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PREFACE 
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LINEAR ALGEBRA (4th edition, 2018) by C. Henry Edwards, David E. Penney, and David T. 

Calvis.  We include solutions to most of the problems in the text.  The corresponding Student’s 

Solutions Manual contains solutions to most of the odd-numbered solutions in the text. 

 

Our goal is to support teaching of the subject of differential equations with linear algebra in every 

way that we can.  We therefore invite comments and suggested improvements for future printings of 

this manual, as well as advice regarding features that might be added to increase its usefulness in 

subsequent editions.  Additional supplementary material can be found at the Expanded Applications 

website listed below. 

 

Henry Edwards 
David Calvis 
 
h.edwards@mindspring.com 
dcalvis@bw.edu 
 
http://goo.gl/UYnW2g 
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CHAPTER 1 

FIRST-ORDER DIFFERENTIAL EQUATIONS 
SECTION 1.1 

DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS 

The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of dif-
ferential equations, and to show the student what is meant by a solution of a differential equation.  
Also, the use of differential equations in the mathematical modeling of real-world phenomena is 
outlined. 

Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the 
given differential equations.  We include here just some typical examples of such verifications. 

3. If 1 cos 2y x  and 2 sin 2y x , then 1 2sin 2y x    2 2cos 2y x  , so 

1 14cos 2 4y x y     and 2 24sin 2 4y x y     .  Thus 1 14 0y y   and 2 24 0y y   . 

4. If 3
1

xy e  and 3
2

xy e , then 3
1 3 xy e  and 3

2 3 xy e  , so 3
1 19 9xy e y    and 

3
2 29 9xy e y   . 

5. If x xy e e  , then x xy e e   , so     2 .x x x x xy y e e e e e           Thus 

2 .xy y e    

6. If 2
1

xy e  and 2
2

xy x e , then 2
1 2 xy e   , 2

1 4 xy e  , 2 2
2 2x xy e x e    , and 

2 2
2 4 4 .x xy e x e       Hence 

     2 2 2
1 1 14 4 4 4 2 4 0x x xy y y e e e           

 and 

     2 2 2 2 2
2 2 24 4 4 4 4 2 4 0.x x x x xy y y e x e e x e x e               

8. If 1 cos cos 2y x x   and 2 sin cos 2y x x  , then 1 sin 2sin 2 ,y x x     

1 cos 4cos 2 ,y x x     2 cos 2sin 2y x x   , and 2 sin 4cos 2 .y x x      Hence 

   1 1 cos 4cos 2 cos cos 2 3cos 2y y x x x x x        

 and 
   2 2 sin 4cos 2 sin cos 2 3cos 2 .y y x x x x x         
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11. If 2
1y y x  , then 32y x    and 46 ,y x   so 

     2 2 4 3 25 4 6 5 2 4 0.x y x y y x x x x x           

 If 2
2 lny y x x  , then 3 32 lny x x x     and 4 45 6 lny x x x     , so 

     
   

2 2 4 4 3 3 2

2 2 2 2 2

5 4 5 6 ln 5 2 ln 4 ln

5 5 6 10 4 ln 0.

x y x y y x x x x x x x x x x

x x x x x x

    

    

        

      
 

13. Substitution of rxy e  into 3 2y y   gives the equation 3 2rx rxr e e , which simplifies 
to 3 2.r    Thus 2 / 3r  . 

14. Substitution of rxy e  into 4y y   gives the equation 24 rx rxr e e , which simplifies to 
24 1.r    Thus 1 / 2r   . 

15. Substitution of rxy e  into 2 0y y y     gives the equation 2 2 0rx rx rxr e r e e   , 
which simplifies to 2 2 ( 2)( 1) 0.r r r r        Thus 2r    or 1r  . 

16. Substitution of rxy e  into 3 3 4 0y y y     gives the equation 
23 3 4 0,rx rx rxr e r e e    which simplifies to 23 3 4 0r r   .  The quadratic formula then 

gives the solutions  3 57 6r    . 

The verifications of the suggested solutions in Problems 17-26 are similar to those in Problems 
1-12.  We illustrate the determination of the value of C only in some typical cases.  However, we 
illustrate typical solution curves for each of these problems. 

17. 2C   18. 3C   

  
−4 0 4

−4

0

4

x

y

(0, 2)

Problem 17

−5 0 5
−5

0

5

x

y

(0, 3)

Problem 18
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19. If   1xy x Ce  , then  0 5y   gives 1 5C   , so 6C  . 

20. If   1xy x C e x   , then  0 10y   gives 1 10C   , or 11C  . 

  

21. 7C  . 

22. If  ( ) lny x x C  , then  0 0y   gives ln 0C  , so 1C  . 

  

23. If 5 21
4( )y x x C x  , then  2 1y   gives 1 1

4 832 1C    , or 56C   . 

24. 17C  . 

−5 0 5
−10

−5

0

5

10

x

y

(0, 5)

Problem 19

−10 −5 0 5 10
−20

0

20

x

y

(0, 10)

Problem 20

−2 −1 0 1 2
−10

−5

0

5

10

x

y

(0, 7)

Problem 21

−20 −10 0 10 20
−5

0

5

x

y
(0, 0)

Problem 22
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25. If  3tany x C  , then  0 1y   gives the equation tan 1C  .  Hence one value of C is 
/ 4C  , as is this value plus any integral multiple of  . 

  

26. Substitution of x   and 0y   into  cosy x C x   yields    0 1C   , so 
C   . 

27. y x y    

28. The slope of the line through  ,x y  and  2,0x  is 0 2
/ 2

yy y x
x x

  


, so the differ-

ential equation is 2xy y  . 

0 1 2 3
−30

−20

−10

0

10

20

30

x

y (2, 1)

Problem 23

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−30

−20

−10

0

10

20

30

x

y

(1, 17)

Problem 24

−2 −1 0 1 2
−4

−2

0

2

4

x

y

(0, 1)

Problem 25

0 5 10
−10

−5

0

5

10

x

y (, 0)

Problem 26
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29. If m y  is the slope of the tangent line and m  is the slope of the normal line at ( , ),x y  
then the relation 1m m    yields    1 1 0m y y x      .  Solving for y  then 

gives the differential equation  1 y y x  . 

30. Here m y  and 2( ) 2xm D x k x    , so the orthogonality relation 1m m    gives 
the differential equation 2 1.xy    

31. The slope of the line through  ,x y  and ( , )y x  is    y x y y x     , so the differen-
tial equation is ( ) .x y y y x    

In Problems 32-36 we get the desired differential equation when we replace the “time rate of 
change” of the dependent variable with its derivative with respect to time t, the word “is” with 
the = sign, the phrase “proportional to” with k, and finally translate the remainder of the given 
sentence into symbols. 

32. dP dt k P  33. 2dv dt kv  

34.  250dv dt k v   35.  dN dt k P N   

36.  dN dt kN P N   

37. The second derivative of any linear function is zero, so we spot the two solutions 
  1y x   and ( )y x x  of the differential equation 0y  . 

38. A function whose derivative equals itself, and is hence a solution of the differential equa-
tion y y  , is ( ) xy x e . 

39. We reason that if 2y kx , then each term in the differential equation is a multiple of 2x .  
The choice 1k   balances the equation and provides the solution 2( )y x x . 

40. If y is a constant, then 0y  , so the differential equation reduces to 2 1y  .  This gives 
the two constant-valued solutions ( ) 1y x   and ( ) 1y x   . 

41. We reason that if xy ke , then each term in the differential equation is a multiple of xe .  
The choice 1

2k   balances the equation and provides the solution 1
2( ) xy x e . 

42. Two functions, each equaling the negative of its own second derivative, are the two solu-
tions   cosy x x  and ( ) siny x x of the differential equation y y   . 
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43. (a) We need only substitute  ( ) 1x t C kt   in both sides of the differential equation 
2x kx   for a routine verification. 

 (b) The zero-valued function ( ) 0x t   obviously satisfies the initial value problem 
2x kx  , (0) 0x  . 

44. (a) The figure shows typical graphs of solutions of the differential equation 21
2x x  . 

 (b) The figure shows typical graphs of solutions of the differential equation 21
2 .x x     

We see that—whereas the graphs with 1
2k   appear to “diverge to infinity”—each solu-

tion with 1
2k    appears to approach 0 as .t    Indeed, we see from the Problem 

43(a) solution  1
2( ) 1x t C t   that ( )x t   as 2t C .  However, with 1

2k    it is 

clear from the resulting solution  1
2( ) 1x t C t   that ( )x t  remains bounded on any 

bounded interval, but ( ) 0x t   as t  . 

  

45. Substitution of 1P   and 10P   into the differential equation 2P kP   gives 1
100 ,k   so 

Problem 43(a) yields a solution of the form  1
100( ) 1P t C t  .  The initial condition 

(0) 2P   now yields 1
2 ,C   so we get the solution 

1 100( ) 1 50
2 100

P t t t
 


. 

 We now find readily that 100P   when 49t   and that 1000P   when 49.9t  .  It ap-
pears that P  grows without bound (and thus “explodes”) as t approaches 50. 

 

0 1 2 3 4
0

1

2

3

4

5

t

x

Problem 44a

0 1 2 3 4
0

1

2

3

4

5

6

t

x

Problem 44b
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46. Substitution of 1v    and 5v   into the differential equation 2v kv   gives 1
25 ,k    so 

Problem 43(a) yields a solution of the form  ( ) 1 25v t C t  .  The initial condition 
(0) 10v   now yields 1

10 ,C   so we get the solution 

1 50( ) 1 5 2
10 25

v t t t
 


. 

 We now find readily that 1v   when 22.5t   and that 0.1v   when 247.5t  .  It ap-
pears that v  approaches 0 as t increases without bound.  Thus the boat gradually slows, 
but never comes to a “full stop” in a finite period of time. 

47. (a) (10) 10y   yields  10 1 10C  , so 101 10C  . 

 (b) There is no such value of C, but the constant function ( ) 0y x   satisfies the conditions 
2y y   and (0) 0y  . 

 (c) It is obvious visually (in Fig. 1.1.8 of the text) that one and only one solution curve 
passes through each point ( , )a b  of the xy-plane, so it follows that there exists a unique 
solution to the initial value problem 2y y  , ( )y a b . 

48. (b) Obviously the functions 4( )u x x   and 4( )v x x   both satisfy the differential equa-
tion 4 .xy y    But their derivatives 3( ) 4u x x    and 3( ) 4v x x    match at 0x  , where 
both are zero.  Hence the given piecewise-defined function  y x  is differentiable, and 

therefore satisfies the differential equation because  u x  and  v x  do so (for  0x   and 
0x  , respectively). 

 (c) If 0a   (for instance), then choose C  fixed so that 4C a b  .  Then the function 

 
4

4

if 0
if 0

C x x
y x

C x x




 
  

 

 satisfies the given differential equation for every real number value of C  
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SECTION 1.2 

INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS 

This section introduces general solutions and particular solutions in the very simplest situation 
— a differential equation of the form  y f x   — where only direct integration and evaluation 
of the constant of integration are involved.  Students should review carefully the elementary con-
cepts of velocity and acceleration, as well as the fps and mks unit systems. 

1. Integration of 2 1y x    yields   2( ) 2 1y x x dx x x C     .  Then substitution of  

0x  , 3y    gives 3 0 0 C C    , so   2 3y x x x   . 

2. Integration of  22y x    yields      2 31
32 2y x x dx x C     .  Then substitution 

of 2x  , 1y   gives 1 0 C C   , so    31
3 2 1y x x   . 

3. Integration of y x   yields   3/22
3y x x dx x C   .  Then substitution of 4x  , 

0y   gives 16
30 C  , so    3/22

3 8y x x  . 

4. Integration of 2y x   yields   2 1y x x dx x C    .  Then substitution of 1x  , 

5y   gives  5 1 C   , so   1 6y x x   . 

5. Integration of   1 22y x     yields     1 22 2 2y x x dx x C     .  Then substitu-

tion of  2x  , 1y    gives 1 2 2 C    , so   2 2 5y x x   . 

6. Integration of  1 22 9y x x    yields      1 2 3 22 21
39 9y x x x dx x C     .  Then 

substitution of 4x   , 0y   gives 31
30 (5) C  , so    3/221

3 9 125y x x     
. 

7. Integration of 2
10

1
y

x
 


 yields   1

2
10 10 tan

1
y x dx x C

x
  

 .  Then substitution of 

0x  , 0y   gives 0 10 0 C   , so   110 tany x x . 

8. Integration of cos 2y x   yields   1
2cos 2 sin 2y x x dx x C   .  Then substitution of  

0x  , 1y   gives 1 0 C  , so   1
2 sin 2 1y x x  . 
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9. Integration of
2

1
1

y
x

 


 yields 1

2

1( ) sin
1

y x dx x C
x

  
 .  Then substitution of 

0x  , 0y   gives 0 0 C  , so   1siny x x . 

10. Integration of xy xe   yields 

     1 1x u u xy x xe dx ue du u e x e C          , 

 using the substitution u x   together with Formula #46 inside the back cover of the 
textbook.  Then substituting 0x  , 1y   gives 1 1 ,C    so ( ) ( 1) 2.xy x x e     

11. If   50a t  , then   050 50 50 10v t dt t v t     .  Hence 

    2 2
050 10 25 10 25 10 20x t t dt t t x t t        . 

12. If   20a t   , then     020 20 20 15v t dt t v t        .  Hence 

    2 2
020 15 10 15 10 15 5x t t dt t t x t t           . 

13. If   3a t t , then   2 23 3
02 23 5v t t dt t v t     .  Hence 

   2 3 33 1 1
02 2 25 5 5x t t dt t t x t t       . 

14. If   2 1a t t  , then     2 2
02 1 7v t t dt t t v t t        .  Hence 

   2 3 31 1 1 1
03 2 3 27 7 7 4x t t t dt t t t x t t t           . 

15. If    24 3a t t  , then        2 3 34 4
3 34 3 3 3 37v t t dt t C t         (taking 

37C    so that  0 1v   ).  Hence 

       3 4 44 1 1
3 3 33 37 3 37 3 37 26x t t dt t t C t t           . 

16. If   1
4

a t
t




, then   1 2 4 2 4 5
4

v t dt t C t
t

      
  (taking 5C    so 

that  0 1v   ).  Hence 

       3/2 3/2 294 4
3 3 32 4 5 4 5 4 5x t t dt t t C t t            

 (taking 29 3C    so that  0 1x  ). 
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17. If     31a t t   , then        3 2 21 1 1
2 2 21 1 1v t t dt t C t             (taking 

1
2C   so that  0 0v  ).  Hence 

       2 1 11 1 1 1 1
2 2 2 2 21 1 1 1x t t dt t t C t t                 

 (taking 1
2C    so that  0 0x  ). 

18. If   50sin 5a t t , then   50sin 5 10cos5 10cos5v t t dt t C t       (taking 0C   so 

that  0 10v   ).  Hence 

  10cos5 2sin 5 2sin 5 10x t t dt t C t         

 (taking 10C    so that  0 8x  ). 

Students should understand that Problems 19-22, though different at first glance, are solved in 
the same way as the preceding ones, that is, by means of the fundamental theorem of calculus in 
the form      

0
0

t

t
x t x t v s ds    cited in the text.  Actually in these problems 

   
0

,
t

x t v s ds   since 0t  and  0x t  are each given to be zero. 

19. The graph of  v t  shows that   5 if 0 5
10 if 5 10

t
v t

t t
 

    
, so that 

  1
21

22

5 if 0 5
10 if 5 10

t C t
x t

t t C t
  

     
.  Now 1 0C   because  0 0x  , and continuity of 

 x t  requires that   5x t t  and   21
2210x t t t C    agree when 5t  .  This implies 

that 25
2 2C   , leading to the graph of  x t  shown. 

 Alternate solution for Problem 19 (and similarly for 20-22):  The graph of  v t  

shows that   5 if 0 5
10 if 5 10

t
v t

t t
 

    
.  Thus for 0 5t  ,    

0

t
x t v s ds   is given by 

0
5 5

t
ds t , whereas for 5 10t   we have 

    5

0 0 5

2 2 2

5

5 10

75 2525 10 25 10 10 .
2 2 2 2 2

t t

s t

s

x t v s ds ds s ds

s t ts t t




   

 
          
 
 

  
 

 The graph of  x t  is shown. 
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20. The graph of  v t  shows that   if 0 5
5 if 5 10
t t

v t
t

 
   

, so that 

 
21

12

2

if 0 5
5 if 5 10

t C t
x t

t C t
   

    
.  Now 1 0C   because  0 0x  , and continuity of  x t  

requires that   21
2x t t  and   25x t t C   agree when  5t  .  This implies that 

25
2 2C   , leading to the graph of  x t  shown. 

  

21. The graph of  v t  shows that   if 0 5
10 if 5 10
t t

v t
t t

 
    

, so that 

 
21

12
21

22

if 0 5
10 if 5 10

t C t
x t

t t C t
   

     
.  Now 1 0C   because  0 0x  , and continuity of 

 x t  requires that   21
2x t t  and   21

2210x t t t C    agree when 5t  .  This implies 

that 2 25C   , leading to the graph of  x t  shown. 

22. For 0 3t  , 5
3( )v t t , so   25

16x t t C  .  Now 1 0C   because  0 0x  , so 

  25
6x t t  on this first interval, and its right-endpoint value is   15

23x  . 

 For 3 7t  ,   5v t  , so   25x t t C    Now 15
2(3)x   implies that 15

2 2C   , so 

  15
25x t t   on this second interval, and its right-endpoint value is   55

27x  . 

 For 7 10t  ,  5
35 7v t    , so   5 50

3 3v t t   .  Hence   25 50
36 3x t t t C    , and 

55
2(7)x   implies that 290

3 6C   .  Finally,   21
6 ( 5 100 290)x t t t     on this third inter-

val, leading to the graph of  x t  shown. 

0 2 4 6 8 10
0

10

20

30

40

t

x (5, 25)

Problem 19

0 2 4 6 8 10
0

10

20

30

40

t

x

(5, 12.5)

Problem 20
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23.   9.8 49v t t   , so the ball reaches its maximum height ( 0v  ) after 5t   seconds.  Its 

maximum height then is      25 4.9 5 49 5 122.5 metersy     . 

24. 32v t   and 216 400y t   , so the ball hits the ground ( 0y  ) when 5 sect  , and 
then  32 5 160 ft/secv     . 

25. 210 m/sa    and 0 100 km/h 27.78 m/sv   , so 10 27.78v t   , and hence 
  25 27.78x t t t   .  The car stops when 0v  , that is 2.78 st  , and thus the distance 

traveled before stopping is  2.78 38.59 metersx  . 

26. 9.8 100v t    and 24.9 100 20y t t    . 

 (a) 0v   when 100 9.8 st  , so the projectile's maximum height is 

     2100 9.8 4.9 100 9.8 100 100 9.8 20 530y       meters. 

 (b) It passes the top of the building when    24.9 100 20 20y t t t     , and hence after 
100 4.9 20.41t    seconds. 

 (c) The roots of the quadratic equation   24.9 100 20 0y t t t      are 0.20, 20.61t   .  
Hence the projectile is in the air 20.61 seconds. 

27. 29.8 m/sa   , so 9.8 10v t    and 2
04.9 10y t t y    .  The ball hits the ground 

when 0y   and 9.8 10 60 m/sv t     , so 5.10 st  .  Hence the height of the building 
is 

   2
0 4.9 5.10 10 5.10 178.57 my    . 

0 2 4 6 8 10
0

10

20

30

40

t

x

(5, 12.5)

Problem 21

0 2 4 6 8 10
0

10

20

30

40

t

x

(3, 7.5)

(7, 27.5)

Problem 22
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28. 32 40v t    and 216 40 555y t t    .  The ball hits the ground ( 0y  ) when 
4.77 st  , with velocity  4.77 192.64 ft/sv v   , an impact speed of about 131 mph. 

29. Integration of 20.12 0.6dv dt t t   with  0 0v   gives   3 20.04 0.3v t t t  .  Hence 

 10 70 ft/sv  .  Then integration of 3 20.04 0.3dx dt t t   with  0 0x   gives 

  4 30.01 0.1x t t t  , so  10 200 ftx  .  Thus after 10 seconds the car has gone 200 ft 
and is traveling at 70 ft/s. 

30. Taking 0 0x   and 0 60 mph 88 ft/sv   , we get 88v at   , and 0v   yields 88t a .  
Substituting this value of t, as well as 176 ftx  , into 2 2 88x at t    leads to 

222 ft/sa  .  Hence the car skids for 88 22 4st   . 

31. If 220 m/sa    and 0 0x  , then the car's velocity and position at time t are given by 

020v t v    and 2
010x t v t   .  It stops when 0v   (so 0 20v t ), and hence when 

 2 275 10 20 10x t t t t     .  Thus 7.5 st  , so 

0 20 7.5 54.77 m/s 197 km/hrv    . 

32. Starting with 0 0x   and 4
0 50 km/h 5 10 m/hv    , we find by the method of Problem 

30 that the car's deceleration is   7 225 3 10 m/ha   .  Then, starting with 0 0x   and 
5

0 100 km/h 10 m/hv   , we substitute 0t v a  into 21
02x at v t    and find that 

60 mx   when 0v  .  Thus doubling the initial velocity quadruples the distance the car 
skids. 

33. If 0 0v   and 0 20y  , then v at   and 21
2 20y at   .  Substitution of 2t  , 0y   

yields 210ft/sa  .  If 0 0v   and 0 200y  , then 10v t   and 25 200y t   .  Hence 
0y   when 40 2 10 st    and 20 10 63.25 ft/sv     . 

34. On Earth: 032v t v   , so 0 32t v  at maximum height (when 0v  ).  Substituting 
this value of t and 144y   in 2

016y t v t   , we solve for 0 96ft/sv   as the initial 
speed with which the person can throw a ball straight upward. 

 On Planet Gzyx: From Problem 33, the surface gravitational acceleration on planet 
Gzyx is 210ft/sa  , so 10 96v t    and 25 96y t t   .  Therefore 0v   yields 

9.6st   and so  max 9.6 460.8fty y   is the height a ball will reach if its initial velocity 
is 96 ft/s . 
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35. If 0 0v   and 0y h , then the stone’s velocity and height are given by v gt   and 
20.5y gt h   , respectively.  Hence 0y   when 2t h g , so 

2 2v g h g gh    . 

36. The method of solution is precisely the same as that in Problem 30.  We find first that, on 
Earth, the woman must jump straight upward with initial velocity 0 12 ft/sv   to reach a 
maximum height of 2.25 ft.  Then we find that, on the Moon, this initial velocity yields a 
maximum height of about 13.58 ft. 

37. We use units of miles and hours.  If 0 0 0x v  , then the car’s velocity and position after 
t hours are given by v at  and 21

2x at , respectively.  Since 60v   when 5 6t  , the 
velocity equation yields .  Hence the distance traveled by 12:50 pm is 

 21
2 72 5 6 25 milesx     . 

38. Again we have v at  and 21
2x at .  But now 60v   when 35x  .  Substitution of 

60a t  (from the velocity equation) into the position equation yields 
  21

235 60 30t t t  , whence 7 6ht  , that is, 1:10 pm. 

39. Integration of   29 1 4Sy v x    yields   33 3 4Sy v x x C   , and the initial condi-

tion  1 2 0y    gives 3 SC v .  Hence the swimmers trajectory is 

    33 3 4 1Sy x v x x   .  Substitution of  1 2 1y   now gives 6mphSv  . 

40. Integration of  43 1 16y x    yields   53 48 5y x x C   , and the initial condition 

 1 2 0y    gives 6 5C  .  Hence the swimmers trajectory is 

    51 5 15 48 6y x x x   , 

 and so his downstream drift is  1 2 2.4milesy  . 

41. The bomb equations are 32a   , 32v t  , and 216 800Bs s t     with 0t   at the 
instant the bomb is dropped.  The projectile is fired at time 2,t   so its corresponding 
equations are 32a   ,   032 2v t v    , and    2

016 2 2Ps s t v t       for 2t   

(the arbitrary constant vanishing because  2 0Ps  ).  Now the condition 

  216 800 400Bs t t     gives 5t  , and then the further requirement that  5 400Ps   
yields 0 544 / 3 181.33 ft/sv    for the projectile’s needed initial velocity. 
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