
Data Structures and
Algorithms in Java™

Sixth Edition

Michael T. Goodrich
Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

Michael H. Goldwasser
Department of Mathematics and Computer Science

Saint Louis University

Instructor’s Solutions Manual

Data Structures and Algorithms in Java 6th Edition Goodrich Solutions Manual
Full Download: http://alibabadownload.com/product/data-structures-and-algorithms-in-java-6th-edition-goodrich-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/data-structures-and-algorithms-in-java-6th-edition-goodrich-solutions-manual/

Chapter

2 Object-Oriented Design

Hints and Solutions

Reinforcement

R-2.1) Hint Think of applications that could cause a death if a computer

failed.

R-2.1) Solution Air traffic control software, computer integrated surgery

applications, and flight navigation systems.

R-2.2) Hint Consider an application that is expected to change over time,

because of changing economics, politics, or technology.

R-2.3) Hint Consider the File or Window menus.

R-2.4) Hint You can make the change and test the code.

R-2.4) Solution The problem is that when a $5 penalty is assessed, pre-

sumably because of an attempt to go over the credit limit, the call charge(5)
recursively invokes the PredatoryCreditCard.charge method; since that

fee could again be an attempt at violating the credit limit, it too may fail,

leading to an infinite recursion.

R-2.5) Hint You can make the change and test the code.

R-2.5) Solution The goal is to assess a $5 charge as a penalty, yet that

charge may be refused by the call to super.charge(5) if the user is already

at or near the credit limit.

R-2.6) Hint Your program should output 42, which Douglas Adams con-

siders to be the answer to the ultimate question of life, universe, and ev-

erything.

R-2.6) Solution

public static void main(String[] args) {
FibonacciProgression fp = new FibonacciProgression(2,2);
for (int j=0; j < 7; j++)
fp.nextValue(); // ignore the first 7 values

System.out.println(fp.nextValue());
}

9

R-2.7) Hint A long value can be no larger than 263 −1.

R-2.7) Solution 256 calls to nextValue will end on the value 263. Since

the maximum positive value of a long is 263−1, 256−1 calls to nextValue

can be made before a long-integer overflow.

R-2.8) Hint Code up an example and see what the compiler says.

R-2.9) Hint Think about what happens when a new instance of class Z is

created and when methods of class Z are called.

R-2.9) Solution There are two immediate inefficiencies: (1) the chaining

of constructors implies a potentially long set of method calls any time

an instance of a deep class, Z, is created, and (2) the dynamic dispatch

algorithm for determining which version of a certain method to use could

end up looking through a large number of classes before it finds the right

one to use.

R-2.10) Hint Think about code reuse.

R-2.10) Solution Whenever a large number of classes all extend from a

single class, it is likely that you are missing out on potential code reuse

from similar methods in different classes. There is likely some factoring of

methods into common classes that could be done in this case, which would

save programmer time and maintenance time, by eliminating duplicated

code.

R-2.11) Hint Review the section about casting in an inheritance hierarchy,

and recall that an object behaves according to what it actually is, not what

it is called.

R-2.11) Solution

Read it.

Ship it.

Buy it.

Read it.

Box it.

Read it.

R-2.12) Hint Review the definition of inheritance diagram, and begin your

drawing with Object as the highest box.

R-2.13) Hint Casting in an inheritance relationship can only move up or

down the hierarchy.

R-2.13) Solution No, d is referring to a Equestrian object that is not not

also of type Racer. Casting in an inheritance relationship can only move

up or down the hierarchy, not “sideways.”

R-2.14) Hint You don’t need to declare the array, just show how to use an

exception try-catch block to reference it.

10 Chapter 2. Object-Oriented Design

R-2.14) Solution

try {
System.out.println(array[i]);

}
catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index " + e.getMessage()

+ " out of bounds.");
}

R-2.15) Hint Reread the section on throwing exceptions.

R-2.15) Solution

public void makePayment(double amount) {
if (amount < 0)
throw new IllegalArgumentException("Amount must be nonnegative");

balance −= amount;
}

Creativity

C-2.16) Hint Create a separate class for each major behavior.

C-2.17) Hint Try to use variables and conditions that are impossible, but

the dependence on their values requires logical reasoning that the compiler

writers did not build into their compiler.

C-2.18) Hint You will need to maintain some additional state information.

C-2.18) Solution

11

private int chargesThisMonth = 0; // new instance variable

public void processMonth() {
chargesThisMonth = 0; // reset
...

}

public boolean charge(double price) {
boolean isSuccess = super.charge(price); // call inherited method
if (!isSuccess)
balance += 5; // assess a $5 penalty

chargesThisMonth++;
if (chargesThisMonth > 10)
balance += 1; // assess a $1 fee

return isSuccess;
}

C-2.19) Hint Keep track of how much has been paid during the current

month.

C-2.20) Hint Don’t forget you can use getBalance() as well.

C-2.20) Solution

public void processMonth() {
if (getBalance() > 0) {
double monthlyFactor = Math.pow(1 + apr, 1.0/12);
setBalance(monthlyFactor ∗ getBalance());

}
}

C-2.21) Hint You need to use the super keyword in B and C.

C-2.21) Solution

12 Chapter 2. Object-Oriented Design

public class A {
int x = 1;
public void setIt(int y) { x = y; }
public int getIt() { return x; }

}

public class B extends A {
int x = 2;
public void setIt (int y) { x = y; }
public int getIt() { return x; }
public void superSetIt (int y) { super.x = y; }
public int superGetIt() { return super.x; }

}

public class C extends B {
int x = 3;
public void setIt (int y) { x = y; }
public int getIt() { return x; }
public void superSetIt (int y) { super.x = y; }
public int superGetIt() { return super.x; }
public void superDuperSetIt(int y) { super.superSetIt(y); }
public int superDuperGetIt() { return super.superGetIt(); }
public static void main(String[] args) {
C c = new C();
System.out.println("C's is " + c.getIt());
System.out.println("B's is " + c.superGetIt());
System.out.println("A's is " + c.superDuperGetIt());
c.superDuperSetIt(4);
System.out.println("C's is " + c.getIt());
System.out.println("B's is " + c.superGetIt());
System.out.println("A's is " + c.superDuperGetIt());

}
}

C-2.22) Hint Recall the rule about inheritance in Java.

C-2.22) Solution Inheritance in Java allows specialized classes to be built

from generic classes. Because of this progression from generic to special-

ized in the class hierarchy, there can never be a circular pattern of inheri-

tance. In other words, there cannot be a superclass A and derived classes

B and C such that B extends A, then C extends B, and finally A extends

C. Such a cycle is impossible because A is the generic superclass from

which C is eventually extended, thus it is impossible from A to extend C,

13

for this would mean A is extending itself. Therefore, there can never occur

a circular relationship which would cause an infinite loop in the dynamic

dispatch.

C-2.23) Hint Can you determine a missing entry of a Fibonacci sequence

if you are given the number immediate before it and after it?

C-2.23) Solution

protected void advance() {
current += prev;
prev = current − prev;

}

C-2.24) Hint Use the code from the website as a starting point.

C-2.24) Solution

public class AbsoluteProgression extends Progression {

protected long prev;

public AbsoluteProgression() { this(2,200); }

public AbsoluteProgression(long first, long second) {
super(first);
prev = first−second; // as second = Math.abs(first-prev)

}

protected void advance() {
long next = Math.abs(current−prev);
prev = current;
current = next;

}

}

C-2.25) Hint Replace each use of type long with the generic parameter

type T.

C-2.26) Hint Use the sqrt method in the java.lang.Math class.

C-2.27) Hint Go to the java.com website to review the BigInteger class.

C-2.28) Hint Use three different classes, for each of the actors, and pro-

vide methods that perform their various tasks, as well as a simulator en-

gine that performs the periodic operations.

C-2.29) Hint If you have not had calculus, you can look up the formula

for the first derivative of a polynomial on the Internet.

14 Chapter 2. Object-Oriented Design

Projects

P-2.30) Hint You don’t have to use GUI constructs; simple text output is

sufficient, say, using X’s to indicate the values to print for each bar (and

printing them sideways).

P-2.31) Hint When a fish dies, set its array cell back to null.

P-2.32) Hint Use random number generation for the strength field.

P-2.33) Hint Create a separate class for each major behavior. Find the

available books on the Internet, but be sure they have expired copyrights.

P-2.34) Hint Lookup the formulas for area and perimeter on the Internet.

P-2.35) Hint You need some way of telling when you have seen the same

word you have before. Feel free to just search through your array of words

to do this here.

P-2.36) Hint While not always optimal, you can design your algorithm so

that it always returns the largest coin possible until the value of the change

is met.

Data Structures and Algorithms in Java 6th Edition Goodrich Solutions Manual
Full Download: http://alibabadownload.com/product/data-structures-and-algorithms-in-java-6th-edition-goodrich-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/data-structures-and-algorithms-in-java-6th-edition-goodrich-solutions-manual/

