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(b) If y(0) > —3, solutions eventually have positive slopes, and hence increase with-
out bound. If y(0) < —3, solutions have negative slopes and decrease without
bound.

(¢) The integrating factor is p(t) = e~/ 24 = ¢=2t The differential equation can

be written as e~ 2ty’ — 2e~ %'y = 3e~*, that is, (e 2'y)’ = 3e~!. Integration of both

sides of the equation results in the general solution y(t) = —3e’ + ce?'. It follows
that all solutions will increase exponentially if ¢ > 0 and will decrease exponentially
13
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Chapter 2. First Order Differential Equations

if ¢ < 0. Letting ¢ = 0 and then ¢t = 0, we see that the boundary of these behaviors
is at y(0) = —3.
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(b) All solutions eventually have positive slopes, and hence increase without bound.

(¢) The integrating factor is u(t) = e/ (/2 dt = ¢t/2 The differential equation can
be written as e'/2y’ + et/2y/2 = 3tet/? /2 that is, (e/?y/2)" = 3te?/? /2. Integra-
tion of both sides of the equation results in the general solution y(t) =3t —6 +
ce™/2. All solutions approach the specific solution yo(t) = 3t — 6.
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(b) For y > 0, the slopes are all positive, and hence the corresponding solutions
increase without bound. For y < 0, almost all solutions have negative slopes, and
hence solutions tend to decrease without bound.

(c) First divide both sides of the equation by ¢ (¢ > 0). From the resulting standard
form, the integrating factor is u(t) = e~/ (/0 4t = 1/t = The differential equation
can be written as y’/t —y/t? =te~!, that is, (y/t) = te~!. Integration leads to
the general solution y(t) = —te™t 4+ ct. For ¢ # 0, solutions diverge, as implied by
the direction field. For the case ¢ = 0, the specific solution is y(t) = —te™*, which
evidently approaches zero as t — 0.
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(b) All solutions eventually have positive slopes, and hence increase without bound.

(¢) The integrating factor is p(t) = e'/2. The differential equation can be written
as et/2y’ +et/?y/2 = 3t2/2 | that is, (e!/2y/2)" = 3t%/2. Integration of both sides
of the equation results in the general solution y(t) = 3t> — 12t + 24 4 ce~t/2. It
follows that all solutions converge to the specific solution 3t — 12t + 24.

14. The integrating factor is ju(t) = e?'. After multiplying both sides by u(t),
the equation can be written as (e?! y)’ = t. Integrating both sides of the equation
results in the general solution y(t) = t?e~2!/2 + ce™2!. Invoking the specified con-
dition, we require that e=2/2+ce 2 =0. Hence ¢ = —1/2, and the solution to
the initial value problem is y(t) = (t? — 1)e=2!/2.

16. The integrating factor is u(t) = e/ 2/ 4t = 42 Multiplying both sides by u(t),
the equation can be written as (t? y)’ = cost. Integrating both sides of the equation
results in the general solution y(t) = sint/t? 4+ ct~2. Substituting ¢ = 7 and setting
the value equal to zero gives ¢ = 0. Hence the specific solution is y(t) = sint/t2.
17. The integrating factor is u(t) = =2, and the differential equation can be
written as (e~2fy)’ = 1. Integrating, we obtain e~ 2! y(t) =t + c. Invoking the
specified initial condition results in the solution y(t) = (t + 2)e?.

19. After writing the equation in standard form, we find that the integrating
factor is u(t) = e (@/0)dt — 44 Multiplying both sides by w(t), the equation can be
written as (t'y) = te~!. Integrating both sides results in t1y(t) = —(t + 1)e~ +
c. Letting ¢t = —1 and setting the value equal to zero gives ¢ = 0. Hence the
specific solution of the initial value problem is y(t) = —(¢=2 +t~*)e~t.
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The solutions eventually increase or decrease, depending on the initial value a.
The critical value seems to be ag = —2.

(b) The integrating factor is u(t) = e~*/2, and the general solution of the differential
equation is y(t) = —3e'/? + cet/?2. Invoking the initial condition y(0) =a, the

solution may also be expressed as y(t) = —3¢t/3 + (a + 3) e!/2. The critical value
is ag = —3.

(¢) For ap = —3, the solution is y(t) = —3e'/3, which diverges to —oo as t — oo.
23.(a)

2

NI

NN NN
NN
NN
ARV NN
AN VRN
NONN NN
NN NN
NN NN
NN NN
NN
NN NN
AR W
NN NN
NN NN
AR W
NN
NN
NN NN
AR W

YN A AR AN AN A AN A

=]

VY T A W A Y

|

J_\JA

T 2 3
e o o o GGG
P e T T A T e T e T e T e T T e T e T T T T T T T T
e A T e TN T T T T T T T T T T T T T T T
R e e
B S N N N N N N N N N N N N N N N NN
P S N N N N N N N N N N N N N N N N N
ERER R R R R R R R R R AR AR
SRR R R R R R R AR R R R RN
T2 %N N N N NN N N N NN N NN N N NN

A

Solutions appear to grow infinitely large in absolute value, with signs depending on
the initial value y(0) = ag. The direction field appears horizontal for ag = —1/8.

(b) Dividing both sides of the given equation by 3, the integrating factor is p(t) =
e~2t/3  Multiplying both sides of the original differential equation by wu(t) and inte-
grating results in y(t) = (2€2*/3 —2e7™/2 4 a(4 + 37) €*/3) /(4 + 37). The quali-
tative behavior of the solution is determined by the terms containing et/ : 2 e2t/3 +
a(4 + 31) €?*/3. The nature of the solutions will change when 2 + a(4 + 37) =0.
Thus the critical initial value is ag = —2/(4 + 37) .

(¢) In addition to the behavior described in part (a), when y(0) = —2/(4 + 3m),
the solution is y(t) = (—=2e~7"/2)/(4 + 37), and that specific solution will converge
toy=0.
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As t — 0, solutions increase without boun , and solutions de-

crease without bound if y(1) =a < 0.4.

(b) The integrating factor is pu(t) = e/ (t+1)/tdt — et The general solution of the
differential equation is y(t) =te '+ ce '/t. Since y(1) = a, we have that 1+
¢ =ae. That is, ¢ =ae — 1. Hence the solution can also be expressed as y(t) =
te '+ (ae —1)e~t/t. For small values of ¢, the second term is dominant. Setting
ae — 1 =0, the critical value of the parameter is ag = 1/e.

(c) When a = 1/e, the solution is y(t) = te~!, which approaches 0as t — 0.

27. The integrating factor is u(t) = el (1/2)dt — ¢t/2 Therefore the general solution
is y(t) = (4cost + 8sint)/5 + ce/2. Invoking the initial condition, the specific so-
lution is y(t) = (4cost 4 8sint — 9e~/2)/5. Differentiating, it follows that 3’ (t) =
(—4sint + 8cost +4.5¢7/2) /5 and y”(t) = (—4cost — 8sint — 2.25e7/2) /5. Set-
ting y'(t) = 0, the first solution is ¢; = 1.3643, which gives the location of the first
stationary point. Since y” (1) < 0, the first stationary point in a local maximum.
The coordinates of the point are (1.3643,0.82008).

28. The integrating factor is p(t) = e/(2/3)dt — ¢2t/3 and the differential equa-
tion can be written as (e2!/3 )" = /3 — te?!/3 /2. The general solution is y(t) =
(21 — 6t)/8 4+ ce~2!/3. Tmposing the initial condition, we have y(t) = (21 — 6t)/8 +
(yo — 21/8)e~2!/3. Since the solution is smooth, the desired intersection will be
a point of tangency. Taking the derivative, y’(t) = —3/4 — (2yo — 21/4)e=2t/3 /3.
Setting y'(t) = 0, the solution is t; = (3/2) In[(21 — 8yp)/9]. Substituting into the
solution, the respective value at the stationary point is y(t1) = 3/2+ (9/4)1n 3 —
(9/8) In(21 — 8yp). Setting this result equal to zero, we obtain the required initial
value yo = (21 — 9e%/?)/8 ~ —1.643.

29.(a) The integrating factor is u(t) = e'/*, and the differential equation can be
written as (e//*y) = 3et/* + 2e'/* cos 2t. After integration, we get that the general
solution is y(t) = 12 + (8 cos 2t + 64 sin 2t) /65 + ce~t/*. Invoking the initial condi-
tion, y(0) = 0, the specific solution is y(t) = 12 + (8 cos 2t + 64 sin 2t — 788 e~*/4) /65.
As t — oo, the exponential term will decay, and the solution will oscillate about
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an average value of 12, with an amplitude of 8/v/65 .

(b) Solving y(t) = 12, we obtain the desired value ¢ ~ 10.0658.
31. The integrating factor is u(t) = e~5t/2 and the differential equation can be
written as (e 3%/2 y)' = 3te /2 4-2¢7%/2. The general solution is y(t) = —2t —
4/3 — 4et + ce®/?. Tmposing the initial condition, y(t) = —2t —4/3 — 4 e + (yo +
16/3) €%/2. Now as t — oo, the term containing /2 will dominate the solution.
Its sign will determine the divergence properties. Hence the critical value of the
initial condition is yo = —16/3. The corresponding solution, y(t) = —2t —4/3 —
4 et will also decrease without bound.

Note on Problems 34-37:

Let g(t) be given, and consider the function y(t) = y1(¢) + ¢(t), in which y;(¢t) — 0
as t — oo. Differentiating, y’(t) = y{(t) + g’(t) . Letting a be a constant, it follows
that y'(t) + ay(t) = y{(t) + ay1(t) + g'(t) + ag(t). Note that the hypothesis on the
function y; (¢) will be satisfied, if y{(t) + ay1(t) = 0. That is, y1(t) = ce~*. Hence
y(t) = ce™*" 4 g(t), which is a solution of the equation y’ + ay = g’ (t) + ag(t). For
convenience, choose a = 1.

34. Here g(t) = 3, and we consider the linear equation y’ + y = 3. The integrating
factor is u(t) = e, and the differential equation can be written as (e’ y)’ = 3e’. The
general solution is y(t) =3 +ce "

36. Here g(t) =2t — 5. Consider the linear equation y’'+y =2+ 2t —5. The
integrating factor is u(t) = ef, and the differential equation can be written as
(ely) = (2t — 3)et. The general solution is y(t) =2t — 5+ ce™".

37. g(t) = 4 — t2. Consider the linear equation 3’ + y = 4 — 2t — t? The integrating
factor is u(t) = e*, and the equation can be written as (e y)’ = (4 — 2t — t?)e!. The

general solution is y(t) =4 — t?> + ce™".

38.(a) Differentiating y and using the fundamental theorem of calculus we obtain
that ¢/ = Ae= /P14 . (_p(t)), and then 3’ + p(t)y = 0.

(b) Differentiating y we obtain that
y' = AlR)e IO 4 A(t)e TPON (—p(1).
If this satisfies the differential equation then
Y +p(t)y = A'(t)e TPO% = (1)
and the required condition follows.

(c) Let us denote u(t) = e/ P14 Then clearly A(t) = [ u(t)g(t)dt, and after sub-
stitution y = [ p(t)g(t)dt - (1/p(t)), which is just Eq. (33).
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40. We assume a solution of the form y = A(t)e=/1/Ddt = A(t)e= ™t = A(t)t~,
where A(t) satisfies A’(t) = 3t cos2¢. This implies that

_ 3cos 2t n 3t sin 2t
4 2

A(t)

and the solution is
3cos2t 3sin2t ¢
Y= +

4t 2 t

41. First rewrite the differential equation as

), 2 _sint
YTivT T
Assume a solution of the form y = A(t)e=J@/Ddt = A(t)t~2, where A(t) satisfies

the ODE A’(t) =t sin t. It follows that A(t) =sint —t cost 4+ ¢ and thus y =
(sint —tcost +c)/t?.

Problems 1 through 20 follow the pattern of the examples worked in this section.
The first eight problems, however, do not have an initial condition, so the integra-
tion constant ¢ cannot be found.

2. For x # —1, the differential equation may be written as y dy = [:1:2/(1 + x3)] dx.
Integrating both sides, with respect to the appropriate variables, we obtain the
relation y?/2 = (1/3)In |1+ 23| 4+ c¢. That is, y(z) = £/(2/3)In[1 + 23] + ¢ .

3. The differential equation may be written as y 2dy = —sin xdx. Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation —y~! = cos x + ¢. That is, (¢ — cos ¥)y = 1, in which ¢ is an arbitrary
constant. Solving for the dependent variable, explicitly, y(z) = 1/(c — cos ) .

5. Write the differential equation as cos™2 2y dy = cos? x dx, which also can be writ-
ten as sec? 2y dy = cos® z dx. Integrating both sides of the equation, with respect
to the appropriate variables, we obtain the relation tan 2y = sin x cos ¢+ x + c.

7. The differential equation may be written as (y + e¥)dy = (z — e *)dz . Inte-
grating both sides of the equation, with respect to the appropriate variables, we
obtain the relation y2 +2e¥ = 22 +2e™ % +c.

8. Write the differential equation as (1 + 3?)dy = 22 dx . Integrating both sides of
the equation, we obtain the relation y +y%/3 = 23/3 + c.

9.(a) The differential equation is separable, with y~2dy = (1 — 2x)dx. Integration
yields —y~! = — 2% + ¢. Substituting x =0 and y = —1/6, we find that ¢ = 6.
Hence the specific solution is y = 1/(2% — 2 — 6).
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(c) Note that 22 — 2 — 6 = (z + 2)(z — 3) . Hence the solution becomes singular at
z = -2 and z = 3, so the interval of existence is (—2,3).

11.(a) Rewrite the differential equation as x e*dx = —ydy . Integrating both sides
of the equation results in xe* — e® = —42/2 + c. Invoking the initial condition, we
obtain ¢ = —1/2. Hence y? = 2¢® — 2z ¢ — 1. The explicit form of the solution is

y(x) = /2e* — 2z e* — 1 . The positive sign is chosen, since y(0) = 1.
(b)

(c) The function under the radical becomes negative near z ~ —1.7 and = ~ 0.77.

12.(a) Write the differential equation as 7~ 2dr = §~! df . Integrating both sides of
the equation results in the relation —r~! = 1In 6 + ¢. Imposing the condition r(1) =
2, we obtain ¢ = —1/2. The explicit form of the solution is r = 2/(1 — 2 In 6).
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(c) Clearly, the solution makes sense only if # > 0. Furthermore, the solution
becomes singular when In § = 1/2, that is, 6 = \/e .

14.(a) Write the differential equation as y 3dy = z(1 + 22)~'/2dx. Integrating
both sides of the equation, with respect to the appropriate variables, we obtain
the relation —y~2/2=+/1+22 +c¢. Imposing the initial condition, we obtain
¢ = —3/2. Hence the specific solution can be expressed as y~2 =3 — 21+ 22 .
The explicit form of the solution is y(z) = 1/v/3 — 2v/1 + a2. The positive sign is

chosen to satisfy the initial condition.

(b)

(¢) The solution becomes singular when 2v/1+ 22 = 3. That is, at z = £/5 /2.

16.(a) Rewrite the differential equation as 4y3dy = x(2? + 1)dz. Integrating both
sides of the equation results in y* = (22 + 1)2/4 + c. Imposing the initial condition,
we obtain ¢ = 0. Hence the solution may be expressed as (2% + 1)? — 4y* = 0. The
explicit form of the solution is y(z) = —/(2? 4+ 1)/2. The sign is chosen based on

y(0) = —1/V2.
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(c) The solution is valid for all € R.

18.(a) Write the differential equation as (34 4y)dy = (e™® — e®)dz . Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation 3y + 2y? = —(e® + e~%) + ¢. Imposing the initial condition, y(0) = 1, we
obtain ¢ = 7. Thus, the solution can be expressed as 3y + 2y% = —(e% + e~ %) + 7.
Now by completing the square on the left hand side, 2(y + 3/4)? = —(e® + e %) +
65/8. Hence the explicit form of the solution is y(z) = —3/4 4+ /65/16 — cosh z.

(b)

(c) Note the 65 — 16coshxz > 0 as long as |z| > 2.1 (approximately). Hence the
solution is valid on the interval —2.1 < z < 2.1.

20.(a) Rewrite the differential equation as y2dy = arcsin 2/v/1 — 22 dz. Integrat-
ing both sides of the equation results in y*/3 = (arcsin 2)?/2 + c¢. Imposing the
condition y(0) = 1, we obtain ¢ = 1/3. The explicit form of the solution is y(z) =
(3(arcsinz)?/2 + 1)1/3.
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(¢) Since arcsin z is defined for —1 < z < 1, this is the interval of existence.

22. The differential equation can be written as (3y? — 4)dy = 3z?dz. Integrating
both sides, we obtain y* — 4y = 23 + ¢. Imposing the initial condition, the specific
solution is y® — 4y = 22 — 1. Referring back to the differential equation, we find
that y’ — oo as y — +2/+/3. The respective values of the abscissas are z ~ —1.276,
1.598 . Hence the solution is valid for —1.276 < z < 1.598.

24. Write the differential equation as (3 + 2y)dy = (2 — €*)dx. Integrating both
sides, we obtain 3y + 32 = 22 — e® + c. Based on the specified initial condition, the
solution can be written as 3y + y? = 22 — e + 1. Completing the square, it follows
that y(x) = —3/2 + \/2x — e® + 13/4. The solution is defined if 2z — e* + 13/4 >
0, that is, —1.5 < z < 2 (approximately). In that interval, y’ =0 for z =1In2. Tt
can be verified that y”(In2) < 0. In fact, y” () < 0 on the interval of definition.
Hence the solution attains a global maximum at = = In 2.

26. The differential equation can be written as (1+ y?)"'dy = 2(1 + z)dz. In-
tegrating both sides of the equation, we obtain arctany = 2z + 2 + c. Imposing
the given initial condition, the specific solution is arctany = 2z + 2. Therefore,
y = tan(2z + 2?). Observe that the solution is defined as long as —7/2 < 2z + 2?2 <
7/2. It is easy to see that 22 + 22 > —1. Furthermore, 2z + 2% = 7/2 for x ~ —2.6
and 0.6. Hence the solution is valid on the interval —2.6 < & < 0.6. Referring back
to the differential equation, the solution is stationary at 2 = —1. Since y”(—1) > 0,
the solution attains a global minimum at x = —1.

28.(a) Write the differential equation as y=1(4 —y)~'dy = t(1 +¢)~'dt. Integrat-
ing both sides of the equation, we obtain In |y| —In|y — 4| = 4t —4In|1 +¢| + c.
Taking the exponential of both sides |y/(y —4)| = ce? /(1 + t)*. Tt follows that as
t — oo, ly/ly—4) =11+4/(y —4)] = oo. That is, y(t) — 4.

(b) Setting y(0) =2, we obtain that ¢ =1. Based on the initial condition, the
solution may be expressed as y/(y — 4) = —e*'/(1 +t)*. Note that y/(y —4) <0,
for all t > 0. Hence y < 4 for all t > 0. Referring back to the differential equation,
it follows that gy’ is always positive. This means that the solution is monotone
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increasing. We find that the root of the equation e /(1 +¢)* = 399 is near t =
2.844.

(c) Note the y(t) =4 is an equilibrium solution. Examining the local direction
field we see that if y(0) > 0, then the corresponding solutions converge to y =
4. Referring back to part (a), we have y/(y —4) = [yo/(yo — 4)] /(1 + t)%, for
Yo # 4. Setting t = 2, we obtain yo/(yo — 4) = (3/e*)*y(2)/(y(2) — 4). Now since
the function f(y) =y/(y —4) is monotone for y <4 and y >4, we need only
solve the equations yo/(yo — 4) = —399(3/e?)* and yo/(yo — 4) = 401(3/e?)*. The
respective solutions are yg = 3.6622 and yg = 4.4042.

32.(a) Observe that (22 + 3y?)/2zy = (1/2)(y/z)~* + (3/2)(y/z). Hence the dif-
ferential equation is homogeneous.

(b) The substitution y = zv results in v+ zv’ = (22 4+ 32%0v?)/22%v. The trans-
formed equation is v’ = (1 +v?)/2zv. This equation is separable, with general
solution v2 4+ 1 =cx. In terms of the original dependent variable, the solution is

2?2 + y2 =cad.

(¢) The integral curves are symmetric with respect to the origin.
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34.(a) Observe that —(4z + 3y)/(2z +y) = —2 — (y/x) [2+ (y/x)]"". Hence the
differential equation is homogeneous.

(b) The substitution y = z v resultsin v + v’ = —2 — v/(2 + v). The transformed
equation is v/ = —(v? + 5v +4)/(2 + v)z . This equation is separable, with general
solution (v +4)?|v+ 1| = ¢/23. In terms of the original dependent variable, the
solution is (42 +y)? |z + y| = c.
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(c) The integral curves are symmetric with respect to the origin.
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36.(a) Divide by 22 to see that the equation is homogeneous. Substitutingy =z v,
we obtain zv’ = (14 v)2. The resulting differential equation is separable.

(b) Write the equation as (1+v)~2dv =2 !dx. Integrating both sides of the
equation, we obtain the general solution —1/(1 +v) =In|z| +c¢. In terms of the
original dependent variable, the solution is y = x (¢ — In|z|)~! — z.

(c) The integral curves are symmetric with respect to the origin.

'

D>—b—B—>

A N e o S
NN e as

N\ N A —b—b—b—b

e —a

N\ A B> —b—b—b—b—b—>
NN B —d—p—b—b—b—>

N~ —>—>—D>—D—>—>—>

s~~~ NN\
——s—s~s~p~a~a a4\
N\

—>—>—b—D—b—D—D B a

—>—>—>—b—>—D—D—D~
oty
1 I 1 I I
—>—>—b—b—b
=
~N '\ \
4
/
/
/

bbb b

37.(a) The differential equation can be expressed as y’ = (1/2)(y/z) " — (3/2)(y/z).
Hence the equation is homogeneous. The substitution y = zv results in zv’ =
(1 — 5v%)/2v. Separating variables, we have 2vdv/(1 — 5v?) = dx /.

(b) Integrating both sides of the transformed equation yields —(In |1 — 50v%|)/5 =
In |z| + ¢, that is, 1 —5v% = ¢/ |z|°. In terms of the original dependent variable,
the general solution is 5y% = 22 — ¢/ |z|°.
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(c) The integral curves are symmetric with respect to the origin.

1

AR TA SR TBB

~ bbb pp 4
el el
e

AN

N e —s—s—p—>
f & e
/ V¥ e

by /

by

|
—>—b—b—b—b—b—b—b~B
e AW

|
Eoedeee"ea

38.(a) The differential equation can be expressed asy’ = (3/2)(y/x) — (1/2)(y/z)~ L.
Hence the equation is homogeneous. The substitution y =z v results in zv’ =
(v2 —1)/2v, that is, 2vdv/(v? — 1) = dx/x.

(b) Integrating both sides of the transformed equation yields In |v2 — 1| =Inlz| +c,
that is, v> — 1 =c|z|. In terms of the original dependent variable, the general

solution is y? = ca? |z| + 22.

(¢) The integral curves are symmetric with respect to the origin.
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1. Let Q(t) be the amount of dye in the tank at time ¢. Clearly, Q(0) = 200 g.
The differential equation governing the amount of dye is Q’(¢t) = —2Q(t)/200. The
solution of this separable equation is Q(t) = Q(0)e~*/10% = 200e~*/1%°. We need
the time T such that Q(T) = 2 g. This means we have to solve 2 = 200e~7/190 and
we obtain that 7= —1001n(1/100) = 1001n 100 ~ 460.5 min.

5.(a) Let @ be the amount of salt in the tank. Salt enters the tank of water at a
rate of 2(1/4)(1+ (1/2)sin t) =1/2+4 (1/4)sin t oz/min. It leaves the tank at a
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rate of 2@Q/100 oz/min. Hence the differential equation governing the amount of
salt at any time is

Q 1. 1. . Q
E—i‘f'lslnt %

The initial amount of salt is Q9 = 50 oz. The governing differential equation is
linear, with integrating factor pu(t) =e!/%0. Write the equation as (e!/°Q)" =
e!/59(1/2 + (1/4) sin t). The specific solution is Q(t) = 25 + (12.5sin t — 625 cos t +
63150 ¢~t/59) /2501 oz.

(b)

50

40 o

30 A

20 +

50 160 150 260

(c¢) The amount of salt approaches a steady state, which is an oscillation of approx-
imate amplitude 1/4 about a level of 25 oz.

6.(a) Using the Principle of Conservation of Energy, the speed v of a particle falling
from a height & is given by

Lo o
—_ = h.
5™ mg

(b) The outflow rate is (outflow cross-section area)x (outflow velocity): «a+v/2gh.
At any instant, the volume of water in the tank is V/(h) = foh A(u)du. The time rate
of change of the volume is given by dV/dt = (dV/dh)(dh/dt) = A(h)dh/dt. Since
the volume is decreasing, dV/dt = —a a/2gh .

(c) With A(h) =7, a = 0.01 7, o = 0.6, the differential equation for the water level
his 7w(dh/dt) = —0.006 7v/2gh , with solution h(t) = 0.000018gt* — 0.006+/2gh(0)t +
h(0). Setting h(0) =3 and g = 9.8, h(t) = 0.0001764 > — 0.046 t + 3, resulting in
h(t) =0 for t ~ 130.4 s.

7.(a) The equation governing the value of the investment is dS/dt = r.S. The value
of the investment, at any time, is given by S(¢) = Sge™. Setting S(T) = 2S5y, the
required time is T = In(2)/r.

(b) For the case r = .07, T ~ 9.9 yr.
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(c) Referring to part (a), r = In(2)/T . Setting T = 8, the required interest rate is
to be approximately r = 8.66%.

12.(a) Using Eq.(15) we have dS/dt — 0.005S5 = —(800 + 10t), S(0) = 150, 000. Us-
ing an integrating factor and integration by parts we obtain that S(¢) = 560,000 —
410, 0002905t 4 2000¢. Setting S(t) = 0 and solving numerically for ¢ yields ¢ =
146.54 months.

(b) The solution we obtained in part (a) with a general initial condition S(0) =
So is S(t) = 560,000 — 560, 000e°-095% + S5e0-005¢ 1+ 2000¢. Solving the equation
S(240) = 0 yields Sy = 246, 758.

13.(a) Let Q' = —r Q. The general solution is Q(t) = Qoe~"*. Based on the
definition of half-life, consider the equation Qq/2 = Qoe °™". It follows that
—57307 = In(1/2), that is, r = 1.2097 x 10~* per year.

(b) The amount of carbon-14 is given by Q(t) = Qg e~ 1-2097x107",

(c) Given that Q(T) = Qo /5, we have the equation 1/5 = ¢~1:2097x107*T gqlying
for the decay time, the apparent age of the remains is approximately 7" = 13,305
years.

15.(a) The differential equation dy/dt = r(t) y — k is linear, with integrating factor
p(t) = e~ ST Write the equation as (uy)’ = —k u(t) . Integration of both sides
yields the general solution y = [—k [ p(7)dT + yo 1£(0)] /pe(t) . In this problem, the

integrating factor is u(t) = e(cos t=1)/5,

2 -

0.5

(b) The population becomes extinct, if y(t*) =0, for some t = t*. Referring to
part (a), we find that y(t*) = 0 when

o
/ e(cos T*T)/5d7_ — 561/5yc-
0

It can be shown that the integral on the left hand side increases monotonically, from
zero to a limiting value of approximately 5.0893. Hence extinction can happen only
if 5el/%yy < 5.0893. Solving 5el'/%y, = 5.0893 yields y, = 0.8333.
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(c) Repeating the argument in part (b), it follows that y(t*) = 0 when
tr 1
/ e(cos T—T)/5d7_ I 61/5yc-
0 k

Hence extinction can happen only if e'/%yq/k < 5.0893, so . = 4.1667 k.
(d) Evidently, y. is a linear function of the parameter k.

17.(a) The solution of the governing equation satisfies u® = ug /(3 augt +1). With
the given data, it follows that u(t) = 2000/{/6¢/125 4 1.

(b)
2000 7
1800
1600
1400 H
1200 o

1000 H

50 160 150 260

(¢) Numerical evaluation results in u(¢) = 600 for ¢~ 750.77 s.

22.(a) The differential equation for the upward motion is mdv/dt = —uv? — mg,
in which p = 1/1325. This equation is separable, with m/(uv? + mg)dv = —dt .
Integrating both sides and invoking the initial condition, v(t) = 44.133 tan(0.425 —
0.222t). Setting v(t1) = 0, the ball reaches the maximum height at ¢; = 1.916 s.
Integrating v(t), the position is given by x(t) = 198.75 In [cos(0.222¢ — 0.425)] +
48.57. Therefore the maximum height is z(¢;) = 48.56 m.

(b) The differential equation for the downward motion is m dv/dt = +uv? — mg.
This equation is also separable, with m/(mg — pv?)dv = —dt. For convenience,
set ¢ = 0 at the top of the trajectory. The new initial condition becomes v(0) = 0.
Integrating both sides and invoking the initial condition, we obtain In((44.13 —
v)/(44.13 +v)) =t/2.25. Solving for the velocity, v(t) = 44.13(1 — €'/2:2%) /(1 +
e!/2:25) . Integrating v(t), we obtain z(t) = 99.291n(et/2:2%/(1 4 €t/2:25)2) 4- 186.2.
To estimate the duration of the downward motion, set z(t2) =0, resulting in
to = 3.276 s. Hence the total time that the ball spends in the air is t; + o = 5.192s.
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24.(a) Setting —pv? = v(dv/dx), we obtain dv/dx = —puv.

(b) The speed v of the sled satisfies In(v/vg) = —px. Noting that the unit conversion
factors cancel, solution of In(15/150) = —2000 x results in u = In(10)/2000 ft~* ~
0.00115 ft~! ~ 6.0788 mi~".

(c) Solution of dv/dt = —uv? can be expressed as 1/v — 1/vg = ut. Noting that
1mi/hr = 5280/3600 ft/s, the elapsed time is

t = (1/15 — 1/150)/((5280,/3600)(In(10)/2000)) ~ 35.53s.

25.(a) Measure the positive direction of motion upward. The equation of motion
is given by mdv/dt = —kv — mg. The initial value problem is dv/dt = —kv/m —
g, with v(0) = vy. The solution is v(t) = —mg/k + (vo + mg/k)e ¥/™  Setting
v(t;,) = 0, the maximum height is reached at time t,,, = (m/k) In [(mg + kvo)/mg].
Integrating the velocity, the position of the body is

m vy

k

m
k

Hence the maximum height reached is

z(t) = —mgt/k+ |(—)*g +

| (1= emteim).

k
mug —g(m)an [mg+ vo] .

m = Z(tm) = -
x x(tm) ’ mg

k
(b) Recall that for § < 1, In(1+38) =6 —3%/2+8%/3—6*/4+....

(c) The dimensions of the quantities involved are [k] = MT ™1, [vg] = LT~!, [m] =
M and [g] = LT—2. This implies that kvy/mg is dimensionless.

31.(a) Both equations are linear and separable. Initial conditions: v(0) = ucos A
and w(0) = usin A. We obtain the solutions v(t) = (ucos A)e™"" and w(t) = —g/r +
(usin A + g/r)e "

(b) Integrating the solutions in part (a), and invoking the initial conditions, the
coordinates are z(t) = ucos A(1 —e™")/r and

it+g+ursinA+hr2 U g

5 — (; sin A + T—Q)e_”.

y(t) = —

T r
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(d) Let T be the time that it takes the ball to go 350 ft horizontally. Then from
above, e~ T/5 = (u cos A —70)/u cos A. At the same time, the height of the ball
is given by

(800 4 5usin A)(ucos A — 70)

y(T) = —160T + 803 + Susin A —
ucos A

Hence A and u must satisfy the equality

(800 + 5usin A)(ucos A — 70)
ucos A

ucos A—"70

=10
os A

800111[ }+803+5usinA

for the ball to touch the top of the wall. To find the optimal values for v and A,
consider u as a function of A and use implicit differentiation in the above equation
to find that

du u(u? cos A — T0u — 11200 sin A)

dA 11200 cos A

Solving this equation simultaneously with the above equation yields optimal values
for w and A: u = 145.3ft/s, A ~ 0.644 rad.

32.(a) Solving equation (i), y'(z) = [(k* — y)/y] 2 The positive answer is chosen,
since y is an increasing function of x .

(b) Let y = k> sin?t. Then dy = 2k?sint costdt. Substituting into the equation in
part (a), we find that

2k? sin t cos tdt _ cost

dx sint’
Hence 2k? sin? tdt = dz.
(c) Setting § = 2t, we further obtain k?sin®(0/2) dd = dx. Integrating both sides

of the equation and noting that ¢ = # = 0 corresponds to the origin, we obtain the
solutions x(0) = k(6 — sin#)/2 and (from part (b)) y(6) = k*(1 — cos ) /2.



Chapter 2. First Order Differential Equations

N

(d) Note that y/z = (1 —cos 0)/(0 — sin 0). Setting x =1, y = 2, the solution of
the equation (1 —cos 6)/(0 —sin ) =2 is 0 ~ 1.401. Substitution into either of
the expressions yields k ~ 2.193.

2. Rewrite the differential equation as y’ + 1/(¢(t — 4)) y = 0. It is evident that the
coefficient 1/t(t — 4) is continuous everywhere except at ¢t = 0,4. Since the initial
condition is specified at ¢t = 2, Theorem 2.4.1 assures the existence of a unique
solution on the interval 0 <t < 4.

3. The function tan ¢ is discontinuous at odd multiples of 7/2. Since 71/2 < 7 <
3m/2, the initial value problem has a unique solution on the interval (7/2,37/2).

5. p(t) =2t/(4 —t?)and g(t) = 3t?/(4 — t?). These functions are discontinuous at
x = £2. The initial value problem has a unique solution on the interval (-2, 2).

6. The function In ¢ is defined and continuous on the interval (0,00). At t =1,
Int =0, so the normal form of the differential equation has a singularity there.
Also, cott is not defined at integer multiples of 7, so the initial value problem will
have a solution on the interval (1, ).

7. The function f(¢,y) is continuous everywhere on the plane, except along the
straight line y = —2t/5. The partial derivative df/dy = —7t/(2t + 5y)? has the
same region of continuity.

9. The function f(¢,y) is discontinuous along the coordinate axes, and on the
hyperbola t? — y? = 1. Furthermore,

of +1 5 Y In |ty|

oy  y(l—t2+y%) “(1-124y?)?

has the same points of discontinuity.

10. f(t,y) is continuous everywhere on the plane. The partial derivative f /0y is
also continuous everywhere.

12. The function f(t,y) is discontinuous along the lines t = +kx for k =0,1,2,...
and y = —1. The partial derivative df/dy = cott/(1 + y)? has the same region of
continuity.

14. The equation is separable, with dy/y? = 2tdt. Integrating both sides, the
solution is given by y(t) = yo/(1 — yot?). For yo > 0, solutions exist as long as
t2 < 1/yo . For yo < 0, solutions are defined for all ¢.

15. The equation is separable, with dy/y® = —dt. Integrating both sides and
invoking the initial condition, y(t) =yo/v/2y3t+ 1. Solutions exist as long as
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292t +1 >0, that is, 293t > —1. If yo # 0, solutions exist for t > —1/2y2. If
yo = 0, then the solution y(t) = 0 exists for all ¢.

16. The function f(t,y) is discontinuous along the straight lines t = —1 and y = 0.
The partial derivative df/0y is discontinuous along the same lines. The equa-
tion is separable, with ydy = t2dt/(1 +t®). Integrating and invoking the initial
condition, the solution is y(t) = [(2/3)In |1 + 3| + 4] "2 Solutions exist as long
as (2/3)In|1+4 3| 4+ 43 > 0, that is, y3 > —(2/3)In |1+ ¢*|. For all yo (it can be
verified that yo = 0 yields a valid solution, even thoug}g Theorem 2.4.2 does not
guarantee one) , solutions exist as long as ‘1 + t3‘ > e %¥0/2, From above, we must
have t > —1. Hence the inequality may be written as 3> e73%6/2 — 1. It follows
that the solutions are valid for (e=3%/2 — 1)1/3 <t < 0.

18.
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Based on the direction field, and the differential equation, for yy < 0, the slopes
eventually become negative, and hence solutions tend to —oo . For yg > 0, solutions
increase without bound if ¢ty < 0. Otherwise, the slopes eventually become negative,
and solutions tend to zero. Furthermore, yg = 0 is an equilibrium solution. Note
that slopes are zero along the curves y = 0 and ty = 3.

19.
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For initial conditions (¢g,yo) satisfying ty < 3, the respective solutions all tend to
zero. For yg < 9, the solutions tend to 0; for yg > 9, the solutions tend to co. Also,
9o = 0 is an equilibrium solution.
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Solutions with ¢y < 0 all tend to —oo. Solutions with initial conditions (¢o,yo)
to the right of the parabola ¢t = 1+ y? asymptotically approach the parabola as
t — oo. Integral curves with initial conditions above the parabola (and yo > 0)
also approach the curve. The slopes for solutions with initial conditions below the
parabola (and yo < 0) are all negative. These solutions tend to —oo.

21.(a) No. There is no value of ¢y > 0 for which (2/3)(t — t9)?/? satisfies the con-
dition y(1) = 1.

(b) Yes. Let to = 1/2 in Eq.(19).
(c) For tg > 0, |y(2)| < (4/3)3/2 ~ 1.54.
24. The assumption is ¢'(t) + p(t)$(t) = 0. But then c¢’(t) + p(t)co(t) = 0 as well.

26.(a) Recalling Eq.(33) in Section 2.1,

1 t c
V= / p(s)o(s) ds + .

It is evident that y1(t) = 1/u(t) and y2(t) = (1/u(t) fto

(b) By definition, 1/u(t) = e~ /Pt Hence y/ = —p(t)/u(t) = —p(t)y1. That is,
yi +p(t)yr = 0.

() y3 = (—p(t)/u(t)) [y u(s)g(s) ds + pu(t)g(t)/pu(t) = —p(t)yz + g(t). This implies
that yg + p(t)y2 = g(t)

30. Since n = 3, set v = y~2. It follows that v’ = —2y 3y’ and v/ = —(y3/2)v’. Sub-
stitution into the differential equation yields —(y3/2)v" — ey = —oy?3, which further
results in v’ + 2ev = 20. The latter differential equation is linear, and can be writ-
ten as (ve%!) = 20e%!. The solution is given by v(t) = o /e + ce=2t. Converting
back to the original dependent variable, y = +v~1/2 = (0 /e 4 ce=2¢4)71/2,

31. Since n = 3, set v = y~2. It follows that v’ = —2y 3y’ and y' = —(y*/2)v’. The
differential equation is written as —(y®/2)v’ — (I'cos t + T)y = oy>, which upon
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further substitution is v’ + 2(T"cos t + T)v = 2. This ODE is linear, with integrat-
ing factor u(t) = e2/J(Ieos t+T)dt — o2Usin t4+2Tt The solution is

t
U(t) _ 26_(2F sin t42T't) / 621" sin 7-+2T7-d7_ + Ce—(QF sin t+2Tt).
0

Converting back to the original dependent variable, y = +v~1/2.

33. The solution of the initial value problem y; + 2y; = 0, y1(0) = 1 is y;(t) = e 2.,
Therefore y(17) = y1(1) = e=2. On the interval (1,00), the differential equation
is yg + y2 = 0, with yo(t) = ce=!. Therefore y(17) = y2(1) = ce~!. Equating the
limits y(17) = y(17), we require that ¢ = e~!. Hence the global solution of the
initial value problem is

e 2, 0<t<1
e 17t t>1 '

Note the discontinuity of the derivative

, -2 0<t<l1
y'(t) = iy :
—e , t>1

a=1, b=2
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For yy > 0, the only equilibrium point is 4* = 0, and ' = ay + by? > 0 when y > 0,
hence the equilibrium solution y = 0 is unstable.
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The equilibrium points are y* = —a/b and y* =0, and ¢ > 0 when y > 0 or y <
—a/b, and y’ < 0 when —a/b < y < 0, therefore the equilibrium solution y = —a/b
is asymptotically stable and the equilibrium solution y = 0 is unstable.
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The only equilibrium point is y* =0, and ' > 0 when y > 0, ' <0 when y < 0,
hence the equilibrium solution y = 0 is unstable.
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The only equilibrium point is y* =0, and ¥’ > 0 when y < 0, ¥’ < 0 when y > 0,
hence the equilibrium solution y = 0 is asymptotically stable.
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The only equilibrium point is y* =1, and y’ <0 for y # 1. As long as yy # 1,
the corresponding solution is monotone decreasing. Hence the equilibrium solution
y = 1 is semistable.
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10.
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The equilibrium points are y* =0,%1, and 3y >0 for y < —1 or 0 <y < 1 and
y < 0for —1 <y < 0ory > 1. The equilibrium solution y = 0 is unstable, and the
remaining two are asymptotically stable.
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The equilibrium points are y* = 0, 1. 3’ > 0 for all y except y = 0 and y = 1. Both
15.(a) Inverting Eq.(11), Eq.(13) shows ¢ as a function of the population y and the

equilibrium solutions are semistable.
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carrying capacity K. With yo = K/3,

L | W 1)

MW - (173)

Setting y = 2yq,

S W(COTS T
ro[2/3) 1= (1/3)]

That is, 7 = (In4)/r. If r = 0.025 per year, 7 = 55.45 years.

(b) In Eq.(13), set yo/K = a and y/K = . As a result, we obtain

BRI
P Bl

r
Given a = 0.1, f = 0.9 and r = 0.025 per year, T ~ 175.78 years.

19.(a) The rate of increase of the volume is given by rate of flow in—rate of flow out.
That is, dV/dt = k — aa+/2gh . Since the cross section is constant, dV/dt = Adh/dt.
Hence the governing equation is dh/dt = (k — car/2gh)/A.

(b) Setting dh/dt = 0, the equilibrium height is k. = (1/2¢)(k/aa)?. Furthermore,
since dh/dt < 0 for h > h. and dh/dt > 0 for h < h,, it follows that the equilibrium
height is asymptotically stable.

22.(a) The equilibrium points are at y* =0 and y* = 1. Since f'(y) = o — 2ay,
the equilibrium solution y = 0 is unstable and the equilibrium solution y =1 is
asymptotically stable.

(b) The differential equation is separable, with [y(1 — y)]_1 dy = a.dt . Integrating
both sides and invoking the initial condition, the solution is

. Yo e _ Yo
y(t) - at —at’
l—yo+yoe Yo + (1 —yo)e

It is evident that (independent of o) lim; , oo y(¢) = 0 and lim; , o y(t) = 1.

23.(a) y(t) = yoe 7",

(b) From part (a), dz/dt = —axyoe . Separating variables, dr/z = —ayoe™ tdt.
Integrating both sides, the solution is z(t) = g e=av(—e")/8

(c) Ast — oo, y(t) — 0 and z(t) — 2¢e~*¥/8. Over a long period of time,
the proportion of carriers vanishes. Therefore the proportion of the population that
escapes the epidemic is the proportion of susceptibles left at that time, e~ *vo/8.

26.(a) For a < 0 , the only critical point is at y = 0, which is asymptotically stable.
For a =0, the only critical point is at y = 0, which is asymptotically stable. For
a > 0, the three critical points are at y = 0, ++/a . The critical point at y =0 is
unstable, whereas the other two are asymptotically stable.
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(b) Below, we graph solutions in the case a = —1, a = 0 and a = 1 respectively.
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27.(a) fly) =yla—vy); f'(y) =a—2y. For a <0, the critical points are at y = a
and y = 0. Observe that f'(a) >0 and f’(0) < 0. Hence y = a is unstable and
y = 0 asymptotically stable. For a = 0, the only critical point is at y = 0, which is
semistable since f(y) = —y? is concave down. For a > 0 , the critical points are at
y=0and y = a. Observe that f/(0) > 0 and f’(a) < 0. Hence y = 0 is unstable
and y = a asymptotically stable.

(b) Below, we graph solutions in the case a = —1, a = 0 and a = 1 respectively.
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1. M(z,y) =2x+3 and N(z,y) =2y —2. Since M, = N, =0, the equation is
exact. Integrating M with respect to z, while holding y constant, yields ¢ (x,y) =
z? + 3z + h(y). Now v, = h'(y), and equating with N results in the possible

function h(y) = y? — 2y. Hence 9 (z,y) = 2% + 3z + y? — 2y, and the solution is
defined implicitly as 22 + 3z + 3% — 2y = c.

2. M(z,y) = 2x + 4y and N(z,y) = 2z — 2y . Note that M, # N, , and hence the
differential equation is not exact.

4. First divide both sides by (2zy + 2). We now have M (z,y) = y and N(z,y) = =.
Since My = N, =0, the resulting equation is exact. Integrating M with respect
to a, while holding y constant, results in ¥ (z,y) = xy + h(y) . Differentiating with
respect to y, ¢, = x + h'(y). Setting ¥, = N, we find that h’(y) =0, and hence
h(y) = 0 is acceptable. Therefore the solution is defined implicitly as zy = ¢. Note
that if zy + 1 = 0, the equation is trivially satisfied.

6. Write the equation as (ax — by)dx + (bx — cy)dy = 0. Now M (z,y) = ax — by
and N(z,y) = bz — cy. Since M, # N, , the differential equation is not exact.
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8. M(z,y) =e”sin y+ 3y and N(z,y) = —3z + ¢” sin y . Note that M,, # N, , and
hence the differential equation is not exact.

10. M(z,y) =y/x + 6x and N(z,y) =In ¢ — 2. Since M, = N, = 1/x, the given
equation is exact. Integrating N with respect to y, while holding x constant,
results in (x,y) =y In x — 2y + h(z). Differentiating with respect to z, ¥, =
y/x + 1 (x). Setting ¢, = M, we find that h'(z) = 6z, and hence h(z) = 322
Therefore the solution is defined implicitly as 3z2 +ylnz — 2y =c.

11. M(z,y) =z Iny+ a2y and N(z,y) =y In 2+ zy. Note that M, # N, , and
hence the differential equation is not exact.

13. M(z,y) =2z —y and N(z,y) =2y —x. Since M, = N, = —1, the equa-
tion is exact. Integrating M with respect to x, while holding y constant, yields
P(z,y) = 2% —zy + h(y). Now ¢, = —x + I/(y). Equating 1, with N results in
h'(y) = 2y, and hence h(y) = y?. Thus ¥ (z,y) = 22 — 2y + y*, and the solution
is given implicitly as 22 — 2y + y? = c. Invoking the initial condition y(1) =3,
the specific solution is x? —zy +y? = 7. The explicit form of the solution is
y(z) = (z + /28 — 322)/2. Hence the solution is valid as long as 3z2 < 28.

16. M(z,y) = ye*¥ +x and N(z,y) = bz e**¥. Note that M, = e**¥ 4 2zy >V,
and N, = be?™¥ + 2bxy e®*¥. The given equation is exact, as long as b=1. In-
tegrating N with respect to y, while holding x constant, results in ¥(z,y) =
e?®¥ /2 + h(z). Now differentiating with respect to x, 1, = ye?®¥ + h/(x). Set-
ting 1, = M, we find that h/(z) = z, and hence h(x) = 22/2. We conclude that
W(x,y) = e2®¥ /2 + 22 /2. Hence the solution is given implicitly as e?*¥ + 22 = c.

17. Note that 1 is of the form ¥ (x,y) = f(x) + g(y), since each of the integrands
is a function of a single variable. It follows that ¢, = f'(x) and ¥, = ¢’(y). That
is, ¥y = M(x,y0) and ¢, = N(zo,y). Furthermore,

0% oM 0% ON

m(xovyo) = ——(x0,y0) and m(%,yo) = O

8y (xO,y0)7

based on the hypothesis and the fact that the point (zo, yo) is arbitrary, ¥z, = ¥y
and My(‘rvy) = Nz(xay)

18. Observe that (M (x)), = (N(y))z =0.
20. My =y lcosy—y?siny and N, =—2e %(cos z +sin x)/y. Multiplying
both sides by the integrating factor u(z,y) = y e®, the given equation can be written
as (e” sin y — 2y sin z)dz + (% cos y + 2cos z)dy = 0. Let M = uM and N = N .
Observe that My = N, , and hence the latter ODE is exact. Integrating N with
respect to y, while holding = constant, results in ¥(x,y) = e*sin y + 2y cos x +
h(z). Now differentiating with respect to z, ¥, = e*sin y — 2y sin « + h/(x). Set-
ting 1, = M, we find that #’(z) =0, and hence h(z) = 0 is feasible. Hence the
solution of the given equation is defined implicitly by e®sin y + 2y cos x = c.
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21. My =1 and N, = 2. Multiply both sides by the integrating factor plz,y) =y
to obtain yzdx + (2zy — y?e¥)dy = 0. Let M= yM and N = yN. It is easy to see
that M = N, , and hence the latter ODE is exact. Integrating M with respect
to z yields ¥ (z,y) = zy*> + h(y) . Equating ¢, with N results in B (y) = —y?e?,
and hence h(y) = —e¥(y? — 2y + 2). Thus ¥(x,y) = 2y — e¥(y? — 2y + 2), and the
solution is defined implicitly by zy? —e¥(y? — 2y +2) = c.

24. The equation pM + Ny’ =0 has an integrating factor if (uM), = (uN)z,
that is, pyM — peN = uN, — uM, . Suppose that N, — M, = R(zM —yN), in
which R is some function depending only on the quantity z = zy. It follows that
the modified form of the equation is exact, if puy,M — p,N = pR(xM —yN) =
R (pxzM — pryN). This relation is satisfied if p, = (uz)R and p, = (py)R. Now
consider p = p(xy). Then the partial derivatives are p, = p'y and p,, = ('« . Note
that p/ = dp/dz. Thus p must satisfy w(z ) R(z). The latter equation is sepa-
rable, with dp = R(z)dz, and pu(z) = [ R(z)dz. Therefore, given R = R(zy), it is
possible to determine p = p(xy) Whlch becomes an integrating factor of the differ-
ential equation.

28. The equation is not exact, since N, — M, = 2y — 1. However, (N, — M,)/M =
(2y — 1)/y is a function of y alone. Hence there exists u = p(y) , which is a solution
of the differential equation ' = (2 — 1/y)u. The latter equation is separable, with
dp/p=2—1/y. One solution is u(y) = e?Y~"¥ =2 /y. Now rewrite the given
ODE as e?Ydx + (2ze? — 1/y)dy = 0. This equation is exact, and it is easy to see
that ¥ (z,y) = ze?Y — In|y|. Therefore the solution of the given equation is defined
implicitly by ze* —In|y| = c.

30. The given equation is not exact, since N, — M, = 823 /y® + 6/y%. But note that
(N — M,)/M = 2/y is a function of y alone, and hence there is an integrating fac-
tor u = p(y). Solving the equation p’ = (2/y)u, an integrating factor is u(y) = y2.
Now rewrite the differential equation as (43 + 3y)dx + (3x + 4y®)dy = 0. By in-
spection, 1 (z,y) = 2* + 3zy + y*, and thesolution of the given equation is defined
implicitly by z* + 3zy +y* = c.

32. Multiplying both sides of the ODE by u = [zy(2z + y)]_l, the given equation is
equivalent to [(3z +y)/(22% + ay)] dz + [(z + y)/(2zy + y?)] dy = 0. Rewrite the
differential equation as

1

2 2 1

L: + 2$+y} dx + {y + 233—|—y] dy=0.
It is easy to see that M, = N,. Integrating M with respect to x, while keep-
ing y constant, results in ¢¥(z,y) = 2In|z| +1In|2z + y| + h(y) . Now taking the
partial derivative with respect to y, 1, = (22 +y)~' +h’'(y). Setting ¢, = N,
we find that h'(y) = 1/y, and hence h(y) =In |y|. Therefore ¥ (z,y) = 2In|z| +
In|2z + y| + 1n |y|, and the solution of the given equation is defined implicitly by
223y + x%y? = c.
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Yn + 12y, — 1) = (14 2h)y,, — h.
2t) /2. The values
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2. The Euler formula is given by 4,11

(a) 1.1, 1.22, 1.364, 1.5368

(b) 1.105, 1.23205, 1.38578, 1.57179

(c) 1.10775, 1.23873, 1.39793, 1.59144

(d) The differential equation is linear with solution y(¢t) = (1+e

are 1.1107, 1.24591, 1.41106, 1.61277.

All solutions seem to converge to y = 25/9.

All solutions seem to converge to a specific function.
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Solutions with initial conditions |y(0)| > 2.5 seem to diverge. On the other hand,
solutions with initial conditions |y(0)| < 2.5 seem to converge to zero. Also, y =0
is an equilibrium solution.

10.
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Solutions with positive initial conditions increase without bound. Solutions with
negative initial conditions decrease without bound. Note that y = 0 is an equilib-
rium solution.

11. The Euler formula is y,4+1 = yn — 3hy/Yn + dh. The initial value is yo = 2.

(a) 2.30800, 2.49006, 2.60023, 2.66773, 2.70939, 2.73521

(b) 2.30167, 2.48263, 2.59352, 2.66227, 2.70519, 2.73209

(c) 2.29864, 2.47903, 2.59024, 2.65958, 2.70310, 2.73053

(d) 2.29686, 2.47691, 2.58830, 2.65798, 2.70185, 2.72959

12. The Euler formula is y,,+1 = (1 + 3h)y,, — ht,,y2. The initial value is (to,yo) =
(0,0.5).

(a) 1.70308, 3.06605, 2.44030, 1.77204, 1.37348, 1.11925
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(b) 1.79548, 3.06051, 2.43292, 1.77807, 1.37795, 1.12191

(c) 1.84579, 3.05769, 2.42905, 1.78074, 1.38017, 1.12328

(d) 1.87734, 3.05607, 2.42672, 1.78224, 1.38150, 1.12411

14. The Euler formula is y,+1 = (1 — hty,)y, + hyS /10, with (to,yo) = (0,1).

(a) 0.950517, 0.687550, 0.369188, 0.145990, 0.0421429, 0.00872877

(b) 0.938298, 0.672145, 0.362640, 0.147659, 0.0454100, 0.0104931

(c) 0.932253, 0.664778, 0.359567, 0.148416, 0.0469514, 0.0113722

(d) 0.928649, 0.660463, 0.357783, 0.148848, 0.0478492, 0.0118978

17. The Euler formula is y,+1 = yn + h(y2 + 2t, yn)/(3 +t2). The initial point is
(to,yo) = (1,2). Using this iteration formula with the specified h values, the value
of the solution at ¢t = 2.5 is somewhere between 18 and 19. At ¢ = 3 there is no

reliable estimate.

19.(a)
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(b) The iteration formula is y, 11 = ¥, + hy2 — ht2. The critical value oy appears
to be between 0.67 and 0.68. For yg > «q, the iterations diverge.

20.(a) The ODE is linear, with general solution y(t) = t + ce!. Invoking the spec-
ified initial condition, y(to) = yo, we have yg = to + ce®®. Hence ¢ = (yo — to)e to.
Thus the solution is given by ¢(t) = (yo — to)e! 70 + .

(b) The Euler formula is y,+1 = (1 + h)y, + h—ht,. Nowset k=n+1.
(¢) We have y1 = (1 + h)yo +h — hto = (1 + h)yo + (t1 — tg) — htg. Rearranging

the terms, y; = (14 h)(yo — to) +t1. Now suppose that y, = (14 h)*(yo — to) +
ti, for some k > 1. Then ygy1 = (1 4+ h)yg + h — hty. Substituting for yi, we find
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N

that
Yrr1 = (1+h)(yo —to) + (1 + h)tx +h — hty = (1 + h) T (yo — to) + tg + h.
Noting that tx+1 = tx + h, the result is verified.

(d) Substituting h = (t —tg)/n, with t, =t, y, = (1 + (¢t —to)/n)"(yo — to) + t.
Taking the limit of both sides, and using the fact that lim, .. (1 + a/n)" = €%,
pointwise convergence is proved.

21. The exact solution is y(t) = e!. The Euler formula is y,.1 = (1 + h)y, . It is
easy to see that y, = (1 4+ h)"yo = (1 + h)"™. Givent > 0, set h = t/n. Taking the
limit, we find that lim, e yp = lim, oo (1 +t/n)" = €.

23. The exact solution is y(t) =t/2+ €*'. The Euler formula is y,+1 = (1 +
2h)yn + h/2 —ht,. Since yo=1, y1 =(14+2h)+h/2=(1+2h)+t1/2. It is
easy to show by mathematical induction, that vy, = (1+2h)" +1t,/2. For t >
0, set h=t/n and thus t, =t. Taking the limit, we find that lim, .y, =
lim,, o0 [(1 4+ 2t/n)™ 4+ t/2] = €' + t/2. Hence pointwise convergence is proved.

2. Let z=y—3and 7 =t+ 1. It follows that dz/dr = (dz/dt)(dt/dT) = dz/d¢t.
Furthermore, dz/dt = dy/dt =1 — y®. Hence dz/dt =1 — (2 + 3)3. The new ini-
tial condition is z(0) = 0.

3.(a) The approximating functions are defined recursively by

Gnt1(t) = /0 2[dn(s) + 1] ds.

Setting ¢o(t) = 0, ¢1(t) = 2t. Continuing, ¢o(t) = 2t> + 2t , ¢3(t) = 43 /3 + 2t2 +
2t, ¢u(t) =2t1/3 +4t3/3 +2t> +2t, .... Based upon these we conjecture that
bn(t) = > p_, 2%t% /k! and use mathematical induction to verify this form for ¢y, (t).
First, let n = 1, then ¢,,(t) = 2t, so it is certainly true for n = 1. Then, using Eq.(7)
again we have

t t n 2k n+1 2k
¢n+1(t):/ 2[¢n(s)+1]ds:/ 2 ngkﬂ ds:zﬁtk,
0 0 k=1""" k=1~

and we have verified our conjecture.
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From the plot it appears that ¢4 is a good estimate for |t| < 1/2.

5.(a) The approximating functions are defined recursively by

Pni1(t) = /0 [~ bn(s)/2 + s]ds.

Setting ¢o(t) = 0, ¢1(t) = t2/2. Continuing, ¢o(t) = t2/2 —t3/12, ¢3(t) = t?/2 —
t3/12 +11/96, ¢a(t) =12/2 — t3/12 +t4/96 — t5/960, .... Based upon these we
conjecture that ¢, (t) = Y ¢_; 4(—1/2)*1#*+1/(k 4+ 1)! and use mathematical in-
duction to verify this form for ¢, (t).
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(c) Recall from calculus that e* =1+ Z,fil a®t* /k!. Thus

—1/2)k
§ 4 /2) tk+1:467t/2+2t74.
E+1!

0.8
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0.2 o
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z

From the plot it appears that ¢4 is a good estimate for |¢| < 2.

6.(a) The approximating functions are defined recursively by

Pnt1(t) = /0 [bn(s) +1—s]ds.

Setting do(t) = 0, 1(£) = t —£2/2, do(t) = t — 36, $a(t) = t — /24, pa(t) = t —
t°/120, .... Based upon these we conjecture that ¢, (t) =t —t""1/(n +1)! and
use mathematical induction to verify this form for ¢, ().
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(c) Clearly ¢(t) =t.

(d)

From the plot it appears that ¢4 is a good estimate for |¢| < 1.

8.(a) The approximating functions are defined recursively by

D (1) = /O [26,(s) — s] ds.

Set ¢o(t) = 0. The iterates aregiven by ¢1(t) = —t2/2, ¢o(t) = —t2/2 —t°/10,
b3(t) = —t2/2 —5/10 — t8/80, ¢4 (t) = —t2/2 — t5/10 — t8/80 — t*1/880,.... Upon
inspection, it becomes apparent that

1 t3 t6 (t3)n—1

— 42| =
Pn(t) = t[2+2.5 2.5.8+"'+2.5-8...[2+3(n71)] -

— 2 - ()1
T ’;2~5~8...[2+3(k71)]'
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~10 4

(c) Using the identity ¢, (£) = 61(t) + [da(t) — 61 ()] + [8a() — 62(D)] + ... + [$n(t) —
¢n—1(t)], consider the series ¢y (t) + > po i [Pr+1(t) — ¢x(t)]. Fix any ¢ value now.
We use the Ratio Test to prove the convergence of this series:

B 2.5.--(2+3k) . |t|3

(=) | 24 3k
25 (243(k—1))

Prr1(t) — P(t)
O (t) — dr—1(t)

‘ (=t2)(*)"

The limit of this quantity is 0 for any fixed ¢t as k — oo, and we obtain that ¢, (t)
is convergent for any t.

9.(a) The approximating functions are defined recursively by

Pn+1(t) = /0 [s* + ¢2(s)] ds.

Set ¢o(t) = 0. The first three iterates are given by ¢ (t) = t3/3, ¢o(t) =t3/3 +
£7/63, ¢3(t) = £3/3 +17 /63 + 2t11 /2079 + 15 /59535 .

(b)

The iterates appear to be converging.



2.8

55

12.(a) The approximating functions are defined recursively by

0= | [=s)

Note that 1/(2y —2) = —(1/2) S>o_y ¥* + O(y7). For computational purposes, use
the geometric series sum to replace the above iteration formula by

1/ 0
bun®) =5 [ | 6+ 45423 ok(o)] ds
2Jo k=0
Set ¢o(t) = 0. The first four approximations are given by ¢;(t) = —t — 2 — t3/2,
Go(t) = —t —t2/2 4+ 13/6 +t1/4 — 155 —15/24 + ... #3(t) = —t — 2/2 + t1/12 —
3t°/20 + 4t5/45 + ..., pa(t) = —t — t2/2 4+ t*/8 — Tt /60 + 16 /15 + ...

(b)

0.5 9

T T T 1
=1 -0.5 0 0.5 1

The approximations appear to be converging to the exact solution, which can be
found by separating the variables: ¢(t) = 1 — /1 + 2t + 2t2 + 13

14.(a) ¢n( ) =0, for every n>1. Let a€ (0,1]. Then ¢,(a)=2nae """ =
2na/e”‘1 Usmg lHospltal’s rule, lim,_, 2az/eaz2 = lim, o 1/2€%* #* — (. Hence

b) fol nze " dy = —e~ |é =1— e, Therefore,

lim (bn dﬂc#/ hm bn(x

n— oo

15. Let t be fixed, such that (¢,y1), (t,y2) € D . Without loss of generality, assume
that y; < yo. Since f is differentiable with respect to y, the mean value theorem as-
serts that there exists £ € (y1,y2) such that f(t,y1) — f(t,92) = fu(t.&)(y1 — y2).
This means that |f(¢t,y1) — f(t,y2)| = |fy(t,&)| |[y1 — y2|. Since, by assumption,
0f /0y is continuous in D, f, attains a maximum K on any closed and bounded
subset of D. Hence |f(¢, yl) f,y2)| < K |yr — yal-

16. For a sufficiently small interval of ¢, ¢,,—1(t), ¢n(t) € D. Since f satisfies a
Lipschitz condition, |f (¢, ¢n(t)) — f(t, pn-1(t))] < K |dn(t) — ¢ppn—1(t)|. Here K =
max | fy|.
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17.(a) ¢ fo f(s,0)ds. Hence |¢1(t) |<f0|t‘|fs 0)| ds <f|t‘Mds:M|t\,1n
which M is the maximum value of |f(¢,y)| on D.

(b) By definition, ¢2(%) fo — f(s,0)]ds. Taking the absolute
value of both sides, \(bg( ) ¢1 )| < fo‘tl | ,01(8)) — f(s,0)]|ds. Based on the

results in Problems 16 and 17,

Il

It
62(t) — 1(0)] < Kwu@meSKM/‘wMa
0 0
Evaluating the last integral, we obtain that |¢o(t) — ¢1(£)] < MK |t]* /2.

(c) Suppose that A
MKt
il

|i(t) — di—1(t)] <

for some i > 1. By definition,

¢Hﬂﬂ—%@%=A[ﬂ&@@ﬂ—f@ﬁpﬂﬁﬂﬁ

It follows that
[t]
|@H@—¢mnsl F(5:64(5)) — F(5, 601 (s))] ds

It [t] MK? 1
< | Klgi(s) — gi—a(s)|ds < K#H
0 0 !

_ MET MK
G+ T (41!

Hence, by mathematical induction, the assertion is true.

18.(a) Use the triangle inequality, |a + b| < |a| + 9] .
(b) For [t| < h, [¢1(t)] < Mh, and |¢p(t) — dn—1(t)] < MK 'h"/(n!). Hence

"KM SN (K
() <y K M (R0

(c) The sequence of partial sums in (b) converges to M (eX" —1)/K. By the com-
parison test, the sums in (a) also converge. Since individual terms of a convergent
series must tend to zero, |¢,(t) — ¢n_1(t)] = 0, and it follows that the sequence
|@n(t)] is convergent.

19.(a) Let ¢(t) fo ds and ¢( ) = [y f(s,%(s))ds. Then by linearity of
the integral, ¢(t) fo — f(s,%(s))]ds.

@»nmmMmmuaw—wwv;ﬁuwww»—ﬂaw@nw.
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(¢) We know that f satisfies a Lipschitz condition, |f(¢t,y1) — f(¢,y2)| < K |y1 — ya|,
based on |0f/0y| < K in D. Therefore,

¢(t) — ¥ (t)] S/O |f(87¢(8))—f(8,¢(8))|d8S/0 K |p(s) — v(s)| ds.

1. Writing the equation for each n >0, y; = —0.9yo, y2 = —0.9y; = (—0.9%)yo,
y3 = —0.9y2 = (—0.9)3yo and so on, it is apparent that y,, = (—0.9)" 5o . The terms
constitute an alternating series, which converge to zero, regardless of ¥ .

3. Write the equation for each n > 0, y1 = V30, y2 = /4/2y1, y3 = \/5/3 2, ...
Upon substitution, we find that yo = 1/(4-3)/2y1, y3 =+/(5-4-3)/(3-2) yo, - -.
It can be proved by mathematical induction, that

yn:% (n:;!Q)! Yo - L (n+1)(n+2) yo-

V2

This sequence is divergent, except for yg = 0.

4. Writing the equation for each n >0, y1 = —yo, Y2 =91, Y3 = —Y2, Ys = U3,
and so on. It can be shown that
)y, forn=4korn=4k—1
e —yo, forn=4k—-2orn=4k—-3

The sequence is convergent only for yg = 0.

6. Writing the equation for each n > 0,

y1=—05yo+6
Y2 = —0.5y; +6 = —0.5(=0.5yo + 6) + 6 = (—0.5)%yy + 6 + (—0.5)6
ys = —0.5y2 + 6 = —0.5(—0.5y1 + 6) + 6 = (—0.5)°yo + 6 [1 + (—0.5) + (—0.5)]

Yn = (—0.5)"yo +4[1 — (—=0.5)" ]

which follows from Eq.(13) and (14). The sequence is convergent for all yo, and in
fact y, — 4.

8. Let y,, be the balance at the end of the nth month. Then y, 41 = (1 +r/12)y, +
25. We have y,, = p"[yo — 25/(1 — p)] +25/(1 — p), in which p = (1 +r/12). Here
r is the annual interest rate, given as 8%. Thus y36 = (1.0066)36 [1000 + 12 - 25/r] —
12-25/r = $2, 283.63.

9. Let y, be the balance due at the end of the nth month. The appropriate
difference equation is y,4+1 = (14 r/12)y,, — P. Here r is the annual interest rate
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and P is the monthly payment. The solution, in terms of the amount borrowed,
is given by y, = p"[yo + P/(1 — p)] — P/(1 — p), in which p = (1 +r/12) and yo =
8,000. To figure out the monthly payment P, we require that y3g = 0. That is,
p*%lyo + P/(1 = p)] = P/(1 — p). After the specified amounts are substituted, we
find that P = $258.14.

11. Let y, be the balance due at the end of the nth month. The appropriate differ-
ence equation is y,41 = (14 7/12)y, — P, in which 7 = .09 and P is the monthly
payment. The initial value of the mortgage is yo = $100,000. Then the balance
due at the end of the n-th month is y, = p"[yo + P/(1 — p)] — P/(1 — p), where
p=(1+7r/12). In terms of the specified values, y, = (1.0075)"[10° — 12P/r] +
12P/r. Setting n = 30 - 12 = 360, and y30 = 0, we find that P = $804.62. For the
monthly payment corresponding to a 20 year mortgage, set n = 240 and ya40 = 0
to find that P = $899.73. The total amount paid during the term of the loan is
360 x 804.62 = $289,663.20 for the 30-year loan and is 240 x 899.73 = $215,935.20
for the 20-year loan.

12. Let y,, be the balance due at the end of the nth month, with yq the initial value
of the mortgage. The appropriate difference equation is y,+1 = (1 +7/12)y, — P,
in which » = 0.1 and P = $1000 is the maximum monthly payment. Given that the
life of the mortgage is 20 years, we require that y240 = 0. The balance due at the end
of the n-th month is y,, = p"[yo + P/(1 — p)] — P/(1 — p). In terms of the specified
values for the parameters, the solution of (1.00833)%4%[y, — 12-1000/0.1] = —12 -
1000/0.1 is yo = $103, 624.62.

19.(a) 82 = (p2 — p1)/(ps — pa) = (3.449 — 3)/(3.544 — 3.449) = 4.7263 .
(b) diff= (|6 — 62]/6) - 100 = (|4.6692 — 4.7363|/4.6692) - 100 ~ 1.22%.
(¢) Assuming (p3 — p2)/(ps — p3) = 0§, ps = 3.5643

(d) A period 16 solution appears near p = 3.565.

0.8 ° © ° © ° © ° e °
0.7
0.6
0.5 © - - - -
04+ o

0.34

0.2+

(e) Note that (pps1 — pn) = 6, (pn — pn_1). With the assumption that 6,, = §, we
have (pns1 — pn) =0 1 (pn — pn_1), which is of the form y,11 = ay,, n>3. It
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follows that (pr — pr—1) = 0> *(p3 — p2) for k > 4. Then

pn = p1+ (p2—p1) + (ps — p2) + (pa—p3) + ... + (pn — Pn—1)
=pi+(p2—p1)+(ps—p2) [L+6"+62+.. 467"

1 - gin
=p1+(p2 —p1) + (p3 — p2) 151

Hence lim,, o pn = p2 + (p3 — p2) [%]. Substitution of the appropriate values
yields

lim p, = 3.5699

n— o0

PROBLEMS

1. The equation is linear. It can be written in the form y’ + 2y/z = 22, and the
integrating factor is p(z) = el @/w)de — o2Ine — 42 Nyltiplication by w(z) yields
2%y + 2yx = (yx?) = 2*. Integration with respect to x and division by 22 gives

that y = 23/5 + ¢/2%.

5. The equation is ezact. Algebraic manipulations give the symmetric form of
the equation, (2zy + y? + 1)dx + (22 + 2zy)dy = 0. We can check that M, = 2z +
2y = N,, so the equation is really exact. Integrating M with respect to x gives that
Y(z,y) = 2%y + 2y® + = + g(y), then ¥, = 2% 4+ 2zy + ¢'(y) = 2? + 2y, so we get
that ¢'(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is
defined implicitly as 22y + zy® + = = c.

6. The equation is linear. It can be written in the form y' + (1+ (1/z))y = 1/=
and the integrating factor is p(z) = el 1H(A/z)de — prtlne — gou Multiplication by
p(x) yields ze®y’ + (ze® + %)y = (xe®y)’ = e*. Integration with respect to x and
division by ze” shows that the general solution of the equationis y = 1/x + ¢/(ze®).
The initial condition implies that 0 = 1 + ¢/e, which means that ¢ = —e and the
solution is y = 1/x — e/(xe®) = 71 (1 — e!7%).

7. The equation is separable. Separation of variables gives the differential equation
y(2 + 3y)dy = (423 + 1)dx, and then after integration we obtain that the solution
iszt4r—1y?—1y>=c

8. The equation is linear. It can be written in the form y’ + 2y/x = sinx/x? and the
integrating factor is p(z) = el @/x)de — g2lnw _ 42 Multiplication by p(z) gives
22y’ + 22y = (2%y)’ = sinx, and after integration with respect to x and division by
22 we obtain the general solution y = (¢ — cosx)/x2. The initial condition implies

that ¢ = 4 + cos 2 and the solution becomes y = (4 + cos2 — cos z)/z2.

11. The equation is exact. It is easy to check that M, =1 = N,. Integrating
M with respect to = gives that ¢(z,y) = 2%/3 + zy + g(y), then ¢, = 2 + ¢/(y) =
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x + e¥, which means that ¢'(y) = e¥, so we obtain that g(y) = e¥. Therefore the
solution is defined implicitly as 2%/3 + zy + e¥ = c.

13. The equation is separable. Factoring the right hand side leads to the equa-
tion y' = (1 +y?)(1 +2z). We separate the variables to obtain dy/(1+ y?) =
(1 + 2z)dz, then integration gives us arctany = z + 22 + ¢. The solution is y =
tan(z + 22 + ¢).

14. The equation is eract. We can check that M, =1 = N,. Integrating M with
respect to x gives that ¢ (z,y) = 22/2 + 2y + g(y), then ¢, =z + ¢'(y) = = + 2y,
which means that ¢’(y) = 2y, so we obtain that g(y) = y?. Therefore the general
solution is defined implicitly as #?/2 + zy + y? = ¢. The initial condition gives us
¢ = 17, so the solution is 22 + 2zy + 2y° = 34.

15. The equation is separable. Separation of variables leads us to the equation
d 1—e*
Y _ ¢ dx
Y 14e®

Note that 1+ e — 2e” =1 — e”. We obtain that

1—e” 2e” o -
1n|y\—/1+ezdx—/1—1+erdx—x—21n(1+e )+ é.

This means that y = ce”(1 + €*)~2, which also can be written as y = ¢/ cosh®(z/2)
after some algebraic manipulations.

16. The equation is eract. The symmetric form is (—e~% cosy + e cosx)dx +
(—e %siny + 2e*sinz)dy = 0. We can check that M, =e "siny + 2e?Y cosx =
N,. Integrating M with respect to z gives that ¥ (z,y) = e % cosy + e*sinz +
g(y), then 1, = —e ®siny + 2e?sinx + ¢'(y) = —e “siny + 2e*¥ sinz, so we get
that ¢'(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is
defined implicitly as e~ cosy + e?¥ sinz = c.

17. The equation is linear. The integrating factor is pu(z) = e~ I3dr — =3z which
turns the equation into e=3%y’ — 3e73%y = (e73%y)’ = e~%. We integrate with re-
spect to = to obtain e 3%y = —e~® 4 ¢, and the solution is y = ce3® — €2* after
multiplication by e3%.

18. The equation is linear. The integrating factor is u(x) = el 2dr — 2% which
gives us 2%y’ + 2%y = (e2%y)’ = e~ The antiderivative of the function on the
right hand side can not be expressed in a closed form using elementary functions,
so we have to express the solution using integrals. Let us integrate both sides of
this equation from 0 to . We obtain that the left hand side turns into

[ @ uto)yds = yto) - (o) =y - 3
0
The right hand side gives us fom e=*" ds. So we found that

xr
y= 6_2”’/ e ds + 322,
0
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19. The equation is ezact. Algebraic manipulations give us the symmetric form
(y® + 2y — 32%)dz + (22 + 3zy?)dy = 0. We can check that M, = 3y* +2 = N,.
Integrating M with respect to x gives that v (z,y) = 2y® + 22y — 23 + g(y), then
¥y = 3zy® + 22 + ¢'(y) = 22 + 3zy?, which means that ¢’(y) = 0, so we obtain that

g(y) = 0 is acceptable. Therefore the solution is zy® + 2y — 2 = c.

20. The equation is separable, because 3y’ = e*TY = e%e¥. Separation of variables
yields the equation e Ydy = e®dx, which turns into —e™¥ = e* + ¢ after integration
and we obtain the implicitly defined solution e* 4+ e~¥ = c.

22. The equation is separable. Separation of variables turns the equation into
(y? + 1)dy = (2® — 1)dz, which, after integration, gives y3/3 +y=123/3 —x +c.
The initial condition yields ¢ = 2/3, and the solution is y® + 3y — 23 + 3z = 2.

23. The equation is linear. Division by t gives y' + (1 + (1/t))y = €' /t, so the
integrating factor is p(t) = e/ (I+(1/0)dt — gt4Int — 4ot The equation turns into
tely’ + (te! + )y = (tely) = e3'. Integration therefore leads to tely = e3!/3 + ¢
and the solution is y = 2! /(3t) + ce~!/t.

24. The equation is exact. We can check that M, = 2cosysinxz cosx = N;. In-
tegrating M with respect to x gives that ¢ (z,y) = sinysin®z + g(y), then 1, =
cosysin® z + ¢'(y) = cosysin® z, which means that ¢’(y) =0, so we obtain that
g(y) = 0is acceptable. Therefore the solution is defined implicitly as siny sin? z = c.

25. The equation is exact. We can check that

2z 22 — g2
M=-2_ 7Y _ N,
Y y2 (22 +y2)2
Integrating M with respect to x gives that ¥ (z,y) = 22 /y + arctan(y/x) + g(v),
then ¢, = —22/y* + z/(z* + y?) + ¢'(y) = z/(2? + y*) — 2% /y?, which means that
g'(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is defined
implicitly as 22 /y + arctan(y/z) = c.

28. The equation can be made ezxact by choosing an appropriate integrating factor.
We can check that (M, — N,)/N = (2 —1)/x = 1/ depends only on z, so pu(x) =
el (t/m)dz — ¢lnw — 4 js an integrating factor. After multiplication, the equation
becomes (2yx + 3z2)dx + 22dy = 0. This equation is exact now, because M, =
22 = N,. Integrating M with respect to x gives that ¢ (z,y) = yz? + 23 + g(v),
then v, = 2% + ¢/(y) = 22, which means that ¢’(y) = 0, so we obtain that g(y) =0
is acceptable. Therefore the solution is defined implicitly as =3 + 2y = c.

29. The equation is homogeneous. (See Section 2.2, Problem 30) We can see that

p_zty 1+ (/)
z—y 1-(y/x)

We substitute « = y/x, which means also that y = uz and then v = vz +u =
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(1 +u)/(1 —u), which implies that

, 1+u 1+ u?
ur = —u=

S 1l-u 1—u’
a separable equation. Separating the variables yields
1—u d
1ouy, _do
1+ u? z
and then integration gives arctanu — In(1+ u?)/2 = In|z| + ¢. Substituting u =
y/x back into this expression and using that

—In(1+ (y/2)*)/2 = In|a| = —In(jz[V/1 + (y/2)?) = — In(v/2? + y?)

we obtain that the solution is arctan(y/x) — In(/2? + y2) = c.

30. The equation is homogeneous. (See Section 2.2, Problem 30) Algebraic manip-
ulations show that it can be written in the form

) _ 3yt + 2wy 3(y/2)" +2(y/x)

2xy + 22 2(y/x) +1
Substituting u = y/x gives that y = uz and then
4= 3u? + 2u
V= T 2w+l
which implies that
, _3u2+2u _u2+u
YT ur1 Y T

a separable equation. We obtain that (2u + 1)du/(u® + u) = dx/x, which in turn
means that In(u? +u) = In |z| + ¢. Therefore, u? + u = cz and then substituting
u = y/x gives us the solution (y2/x3) + (y/2?) = c.

31. The equation can be made exact by choosing an appropriate integrating
factor. We can check that (M, — N,)/M = —(32* +y)/(y(32* +y)) = —1/y de-
pends only on y, so u(y) = e/ (/¥ = nv — 4/ is an integrating factor. After
multiplication, the equation becomes (3z2y? + y*)dz + (223y + 3zy?)dy = 0. This
equation is exact now, because M, = 622y + 3y?> = N,. Integrating M with re-
spect to x gives that ¢(z,y) = 23y + y3x + ¢(y), then ¢, = 223y + 3y?x + ¢'(y) =
223y + 3xy?, which means that ¢'(y) = 0, so we obtain that g(y) = 0 is acceptable.
Therefore the general solution is defined implicitly as z3y? + 2y = ¢. The initial
condition gives us 4 — 8 = ¢ = —4, and the solution is z3y? + zy> = —4.

33. Let y; be a solution, i.e. ¥} = q¢1 + q2y1 + q3y3. Now let y = y; + (1/v) also be
a solution. Differentiating this expression with respect to ¢ and using that y is also
a solution we obtain ¢/ =y} — (1/v*)v = q1 + 2y + 39> = ¢1 + ¢2(y1 + (1/v)) +
q3(y1 + (1/v))?. Now using that y; was also a solution we get that —(1/v?)v" =
q2(1/v) + 2q3(y1/v) + q3(1/v?), which, after some simple algebraic manipulations
turns into v’ = —(g2 + 2¢3y1)v — gs.
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35.(a) The equation is ¥’ = (1 —y)(x + by) =2+ (b—2)y — by®>. We set y =1+
(1/v) and differentiate: y' = —v=20" =z + (b — 2)(1 + (1/v)) — b(1 + (1/v))?, which,
after simplification, turns into v = (b + z)v + b.

(b) When z = at, the equation is v’ — (b+ at)v = b, so the integrating factor is
pu(t) = eb=at*/2 This turns the equation into (vpu(t))’ = bu(t), so vu(t) = [ bu(t)dt,
and then v = (b [ p(t)dt)/p(t).

36. Substitute v = 7/, then v' = y”. The equation turns into t?v’ + 2tv = (t?v)’ =
1, which yields t?v =t + ¢, so ¢/ = v = (1/t) + (¢1/t?). Integrating this expression
gives us the solution y = Int — (c1/t) + ca.

37. Set v =1/, then v/ =y”. The equation with this substitution is tv' +v =
(tv)’ =1, which gives tv =t +¢1, so ¥y =v =1+ (¢1/t). Integrating this expres-
sion yields the solution y =t 4+ ¢ Int + c».

38. Set v =1/, so v =%". The equation is v’ + tv2 = 0, which is a separable
equation. Separating the variables we obtain dv/v? = —tdt, so —1/v = —t%/2 + ¢,
and then y' = v =2/(t? + ¢;). Now depending on the value of ¢;, we have the
following possibilities: when ¢; = 0, then y = —2/t + ¢, when 0 < ¢; = k2, then
y = (2/k)arctan(t/k) + c2, and when 0 > ¢; = —k? then

y=(1/k)In|(t —k)/(t+ k)| + co.

We also divided by v =y’ when we separated the variables, and v =0 (which is
y = ¢) is also a solution.

39. Substitute v =%’ and v’ =”. The equation is 2t?v' 4+ v3 = 2tv. This is a
Bernoulli equation (See Section 2.4, Problem 27), so the substitution z = v=2 yields
2/ = —2v730', and the equation turns into 2t2v'v3 + 1 = 2t/v?, i.e. into —2t22'/2 +
1 = 2tz, which in turn simplifies to t22’ 4+ 2tz = (t2z)" = 1. Integration yields t?z =
t + ¢, which means that z = (1/t) + (¢/t?). Now ¢/ =v=4+/1/2 = +t/\/T+c1
and another integration gives

2
Y= ig(t —2c1)Vt+ 1 + co.
The substitution also loses the solution v =0, i.e. y = c.
40. Set v =1y, then v' = y”. The equation reads v/ + v = e~¢, which is a linear
equation with integrating factor u(t) = ef. This turns the equation into e’ + etv =
(etv)’ = 1, which means that ev =t + ¢ and then 3y =v =te™?! + ce™t. Another
integration yields the solution y = —te™t + cie™? + c.

41. Let v = ¢’ and v = ”’. The equation is t>v’ = v2, which is a separable equation.
Separating the variables we obtain dv/v? = dt/t?, which gives us —1/v = —(1/t) +
c1, and then ¢ = v =t/(1 + ¢1t). Now when ¢; = 0, then y = t2/2 + ¢o, and when
c1 # 0, then y =t/c; — (In|1 + c1t|)/c? + co. Also, at the separation we divided by
v = 0, which also gives us the solution y = c.
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43. Set y' = v(y). Then y"’ =v'(y)(dy/dt) = v'(y)v(y). We obtain the equation
v'v 4+ y =0, where the differentiation is with respect to y. This is a separable
equation which simplifies to vdv = —ydy. We obtain that v?/2 = —y2/2 + ¢, so

y' =wv(y) = £1/c — y?. We separate the variables again to get dy/+/c — y? = *dt,
so arcsin(y/+/c) = t + d, which means that y = \/csin(+t + d) = ¢ sin(t + ¢2).

44. Set y' =v(y). Then y” = v'(y)(dy/dt) = v'(y)v(y). We obtain the equation
v'v + yv3 = 0, where the differentiation is with respect to y. Separation of variables
turns this into dv/v? = —ydy, which gives us ¥’ = v = 2/(c; +y?). This implies
that (c1 + y?)dy = 2dt and then the solution is defined implicitly as c1y + y3/3 =
2t + co. Also, y = ¢ is a solution which we lost when divided by ¢y’ = v = 0.

46. Set y' =wv(y). Then y" =v'(y)(dy/dt) =v'(y)v(y). We obtain the equa-
tion yv'v — v =0, where the differentiation is with respect to 3. This separa-
ble equation gives us dv/v? = dy/y, which means that —1/v = In |y| + ¢, and then
y =v=1/(c—1Inly|). We separate variables again to obtain (¢ — In |y|)dy = dt,
and then integration yields the implicitly defined solution cy — (yIn|y| —y) = ¢ + d.
Also, y = ¢ is a solution which we lost when we divided by v = 0.

49. Set y' = v(y). Then y"’ ='(y)(dy/dt) = v'(y)v(y). We obtain the equation
v'v — 3y? = 0, where the differentiation is with respect to 3. Separation of variables
gives vdv = 3y?dy, and after integration this turns into v?/2 = y® + c¢. The initial
conditions imply that ¢ = 0 here, so (y')? = v? = 2y>. This implies that ' = V232
(the sign is determined by the initial conditions again), and this separable equation
now turns into y~3/2dy = \/2dt. Integration yields —2y /2 = /2t +d, and the
initial conditions at this point give that d = —/2. Algebraic manipulations find
that y = 2(1 — )2

50. Set v=1y’, then v =¢”. The equation with this substitution turns into
the equation (1 + t2)v’ + 2tv = ((1 +t?)v)’ = —3t~2. Integrating this we get that
(14+t*)v=3t"' +¢, and ¢= —5 from the initial conditions. This means that
y' =v=23/(t(1+1t%)) —5/(1 + ). The partial fraction decomposition of the first
expression shows that y' = 3/t — 3t/(1 +t2) —5/(1 +t2) and then another inte-
gration here gives us that y = 3Int — (3/2) In(1 + t?) — 5arctant + d. The initial
conditions identify d = 2+ (3/2)In2 + 57/4, and we obtained the solution.
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