
362

Teaching Suggestions
In this part of the Instructor’s Resource Guide, I suggest how the text can be used effectively to teach an intro-

ductory course in discrete mathematics. These views are based on my personal teaching experience as well as on

the experiences of some of the many instructors who have used the text in previous editions.

In the following material I provide an overview of each chapter of the text. Along with a description of the

contents of that chapter, I describe its importance in an introductory course. After this overview, I give detailed

information about each section of the chapter. First, I state the section goals and identify the prerequisites for

that section. Then, I give my suggestions on how to teach from the section. In particular, I identify troublesome

concepts and suggest how to handle them. I point out particularly useful examples and important concepts. Finally,

I describe exercises that I feel are noteworthy, especially those that tie together diverse concepts or introduce new

ideas. I hope this information makes teaching from the text easier and more rewarding for you.

CHAPTER 1
The Foundations: Logic and Proofs

Overview: Chapter 1 begins with an introduction to propositional and predicate logic. It then continues

with presentations of the rules of inference for both propositional and predicate logic. After

developing logic and rules of inference, the chapter introduces an arsenal of proof methods.

The chapter concludes with a discussion of proof strategy, as well as the process of formulating

conjectures and then using proof methods and strategies to settle them. The material on logic

and proof in this chapter provides the foundations needed throughout higher mathematics and

computer science. Without a firm foundation in logic, students have a great deal of difficulty

with this course and subsequent courses. If you are lucky enough to have students with strong

backgrounds, you might be able to cover quickly, or even skip, some of the contents of this

chapter. But be sure to cover what your students need from this chapter, or the rest of the

course could be tough sledding.

The first five sections deal with logic; propositional logic is covered in Sections 1.1–1.3,

and predicate logic is covered in Sections 1.4 and 1.5. Studying logic is the best way to start

a course in discrete mathematics (unless, of course, your students already know this material)

because students must be able to think logically and carry out precise reasoning. Section 1.6

introduces rules of inference, and Section 1.7 introduces basic proof methods. Section 1.8

introduces additional methods of proof and addresses key aspects of strategies for developing

proofs. Take note that the proof methods discussed in Sections 1.7 and 1.8 are used throughout

the text, particularly in the coverage of sets and functions in Chapter 2, and in the coverage of

algorithms and number theory in Chapters 3 and 4. Chapter 5 introduces another key proof

method, mathematical induction, together with its variants.

SECTION 1.1 Propositional Logic

Goals: To introduce the basic terminology of propositional logic, including logical connectives, to

show how to construct truth tables, to illustrate the importance of logic with applications,

and to motivate the study of logic through logic puzzles and system specifications.

Discrete Mathematics and Its Applications 8th Edition Rosen Solutions Manual
Full Download: https://alibabadownload.com/product/discrete-mathematics-and-its-applications-8th-edition-rosen-solutions-manual/

This sample only, Download all chapters at: AlibabaDownload.com

https://alibabadownload.com/product/discrete-mathematics-and-its-applications-8th-edition-rosen-solutions-manual/

Teaching Suggestions 363

Prerequisites: None.

Advice: The material on logical connectives is straightforward. Most difficulties with this material

involve confusion between common English usage and precise mathematical definitions. In

particular, students have trouble with inclusive versus exclusive or ; make sure the distinction

is clear (see Examples 6–9).

Stress the definition of a conditional statement, especially when the premise is false. That

is, emphasize that p → q is false only when p is true and q is false. This material is used

extensively in Section 1.6 when rules of inference are covered, in Section 1.7 when methods

of proving conditional statements are discussed, and in Sections 5.1–5.3 when mathematical

induction and its variants are covered. Go over the different ways conditional statements

are expressed; these are listed after Definition 5. Define the converse, contrapositive, and

inverse of a conditional statement (see Example 10); these terms are often confused with each

other. Be sure to discuss the notion of equivalence of compound propositions. Explain that

a conditional statement and its contrapositive are logically equivalent, whereas a conditional

statement and its converse or inverse are not logically equivalent. Introduce biconditionals

and how they are expressed. Mention that biconditionals are often implicitly stated. Briefly

introduce truth tables; they are used extensively in Section 1.3. Also, quickly mention the

precedence of logical operators.

Exercises: Exercises 49–51 introduce fuzzy logic, which is used in expert systems and artificial intelligence.

Exercises 52–54 cover some logical paradoxes.

SECTION 1.2 Applications of Propositional Logic

Goals: To introduce some important applications of propositional logic, including many important ap-

plications in computer science. Also, to work with logic puzzles, which provide an entertaining

way to learn and enjoy propositional logic.

Prerequisites: Section 1.1.

Advice: Cover the material on translating English sentences into logical statements; students often

need help with this important task. The subsection on system specifications is of particular

appeal to students in computer science and engineering; it shows that logic is of immediate

practical importance. Computer science students are usually familiar with logical operators

from their use in programming, so make the connection between the material in this section

and logical operators used in programming languages. (In fact almost everyone has been forced

to understand logical operations from doing Boolean searches on the web—see Example 6.)

You may want to spend time covering the subsection on logical puzzles; many people find

these puzzles fascinating—in particular, see Example 8, which introduces one of Raymond

Smullyan’s knights and knaves puzzles. A brief introduction to logic circuits is included here

for instructors who want to make the connection between formal logic and logic circuits. (A

thorough treatment of logic circuits is found in Chapter 12.)

Exercises: Exercises 7–12 are devoted to system specifications. Exercises 17–22 and 36–42 are logical puz-

zles that can challenge students. Exercises 23–27 are puzzles involving Smullyan’s knights and

knaves, and Exercises 28–35 are puzzles involving knights, knaves, and spies, also introduced

by Smullyan.

SECTION 1.3 Propositional Equivalences

Goals: To show how propositional equivalences are established and to introduce the most important

such equivalences.

Prerequisites: Section 1.1.

364 Teaching Suggestions

Advice: Introduce the notion of propositional equivalences by establishing De Morgan’s laws—see Ex-

ample 2. Table 6 presents basic propositional equivalences. We will see similar tables for set

identities in Section 2.2 and for Boolean algebra in Section 12.1. Mention that these properties

hold in a wide variety of settings that all fit into one abstract form. Many students have the

tendency to just memorize the properties, so stress that it is more important to understand

their meaning and why they are true. Explain the different ways that such propositional

equivalences can be established, including by the use of truth tables, by showing that the

propositions are true (or false) for precisely the same sets of values, and by using previously

proved equivalences, including those in Tables 6–8. (Note: We discuss rules of inference for-

mally in Section 1.6 and introduce proofs in Section 1.7. Some practice with straightforward

proofs here will help motivate the in-depth coverage that will follow.) The concept of propo-

sitional satisfiability is introduced in this section. The section concludes with a discussion of

how the n -Queens problem and Sudoku puzzles can be modeled as satisfiability problems.

Exercises: The exercise set introduces some new topics, including duality, disjunctive normal form, and

functional completeness. Students can learn about duality by doing Exercises 38–43. Exer-

cises 44–46 develop the concept of disjunctive normal form. Exercises 47–49 introduce the

concept of functional completeness, and Exercises 50–58 introduce the operators NAND (|)
and NOR (↓) and show that the sets { | } and { ↓ } are both functionally complete. Exer-

cises 64–66 deal with satisfiability and Exercises 70–72 involve Sudoku.

SECTION 1.4 Predicates and Quantifiers

Goals: To introduce predicate logic, especially existential and universal quantification. Moreover, to

explain how to translate between English sentences (or mathematical statements) and logical

expressions.

Prerequisites: Sections 1.1 and 1.3.

Advice: This section is important because students often have trouble proving statements that involve

quantification, including the inductive step in mathematical induction. Make sure they have a

clear idea what the truth values of existential and universal quantifications mean. Tell students

that a quantification is not well-defined unless the domain is specified and that changing the

domain can change the truth value of the quantification. Mention that a statement of the form

∀xP (x) can be shown to be false with a counterexample. Explain how to negate existential

and universal quantifications (see Table 2). We will need this in Sections 1.7 and 1.8 when

we discuss how to prove theorems that involve quantification (in particular, with existence

proofs and counterexamples). Discuss the different ways to express universal and existential

quantifications in English.

Devote special attention to the subsection on translating English sentences into logical

statements; this is a particularly difficult task for many students. Be sure to stress that there

is more than one way to translate a particular English sentence into a logical statement; see

Examples 23 and 24. Example 25 illustrates how to use quantifiers in system specifications.

Examples 26 and 27, taken from Lewis Carroll, illustrate the subtleties of translating English

sentences into correct statements involving predicate and propositional logic. The subsec-

tion on logic programming shows that the material in this section is important in computer

programming and AI.

Exercises: Exercises 23–28 provide a wide variety of examples of how quantifiers are used when En-

glish sentences are translated into logical statements. Exercises 32–36 deal with negations

involving quantified statements. Exercises 40–44 cover the use of quantifiers to express system

specifications. Exercises 48–51 introduce some useful logical equivalences called null quan-

tifications. Exercises 54–56 deal with the uniqueness quantifier. Exercises 57–60 deal with

Prolog. Exercises 61–64 are questions based on work by Lewis Carroll.

Teaching Suggestions 365

SECTION 1.5 Nested Quantifiers

Goals: This section explains how to work with nested quantifiers and makes clear that the order of

quantification matters. This section helps students gain maturity working with complicated

logical expressions involving multiple quantifiers.

Prerequisites: Sections 1.1, 1.3, and 1.4.

Advice: Describe how nested quantifiers work (see Table 1); you may find the analogy to nested loops

useful. Use Examples 1–5 to illustrate the meaning of statements involving nested quanti-

fiers. Cover Example 4 to illustrate that the order of quantification is important when several

different quantifications occur in the same statement. Cover the process of translating math-

ematical statements into logical expressions involving nested quantifiers—see Examples 6–8.

In particular, students who have studied the definition of limit should see Example 8. Then

discuss the translation between complicated statements in English and logical expressions in-

volving nested quantifiers—see Examples 9–13. Cover Examples 14–16 to illustrate how to

negate logical expression involving quantifiers. In particular, Example 16 shows how to use

quantifiers and predicates to express that a limit does not exist.

Exercises: Exercises 14–16 involve translating English sentences into logical expressions involving nested

quantifiers. Exercises 17–18 involve translating system specifications into logical expressions

involving nested quantifiers. Exercises 19–23 involve translating mathematical statements into

expressions involving nested quantifiers, and Exercises 24 and 25 are about the reverse process.

Negations of statements involving nested quantifiers are the subject of Exercises 36–38. Prenex

normal form is introduced in Exercises 50–51.

SECTION 1.6 Rules of Inference

Goals: To introduce the notion of a valid argument and rules of inference for propositional logic.

To explain how to use rules of inference to build correct arguments in propositional calcu-

lus. Moreover, to introduce rules of inference for predicate logic and how to use these rules

of inference to build correct arguments in predicate logic. To show how rules of inference

for propositional calculus and predicate calculus can be combined. Finally, to learn how to

distinguish between correct and incorrect arguments.

Prerequisites: Sections 1.1, 1.3, 1.4, and 1.5.

Advice: Explain what it means for an argument form to be valid in propositional logic. Be sure to

tell students that if the hypotheses in a valid argument form are not true, the conclusion

of the argument may not be true. Introduce the basic rules of inference for propositional

calculus—see Table 1. You may want to cover Examples 6 and 7, which show how to use rules

of inference to construct valid arguments in propositional logic. Describe the rules of inference

for quantified statements—see Table 2. Explain how rules of inference for propositional logic

and predicate logic can be combined.

Mention begging the question; students will think this is not likely to occur, but you can

show them examples from their own arguments.

Exercises: Exercises 23 and 24 ask students to find an error in an incorrect argument in predicate calculus.

Exercise 26 asks for a justification of a rule of inference in predicate calculus called the rule

of universal transitivity. Exercises 27–29 ask students to use rules of inference in predicate

calculus to construct valid arguments.

SECTION 1.7 Introduction to Proofs

Goals: To introduce the notion of proof and basic methods of proof, including direct proof, proof by

contraposition, and proof by contradiction. Furthermore, to learn how to distinguish between

correct and incorrect arguments, and to understand and construct basic types of proofs.

366 Teaching Suggestions

Prerequisites: Sections 1.1, 1.3–1.6.

Advice: Begin with definitions of important terms, including theorem, proof , corollary , lemma, and

conjecture. A key goal is for students to understand what constitutes a valid proof; they need

to be able to understand existing proofs and create their own. Let them know that axioms

and previously proven results can be used and that arguments must follow correct rules of

inference for propositions and for predicates. (You may want to review the axioms for the real

numbers in Appendix 1.) Students need to understand the difference between a formal proof

and an informal one that could be expanded into a formal proof if necessary.

Spend substantial time showing how to prove conditional statements using direct proofs

and proofs by contraposition; this will pay off when you discuss mathematical induction and

whenever you prove theorems that are universal quantifications of conditional statements.

Introduce some aspects of proof strategy that tell you when to try a direct proof and when

to use an indirect proof (proof by contraposition or contradiction). Illustrate this by cover-

ing Examples 8 and 9. Be sure to spend adequate time discussing proof by contradiction.

Example 10 illustrates a proof by contradiction and foreshadows the pigeonhole principle dis-

cussed in depth in Section 6.2. Explain what it means to show that statements are equivalent.

Example 14 illustrates how the equivalence of three statements can be established.

Exercises: Assign some of Exercises 1–4, 6, 7, 9, 10, 17, 19, and 20 to give students practice with direct

proofs, proof by contraposition, and proof by contradiction. In these exercises the method of

proof is specified. Also assign some of Exercises 5, 8, 13, 14, 15, 16, and 18 to give students

practice determining which method of proof to use. You may want to assign Exercises 11

and 12, which ask students to either prove or disprove a statement. Exercises 24–26 require

proof by contradiction; these are really just examples of the pigeonhole principle. Exercises 28–

30 ask students to show that two statements are equivalent. Exercises 32–35 and 43–44 ask

for proofs that three or four statements are equivalent.

SECTION 1.8 Proof Methods and Strategy

Goals: To learn important methods of proofs including proof by cases and existence proofs, supple-

menting the basic methods introduced in Section 1.7. To introduce key strategies for proving

theorems, to understand the roles of conjectures and counterexamples, and to learn about

some important open problems.

Prerequisites: Sections 1.1, 1.3, and 1.4–1.7.

Advice: Introduce proof by exhaustion and proof by cases. You may want to cover Example 4, which

shows how a proof by cases is used to prove that the absolute value of the product of two

numbers is the product of their absolute values. Mention the notion of without loss of generality

and how it can be used to simplify proofs that might need to consider separate cases. Cover

some of the common errors that arise in incorrect proofs by cases.

Introduce existence proofs, and discuss the difference between constructive and noncon-

structive existence proofs. Examples 11 and 12 provide good examples of nonconstructive

existence proofs. Explain what is needed in a uniqueness proof, and use Example 13 to illus-

trate how a uniqueness proof proceeds.

The material presented here provides students with a window into what mathematics is

really about. Explain some of the strategies used to find proofs of theorems. Explain that the

proof methods studied in Section 1.7 and the first part of this section provide the tool kit, but

the art of finding proofs is something altogether different. You can illustrate this by covering

Examples 14 and 15. Also, be sure to cover Example 16, which illustrates how leveraging an

existing proof can provide a good starting point for constructing a new proof.

Use the material on tilings to discuss the role of conjectures and how to use the proof

methods developed in the text to settle them. This material requires no extra machinery,

Teaching Suggestions 367

so it is quite accessible. Formulating conjectures about tilings of checkerboards, and parts of

checkerboards, is easy, but settling these conjectures ranges from straightforward to extremely

tricky.

Devote some time to discussing the role of open problems. Students will find the story

behind Fermat’s Last Theorem compelling. Learning about easily understood conjectures that

remain unsolved, such as the 3x+ 1 conjecture, also motivates many students.

Exercises: To give student practice with proof by cases, assign some of Exercises 2, 3, 5, and 6. Exer-

cises 7 and 8 involve the notion of without loss of generality . Exercises 10–14 ask for existence

proofs, together with an explanation why the proof is constructive or nonconstructive. Ex-

ercises 25 and 26 introduce the harmonic and quadratic means and give students practice

with formulating and proving their own conjectures. Exercise 28 is an excellent example of

working backwards. Exercise 35 provides an opportunity for students to adapt an existing

proof. The famous three jug problem is the subject of Exercise 40, which asks students to

prove or disprove that you can solve this problem. Exercises 43–52 asks students questions

about tilings of checkerboards. Exercises 43–46 ask students to prove or disprove a statement

about tilings; this provides practice analyzing whether a conjecture is true and which proof

method to use to prove the conjecture or to show that it is false. Exercise 50 is a challenging

exercise about tilings that has a particularly elegant solution.

CHAPTER 2
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Overview: Chapter 2 presents an introduction to basic discrete structures, namely sets, functions, se-

quences, summations, and matrices. Some, but likely not all, of this material may be review

for your students. You should quickly cover, or not cover at all, material that your students

already know. However, be sure to cover topics that your students may not already know,

such as set identities, countability, the floor and ceiling functions, and summation formulae.

SECTION 2.1 Sets

Goals: To introduce the basic terminology of set theory.

Prerequisites: Chapter 1.

Advice: Make sure students understand that when specifying the elements of sets the number of times

an element is listed and the order in which the elements are listed do not matter. These facts

are illustrated by Example 6. Students have trouble distinguishing between the sets ∅ and

{∅} , so explain that the empty set is the set with no elements and that it is a subset of every

set. I like to start with the empty set and take the power set and then the power set again

to force students to see the difference between the empty set, the set containing the empty

set, and other confusing sets. You may want to present the proof of Theorem 1, which shows

that every nonempty set has at least two subsets, the set itself and the empty set, especially

because this is an excellent illustration of proof methods covered in Section 1.7.

Exercises: Russell’s paradox is described in Exercise 50. This is a difficult exercise for students, but it is

important since it shows that a consistent set of axioms is needed for set theory. Exercise 49

shows how to define ordered pairs in terms of sets.

368 Teaching Suggestions

SECTION 2.2 Set Operations

Goals: To show how set identities are established and to introduce the most important such identities.

Prerequisites: Chapter 1 and Section 2.1.

Advice: The relationship between set identities and logical equivalences becomes clear when set oper-

ations are expressed using set builder notation and logical operators. Show students several

different ways to prove a set identity, namely by showing that each side is a subset of the

other, by a membership table, by the use of logical equivalences, or by using set identities that

have already been established. Explain that the set identities in Table 1 are analogous to the

propositional equivalences in Section 1.3 and to Boolean identities that will be given in Chap-

ter 12. We touch briefly on how to count elements in the union of two sets, foreshadowing the

treatment of inclusion–exclusion in Chapter 8. The subsections on how computers represent

sets and on multisets and their applications will be of particular interest to computer science

students.

Exercises: The notion of the symmetric difference of two sets is introduced in the exercise set and studied

in Exercises 38–49. Fuzzy sets, used in expert systems and artificial intelligence, are the subject

of Exercises 73–75. You can ask your creative students to make the connection between fuzzy

logic, introduced in Section 1.1, and fuzzy sets. Multisets are dealt with in Exercises 67–70.

The successor of a set is defined in the preamble to Exercise 65. Jaccard similarity and distance

are described in the preamble to Exercises 71 and 72.

SECTION 2.3 Functions

Goals: To introduce the concept of a function, the notion of one-to-one functions, onto functions, and

the floor and ceiling functions.

Prerequisites: Chapter 1 and Sections 2.1 and 2.2.

Advice: We define functions as assignments and their graphs as the sets of ordered pairs determined

by these assignments. As such, the graph of a function is a type of relation, a topic we cover

in Chapter 9. Although functions are discussed in a general setting, most of the examples

deal with functions from one discrete set to another, as is appropriate for a course in discrete

mathematics. Sometimes students have trouble with the definitions of one-to-one and onto

functions. Use Figure 5 to help make these concepts clear. Show students how to express

the definitions of one-to-one and onto in terms of quantifiers. Make sure your students have

a clear understanding of the floor and ceiling functions; there is often confusion about their

values at negative real numbers. Examples 29 and 30 show how these functions are applied

in basic problems in data communications. Table 1 displays useful properties of the floor

and ceiling functions. Make sure students are familiar with these properties. Proving results

about the floor and ceiling functions provides more practice with methods of proof. Example 33

illustrates computations with the factorial function; be sure to cover this if your students are

not already familiar with factorials. Finally, the notion of a partial function, important in the

study of Turing machines, is introduced.

Exercises: Exercises 48–59 give students the opportunity to work with the properties of the floor and ceil-

ing functions, and Exercises 60–63 involve application of these functions to simple calculations

in data communications. Exercise 74 asks students to show that the notions of one-to-one and

onto are equivalent when the domain and codomain are finite sets of the same size. Exercise 81

establishes some important facts about the cardinality of finite sets and Exercise 82 establishes

an important result about infinite sets.

Teaching Suggestions 369

SECTION 2.4 Sequences and Summations

Goals: To introduce terminology used for sequences and summations. To introduce recurrence rela-

tions and some methods for solving them. To work with summations and establish several

important summation formulae.

Prerequisites: Chapter 1 and Section 2.3.

Advice: The first part of this section deals with sequences. Recurrence relations are introduced and

the method of iteration for solving them is discussed. Example 11 illustrates how recurrence

relations are used to solve a problem involving compound interest. The topic of integer se-

quences is covered, which requires more critical and creative thinking than the other material.

Examples 12–16 involve conjecturing a formula or rule for generating the terms of a sequence

when only the first few terms are known. Encourage students to try the On-Line Encyclo-

pedia of Integer Sequences, mentioned in this section. Students should also understand that

sequences and strings are just special types of functions.

The second part of the section introduces summation notation. Make sure students can

work with the different forms of this notation and with shifting indices in summations. In

particular, this will be helpful later when we prove summation formulae using mathematical

induction.

Exercises: Exercises 9–10 ask students to conjecture the formula or rule for generating the terms of a

sequence from the first few terms; these exercises are more challenging than Exercises 5–6,

which ask students to list the terms of sequences defined in different ways. Exercises 7–8

are interesting since they point out that there are many different naturally arising sequences

that have the same initial terms. Exercises 18–24 deal with solving problems using recurrence

relations. Telescoping sums are defined in Exercise 35 and are used to find the sums of the

first n positive integers and the squares of these integers in Exercises 37 and 38, respectively.

Product notation is introduced in the exercise set. Assign Exercise 45 if you wish to cover

this.

SECTION 2.5 Cardinality of Sets

Goals: To master the concept of the cardinality of sets. In particular, to understand the difference

between countable sets and uncountable sets.

Prerequisites: Chapter 1 and Sections 2.1–2.3.

Advice: In general, the material in this section is more difficult than earlier material. Use the idea of

Hilbert’s Grand Hotel to explain the concept of countable sets. Students find this idea quite

helpful when learning about countable sets. Showing that the set of positive rational numbers

is countable is covered in Example 4. The proof that the set of real numbers is uncountable,

using the Cantor diagonalization method, is elegant and quite subtle; it is given in Example 5.

Motivate this by using a numerical example for the construction of a real number that was

not listed. Mention the notion of computable and uncomputable functions and explain why

uncomputable functions exists. Finally, better students may be fascinated by the continuum

hypothesis, briefly described at the end of the section.

Exercises: Exercises 5–9 ask questions about finding rooms for newly arriving guests at Hilbert’s Grand

Hotel. Exercises 15 and 16 ask students to show that a set containing an uncountable set is

also uncountable and a subset of a countable set is countable, respectively. Exercises 25–26

and 31–32 provide alternative methods of proving that the set of positive rational numbers

is countable. Exercise 39 asks for a proof that there are functions that are not computable.

Exercise 41 guides students through a proof of the Schröder-Bernstein theorem (Theorem 2

in the text).

370 Teaching Suggestions

SECTION 2.6 Matrices

Goals: To introduce basic properties of matrices and matrix arithmetic, including Boolean operations

on zero–one matrices.

Prerequisites: Chapter 1 and Sections 2.3 and 2.4.

Advice: This section presents a brief review of the material on matrices needed in later sections of the

text. Students should understand how matrix multiplication is defined and know that it is

not commutative. The material on zero–one matrices and Boolean operations on them will be

new to most students. This material is used only in Section 9.4, when the transitive closure

of relations is discussed, and it may be omitted if you do not intend to cover that section.

Exercises: Make sure students know what a diagonal matrix is (see Exercise 14). You may want to assign

Exercises 18–21, which deal with the notion of the inverse of a matrix.

CHAPTER 3
Algorithms

Overview: Section 3.1 introduces the concept of an algorithm. The purpose of this material is to en-

sure that students understand what an algorithm is and the different ways algorithms are

expressed. The section illustrates the concept of an algorithm by covering searching and sort-

ing algorithms. The notion of a greedy algorithm is also introduced. Section 3.2 introduces

asymptotic notations used to describe the growth of functions, including big-O , big-Omega,

and big-Theta notations. Section 3.3 describes how to express the complexity of an algorithm.

This is important since later chapters discuss a variety of algorithms and their complexity.

The notion of an algorithm paradigm is also discussed in Section 3.3. Appendices 2 and 3

are relevant to this chapter. In particular, Appendix 3 introduces pseudocode, which is used

throughout the chapter, and Appendix 2 reviews exponential and logarithmic functions, which

are important in the discussions of complexity.

SECTION 3.1 Algorithms

Goals: To introduce the concept and basic properties of an algorithm.

Prerequisites: Chapters 1 and 2.

Advice: The algorithm for finding the largest element in a finite sequence of integers provides a good

example of an algorithm since it is simple and it solves a useful problem. Students should

understand the steps used in actually solving a problem. First we find an algorithm, which

is expressed initially in English and then in pseudocode. Next, we study the complexity of

the algorithm. Then we construct a computer program to implement it. Finally we verify

the correctness of the program. We concentrate on the mathematical portions of the study

of algorithms in the text, namely, how to solve problems using algorithms (in this section),

how to study their complexity (in Section 3.3), and how to prove them correct (in Sections 5.4

and 5.5).

Introduce the problems of searching and sorting and present the linear and binary searches

and one or both of the bubble sort and the insertion sort. (We will study the complexity of

these algorithms later on.) This may be a good time to introduce the notion of a greedy

algorithm. The change-making algorithm presented here provides an easy introduction to this

topic and the question of whether a particular greedy algorithm produces optimal solutions.

Example 7 introduces the problem of the most possible talks that can be scheduled in a lecture

Teaching Suggestions 371

hall given their start and end times. This is a good example for examining different criteria

to be used at each step.

The subsection on the famous halting problem, which computer science majors should

see again in a Theory of Computation course, is optional. It is a beautiful example of proof

by contradiction, but the argument is subtle (and gives students difficulties), partly because

of its self-referential nature.

Exercises: A variant of the binary search algorithm is introduced in Exercise 26. This version of the

algorithm stops if the middle term at any stage equals the desired integer. The ternary search

algorithm is introduced in Exercise 27; this exercise gives students the opportunity to develop

a search algorithm on their own, generalizing the binary search algorithm. The selection sort

is introduced and studied in Exercises 43–44 and the binary insertion sort in Exercises 49–51.

Exercises 60 and 62 ask for counterexamples that show that a particular criteria for each step

of a greedy algorithm does not always lead to an optimal solution. The notion of a stable

assignment is introduced in the preamble to Exercise 64, the deferred acceptance algorithm is

introduced in the preamble of Exercise 65, and a vote algorithm is introduced in the preamble

to Exercise 68.

SECTION 3.2 The Growth of Functions

Goals: To introduce big-O and related big-Omega and big-Theta notation, and to show how to

estimate the size of functions using this notation.

Prerequisites: Chapters 1 and 2.

Advice: Students have trouble with big-O notation. Often they cannot decide how to choose the

witnesses C and k in the definition. Show them how different pairs of constants can be used as

witnesses. Give several different examples to illustrate the concept. Show how the definition of

this notation involves the use of existential and universal quantifiers. Cover Examples 5 and 6,

which give estimates for the sum of the n smallest positive integers and for n! , respectively.

Go over the useful big-O estimates for logarithms, powers, and exponential functions; these

provide useful guides for comparing the growth of common functions. Cover big-Omega and

big-Theta notation and discuss the connections between them and big-O notation. Indicate

the importance of big-O in estimating the complexity of algorithms. We will study this

formally in Section 3.3.

Exercises: Exercises 21 and 22 ask that a list of functions be ordered so that each is big-O of the next

function on the list. Another type of asymptotic notation is introduced in the exercise set—

little-o notation, which depends on the notion of a limit. If your students have a satisfactory

background working with limits you may want to assign some of Exercises 63–71, which deal

with this concept. We will use the result in Exercise 74 when we use trees to study the

complexity of sorting algorithms in Section 11.2.

SECTION 3.3 Complexity of Algorithms

Goals: To introduce computational complexity analysis.

Prerequisites: Chapters 1 and 2 and Sections 3.1–3.2.

Advice: This section deals with complexity of algorithms. This is an important mathematical part of

computer science. We define different types of complexity but concentrate on time complexity.

Explain the distinction between worst-case and average-case complexity. Tell students the

merits, as well as the drawbacks, of using big-O estimates. Explain how the witnesses C and

k in a big-O estimate have practical implications. Because average case complexity depends on

notions of probability, a topic not formally studied until Chapter 7, tell students in an informal

372 Teaching Suggestions

way how average-case analysis depends on the distribution of input values. The complexity

of matrix multiplication is studied and the problem of determining the best order for matrix-

chain multiplication is introduced—we return to this problem in the exercises of Section 9.1.

The notion of algorithmic paradigms is introduced in this section and brute-force algorithms

are discussed. (The algorithmic paradigm of greed was introduced in Section 3.1; among

the other algorithmic paradigms covered in the book are divide-and-conquer and dynamic

programming in Chapter 8 and backtracking in Chapter 11.) I suggest giving students an

informal introduction to tractable, intractable, solvable, unsolvable, NP, and NP-complete

problems. A more formal treatment of these topics can found at the conclusion of the last

section of the last chapter of the text.

Exercises: Exercises 1–4 ask students to give big-O estimates when various segments of algorithms,

expressed as blocks of pseudocode, are carried out. Exercise 12 develops a big-Theta estimates

for the number of steps used by an algorithm; the big-Omega part of this is harder than the

big-O part. You may want to assign Exercise 14, which deals with Horner’s method for

evaluating polynomials. Have students compare the complexity of this algorithm with the

conventional method described in Exercise 13.

CHAPTER 4
Number Theory and Cryptography

Overview: Section 4.1 introduces some basic notions of number theory, including divisibility of integers

and congruences. Section 4.2 introduces base b representations of integers (including binary,

octal, and hexadecimal) and presents algorithms for integer arithmetic. Primes are discussed

in Section 4.3, including conjectures about primes. Section 4.3 also introduces greatest com-

mon divisors and the Euclidean algorithm. The fundamental theorem of arithmetic is also

introduced in Section 4.3. In Section 4.4, we see how to solve linear congruences. We also see

how to solve systems of linear congruences using the Chinese remainder theorem. Section 4.5

presents several important applications of congruences, namely pseudorandom number gen-

eration, hashing, and check digits. Finally, Section 4.6 provides an introduction to the basic

ideas of cryptography. In this section, both classical and modern cipher systems are stud-

ied. Public-key cryptography and two important cryptographic protocols—key exchange and

signed messages—are studied.

SECTION 4.1 Divisibility and Modular Arithmetic

Goals: To introduce some fundamental concepts from number theory, including the division algorithm,

congruences, and the rules of modular arithmetic.

Prerequisites: Chapters 1 and 2.

Advice: Be sure you mention that what is called the division algorithm is not really an algorithm,

because this is quite confusing. (We will present an algorithm that finds the quotient and

remainder in Section 4.2.)

Explain the difference between congruence notation and the mod function. Cover the

basic properties of congruences; we will need this material in Chapter 9 when we discuss

congruence modulo m as an equivalence relation. Be sure to mention that working with

congruences is similar to working with equalities, but that division of both sides of a congruence

by the same integer may not produce a valid congruence. If you plan on covering recursive

Teaching Suggestions 373

algorithms in Section 5.4, be sure to cover Corollary 2, which is used to develop an efficient

recursive algorithm for modular exponentiation.

You may want to cover the notion of arithmetic on Zm . This material will be useful to

students who study abstract algebra in the future.

Exercises: Exercises 21–22 establish the relationship between the congruence notation and the mod func-

tion. Exercises 40–42 ask that certain results pertaining to congruences be established. These

exercises give students some practice working with the notion of a congruence. Exercises 48–50

asks for proofs of properties of addition and multiplication in Zm .

SECTION 4.2 Integer Representations and Algorithms

Goals: To study representations of integers in different bases, including binary, octal, and hexadecimal

representations, and to introduce algorithms involving integers based on these representations.

Prerequisites: Chapters 1–3 and Section 4.1.

Advice: If your students do not have practice using different bases for representing integers, spend some

time on the discussion of such representations in this section. Show students how to convert

from one base to another (see Algorithm 1). The algorithms for addition, subtraction, and

multiplication of integers were the first procedures to be called algorithms. Students need to

study this type of algorithm in order to understand how computers perform arithmetic. (Note:

We will introduce a more efficient algorithm for multiplication in Section 8.3.) Performing

modular exponentiation is important in cryptography; it is presented as Algorithm 5.

Exercises: The exercise set introduces other ways to represent integers, including those important in

computer arithmetic. In particular, balanced ternary expansions are described in Exercise 30,

one’s complement representations are defined in the preamble to Exercise 40, two’s complement

representations are defined in the preamble to Exercise 46, binary coded decimal expansions are

discussed in Exercise 53, and Cantor expansions are introduced in the preamble to Exercise 54.

The simple conversions between binary, octal, and hexadecimal notations are the subject of

Exercises 5–19. The complexity of modular exponentiation is the subject of Exercise 64.

SECTION 4.3 Primes and Greatest Common Divisors

Goals: To introduce some fundamental concepts from number theory, including primality, prime

factorization, and greatest common divisors. To introduce some important conjectures about

primes.

Prerequisites: Chapters 1–2 and Sections 3.1 and 4.1.

Advice: Students often do not see that when factoring an integer it is necessary to do trial divisions

only by integers less than or equal to the square root of the integer being factored. This is

emphasized in Example 3. Show how to use the sieve of Eratosthenes to find all primes less

than a positive integer. Be sure to prove that there are infinitely many primes (Theorem 3);

this is one of most elegant and famous proofs in mathematics. Briefly address the subject

of primes in arithmetic progressions, addressing Dirichlet’s theorem and the result of Green

and Tao about arithmetic progressions of prime numbers. Be sure to mention the twin prime

conjecture, the recent proof by of the bounded gap conjecture, and improvements to Zhang’s

bound. These demonstrate that new results are still being discovered and also illustrate how

an open question can inspire work on similar or partial results. Discussing the search for new

Mersenne primes (which can be monitored on the web) also illustrates that number theory

is an active field. Briefly discuss conjectures about primes and some of the famous open

questions about them, such as Goldbach’s conjecture. New discoveries about prime numbers

often find their way into the popular press and are the focus of many websites.

374 Teaching Suggestions

Introduce the greatest common divisor and least common multiple of two integers. Make

it clear that using prime factorizations to find greatest common divisors is easy once these

factorizations are known, but that factoring integers is extremely time consuming. Next,

introduce the Euclidean algorithm. Besides being one of the oldest algorithms invented, it is

an excellent illustration of the concept of an algorithm. We will study the complexity of the

Euclidean algorithm in Section 5.3. (We defer the complexity analysis to that section because

we will need an estimate for the size of Fibonacci numbers, which we will establish there.)

After showing that the greatest common divisor of two positive integers can be expressed

as a linear combination of these integers, you can show that the prime factorization of an

integer is unique (up to the order of the factors); the fact that every positive integer has a

prime factorization is proved in Section 5.2.

Exercises: Exercise 11 asks for a proof that log2 3 is irrational; it is a simple, but challenging, exercise

that follows from the fundamental theorem of arithmetic. The Euler φ -function is introduced

in the preamble to Exercise 21. The extended Euclidean algorithm is covered in Exercises 41–

45. Exercises 54 and 55 asks students to adapt the proof in the text that there are infinitely

many primes to prove that there are infinitely many primes of the forms 3k + 2 and 4k + 3,

respectively. Exercises 56 and 57 challenge students to present two different ways to show that

the set of positive rational numbers is countable using material from this section.

SECTION 4.4 Solving Congruences

Goals: To learn how to solve linear congruences and simultaneous systems of linear congruences. To

introduce Fermat’s little theorem, pseudoprimes, primitive roots, and discrete logarithms.

Prerequisites: Chapters 1 and 2 and Sections 4.1 and 4.3.

Advice: Introduce the concept of a linear congruence. Explain what an inverse modulo m is and how

to use inverses to solve linear congruences. Describe how to use the Euclidean algorithm to

find modular inverses. Then introduce systems of linear congruences using Sun-Tsu’s puzzle

as motivation. Introduce the Chinese remainder theorem and explain the proof of the part

of the theorem that asserts existence of a simultaneous solution. You may want to also show

how to solve systems of linear equations by back substitution, besides using the construction

in the proof of the theorem to find solutions. You may also want to illustrate how arithmetic

with large integers can be carried out using the Chinese remainder theorem.

Present Fermat’s little theorem and illustrate its use in computations. Introduce the no-

tion of a pseudoprime and discuss the importance of pseudoprimes for finding large primes.

You may want to discuss Carmichael numbers too. Introduce the notions of primitive roots.

Discuss discrete logarithms, especially if you plan to cover cryptographic protocols in Sec-

tion 4.6.

Exercises: Exercise 19 outlines a proof of Fermat’s little theorem. Exercise 30 establishes the uniqueness

part of the Chinese remainder theorem. Exercise 37 uses Fermat’s little theorem to show that

341 is a pseudoprime to the base 2. Miller’s test and the concept of a strong pseudoprime is

introduced in the preamble to Exercise 44. Quadratic residues are introduced in the preamble

to Exercise 58 and addressed in Exercises 58–64.

SECTION 4.5 Applications of Congruences

Goals: To introduce three important applications of congruences, which show the usefulness of number

theory and also are important in their own right.

Prerequisites: Chapters 1 and 2 and Sections 4.1, 4.3, and 4.4.

Advice: Explain what a hashing function is and explain how to h(k) = k mod m for hashing. Describe

what a collision is and describe how to use a linear probing function to resolve collisions.

Discrete Mathematics and Its Applications 8th Edition Rosen Solutions Manual
Full Download: https://alibabadownload.com/product/discrete-mathematics-and-its-applications-8th-edition-rosen-solutions-manual/

This sample only, Download all chapters at: AlibabaDownload.com

https://alibabadownload.com/product/discrete-mathematics-and-its-applications-8th-edition-rosen-solutions-manual/

	Teaching Suggestions
	The Foundations: Logic and Proofs
	Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
	Algorithms
	Number Theory and Cryptography
	Induction and Recursion
	Counting
	Discrete Probability
	Advanced Counting Techniques
	Relations
	Graphs
	Trees
	Boolean Algebra
	Modeling Computation

