration
and we obtain the implicitly defined solution ex + e−y = c.

22. The equation is separable. Separation of variables turns the equation into
(y2 + 1)dy = (x2 − 1)dx, which, after integration, gives y3/3 + y = x3/3− x+ c.
The initial condition yields c = 2/3, and the solution is y3 + 3y − x3 + 3x = 2.

23. The equation is linear. Division by t gives y′ + (1 + (1/t))y = e2t/t, so the
integrating factor is µ(t) = e

∫
(1+(1/t))dt = et+ln t = tet. The equation turns into

tety′ + (tet + et)y = (tety)′ = e3t. Integration therefore leads to tety = e3t/3 + c
and the solution is y = e2t/(3t) + ce−t/t.

24. The equation is exact. We can check that My = 2 cos y sinx cosx = Nx. In-
tegrating M with respect to x gives that ψ(x, y) = sin y sin2 x+ g(y), then ψy =
cos y sin2 x+ g′(y) = cos y sin2 x, which means that g′(y) = 0, so we obtain that
g(y) = 0 is acceptable. Therefore the solution is defined implicitly as sin y sin2 x = c.

25. The equation is exact. We can check that

My = −2x

y2
− x2 − y2

(x2 + y2)2
= Nx.

Integrating M with respect to x gives that ψ(x, y) = x2/y + arctan(y/x) + g(y),
then ψy = −x2/y2 + x/(x2 + y2) + g′(y) = x/(x2 + y2)− x2/y2, which means that
g′(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is defined
implicitly as x2/y + arctan(y/x) = c.

28. The equation can be made exact by choosing an appropriate integrating factor.
We can check that (My −Nx)/N = (2− 1)/x = 1/x depends only on x, so µ(x) =

e
∫

(1/x)dx = eln x = x is an integrating factor. After multiplication, the equation
becomes (2yx+ 3x2)dx+ x2dy = 0. This equation is exact now, because My =
2x = Nx. Integrating M with respect to x gives that ψ(x, y) = yx2 + x3 + g(y),
then ψy = x2 + g′(y) = x2, which means that g′(y) = 0, so we obtain that g(y) = 0
is acceptable. Therefore the solution is defined implicitly as x3 + x2y = c.

29. The equation is homogeneous. (See Section 2.2, Problem 30) We can see that

y′ =
x+ y

x− y
=

1 + (y/x)

1− (y/x)
.

We substitute u = y/x, which means also that y = ux and then y′ = u′x+ u =
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(1 + u)/(1− u), which implies that

u′x =
1 + u

1− u
− u =

1 + u2

1− u
,

a separable equation. Separating the variables yields

1− u
1 + u2

du =
dx

x
,

and then integration gives arctanu− ln(1 + u2)/2 = ln |x|+ c. Substituting u =
y/x back into this expression and using that

− ln(1 + (y/x)2)/2− ln |x| = − ln(|x|
√

1 + (y/x)2) = − ln(
√
x2 + y2)

we obtain that the solution is arctan(y/x)− ln(
√
x2 + y2) = c.

30. The equation is homogeneous. (See Section 2.2, Problem 30) Algebraic manip-
ulations show that it can be written in the form

y′ =
3y2 + 2xy

2xy + x2
=

3(y/x)2 + 2(y/x)

2(y/x) + 1
.

Substituting u = y/x gives that y = ux and then

y′ = u′x+ u =
3u2 + 2u

2u+ 1
,

which implies that

u′x =
3u2 + 2u

2u+ 1
− u =

u2 + u

2u+ 1
,

a separable equation. We obtain that (2u+ 1)du/(u2 + u) = dx/x, which in turn
means that ln(u2 + u) = ln |x|+ c̃. Therefore, u2 + u = cx and then substituting
u = y/x gives us the solution (y2/x3) + (y/x2) = c.

31. The equation can be made exact by choosing an appropriate integrating
factor. We can check that (My −Nx)/M = −(3x2 + y)/(y(3x2 + y)) = −1/y de-

pends only on y, so µ(y) = e
∫

(1/y)dy = eln y = y is an integrating factor. After
multiplication, the equation becomes (3x2y2 + y3)dx+ (2x3y + 3xy2)dy = 0. This
equation is exact now, because My = 6x2y + 3y2 = Nx. Integrating M with re-
spect to x gives that ψ(x, y) = x3y2 + y3x+ g(y), then ψy = 2x3y + 3y2x+ g′(y) =
2x3y + 3xy2, which means that g′(y) = 0, so we obtain that g(y) = 0 is acceptable.
Therefore the general solution is defined implicitly as x3y2 + xy3 = c. The initial
condition gives us 4− 8 = c = −4, and the solution is x3y2 + xy3 = −4.

33. Let y1 be a solution, i.e. y′1 = q1 + q2y1 + q3y
2
1 . Now let y = y1 + (1/v) also be

a solution. Differentiating this expression with respect to t and using that y is also
a solution we obtain y′ = y′1 − (1/v2)v′ = q1 + q2y + q3y

2 = q1 + q2(y1 + (1/v)) +
q3(y1 + (1/v))2. Now using that y1 was also a solution we get that −(1/v2)v′ =
q2(1/v) + 2q3(y1/v) + q3(1/v2), which, after some simple algebraic manipulations
turns into v′ = −(q2 + 2q3y1)v − q3.
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35.(a) The equation is y′ = (1− y)(x+ by) = x+ (b− x)y − by2. We set y = 1 +
(1/v) and differentiate: y′ = −v−2v′ = x+ (b− x)(1 + (1/v))− b(1 + (1/v))2, which,
after simplification, turns into v′ = (b+ x)v + b.

(b) When x = at, the equation is v′ − (b+ at)v = b, so the integrating factor is

µ(t) = e−bt−at
2/2. This turns the equation into (vµ(t))′ = bµ(t), so vµ(t) =

∫
bµ(t)dt,

and then v = (b
∫
µ(t)dt)/µ(t).

36. Substitute v = y′, then v′ = y′′. The equation turns into t2v′ + 2tv = (t2v)′ =
1, which yields t2v = t+ c1, so y′ = v = (1/t) + (c1/t

2). Integrating this expression
gives us the solution y = ln t− (c1/t) + c2.

37. Set v = y′, then v′ = y′′. The equation with this substitution is tv′ + v =
(tv)′ = 1, which gives tv = t+ c1, so y′ = v = 1 + (c1/t). Integrating this expres-
sion yields the solution y = t+ c1 ln t+ c2.

38. Set v = y′, so v′ = y′′. The equation is v′ + tv2 = 0, which is a separable
equation. Separating the variables we obtain dv/v2 = −tdt, so −1/v = −t2/2 + c,
and then y′ = v = 2/(t2 + c1). Now depending on the value of c1, we have the
following possibilities: when c1 = 0, then y = −2/t+ c2, when 0 < c1 = k2, then
y = (2/k) arctan(t/k) + c2, and when 0 > c1 = −k2 then

y = (1/k) ln |(t− k)/(t+ k)|+ c2.

We also divided by v = y′ when we separated the variables, and v = 0 (which is
y = c) is also a solution.

39. Substitute v = y′ and v′ = y′′. The equation is 2t2v′ + v3 = 2tv. This is a
Bernoulli equation (See Section 2.4, Problem 27), so the substitution z = v−2 yields
z′ = −2v−3v′, and the equation turns into 2t2v′v3 + 1 = 2t/v2, i.e. into −2t2z′/2 +
1 = 2tz, which in turn simplifies to t2z′ + 2tz = (t2z)′ = 1. Integration yields t2z =
t+ c, which means that z = (1/t) + (c/t2). Now y′ = v = ±

√
1/z = ±t/

√
t+ c1

and another integration gives

y = ±2

3
(t− 2c1)

√
t+ c1 + c2.

The substitution also loses the solution v = 0, i.e. y = c.

40. Set v = y′, then v′ = y′′. The equation reads v′ + v = e−t, which is a linear
equation with integrating factor µ(t) = et. This turns the equation into etv′ + etv =
(etv)′ = 1, which means that etv = t+ c and then y′ = v = te−t + ce−t. Another
integration yields the solution y = −te−t + c1e

−t + c2.

41. Let v = y′ and v′ = y′′. The equation is t2v′ = v2, which is a separable equation.
Separating the variables we obtain dv/v2 = dt/t2, which gives us −1/v = −(1/t) +
c1, and then y′ = v = t/(1 + c1t). Now when c1 = 0, then y = t2/2 + c2, and when
c1 6= 0, then y = t/c1 − (ln |1 + c1t|)/c21 + c2. Also, at the separation we divided by
v = 0, which also gives us the solution y = c.
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43. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equation
v′v + y = 0, where the differentiation is with respect to y. This is a separable
equation which simplifies to vdv = −ydy. We obtain that v2/2 = −y2/2 + c, so

y′ = v(y) = ±
√
c− y2. We separate the variables again to get dy/

√
c− y2 = ±dt,

so arcsin(y/
√
c) = t+ d, which means that y =

√
c sin(±t+ d) = c1 sin(t+ c2).

44. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equation
v′v + yv3 = 0, where the differentiation is with respect to y. Separation of variables
turns this into dv/v2 = −ydy, which gives us y′ = v = 2/(c1 + y2). This implies
that (c1 + y2)dy = 2dt and then the solution is defined implicitly as c1y + y3/3 =
2t+ c2. Also, y = c is a solution which we lost when divided by y′ = v = 0.

46. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equa-
tion yv′v − v3 = 0, where the differentiation is with respect to y. This separa-
ble equation gives us dv/v2 = dy/y, which means that −1/v = ln |y|+ c, and then
y′ = v = 1/(c− ln |y|). We separate variables again to obtain (c− ln |y|)dy = dt,
and then integration yields the implicitly defined solution cy − (y ln |y| − y) = t+ d.
Also, y = c is a solution which we lost when we divided by v = 0.

49. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equation
v′v − 3y2 = 0, where the differentiation is with respect to y. Separation of variables
gives vdv = 3y2dy, and after integration this turns into v2/2 = y3 + c. The initial
conditions imply that c = 0 here, so (y′)2 = v2 = 2y3. This implies that y′ =

√
2y3/2

(the sign is determined by the initial conditions again), and this separable equation
now turns into y−3/2dy =

√
2dt. Integration yields −2y−1/2 =

√
2t+ d, and the

initial conditions at this point give that d = −
√

2. Algebraic manipulations find
that y = 2(1− t)−2.

50. Set v = y′, then v′ = y′′. The equation with this substitution turns into
the equation (1 + t2)v′ + 2tv = ((1 + t2)v)′ = −3t−2. Integrating this we get that
(1 + t2)v = 3t−1 + c, and c = −5 from the initial conditions. This means that
y′ = v = 3/(t(1 + t2))− 5/(1 + t2). The partial fraction decomposition of the first
expression shows that y′ = 3/t− 3t/(1 + t2)− 5/(1 + t2) and then another inte-
gration here gives us that y = 3 ln t− (3/2) ln(1 + t2)− 5 arctan t+ d. The initial
conditions identify d = 2 + (3/2) ln 2 + 5π/4, and we obtained the solution.
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