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Solutions to Problems and Exercises in Chapter 1

1. If the array A contains no negative integers, A [ M a x I n d e x ]  will
eventually be evaluated in the while-condition of the while-loop. If
array index bounds checking is turned on, the erroneous array
access A[MaxIndex], in which MaxIndex is out of bounds of the index
range 0:MaxIndex–1 of A, will be detected. The error can be fixed by
replacing line 5 with

5 | while ( (i < MaxIndex) && (A[i] >= 0) ) {

This works because in the “short-circuit and expression” A && B, the
subexpression A is evaluated before evaluating the subexpression
B , and if A ’s value is false (i.e., 0), then the value of the entire
expression A && B is taken to be false without evaluating B. Hence,
when i’s value is increased so that i == MaxIndex, the subexpression (i

< MaxIndex) evaluates to false and the erroneous out-of-range
access of A[MaxIndex] in (A[i] >= 0) is never performed.

2. The statement of the problem on page 16 states that, “In order to
avoid doing useless work, the solution should exit as soon as the
first negative integer is discovered.” The proposed solution does
not exit as soon as the first negative integer is discovered.
Rather, it examines all array items in descending order and saves
the index of the most recent negative integer encountered in
descending order. The conditions of the problem statement are
therefore not satisfied.

3. Hardware tends to come and go rather rapidly. Vendors release
new models of computers, usually with increased performance or
lower cost, at frequent intervals in order to keep up with the
competition.  Programming languages and software tend to ride
out the rapid shifts in underlying computers by being rehosted on
new platforms — although software versions go through rapid
evolution, too, in response to competitive market forces. The
fundamental laws of computing seem to have the greatest
longevity. For example, the discovery of the n  log n  barrier for
comparison-based sorting has endured since its discovery.
Various human-computer interfaces undergo evolution as the
decades pass. The early paper-tape and punched card inputs and
electric typewriter or teletype outputs gave way to cathode ray
tube screens with lines of characters, and these, in turn, gave way
to windows, mice, and the “desktop metaphor.” If versatile,
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efficient voice input were to evolve, it might change the nature of
the human-computer interface even further.
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Answers to Review Questions 2.3
1. When we dereference a pointer, we follow the pointer to the unit

of storage for which the pointer value is the address (in some
addressable storage medium in which units of storage have unique
addresses that identify them). If A  is a pointer variable in C, the
notation *A dereferences the pointer value in A.

2. We can say that: B  l inks to A , or that A  is B ’s referent, or that B

references A.

3. typedef  int  *IntegerPointer;

4. Execute the assignment A = (T*) malloc(sizeof(T)), after which A contains
a pointer to a new block of storage of type T.

5. *A  = 19 assigns 19 to be the value of A ’s referent. The expression
2*(*A) has a value equal to twice the value of A’s referent.

6. It is a type mismatch, since A must take pointer values, and since 5
is not a pointer value, but rather is an integer value.

7. Two different expressions that reference the same unit of storage
are called aliases.

8. You execute the function call free(P), where P contains a pointer to
the storage to be recycled.

9. Dynamically allocated storage becomes inaccessible when there
are no pointers to it that can be reached either directly as values
of pointer variables, or indirectly by following links in data
structures along a path that can reach it.

10. Garbage is inaccessible dynamically allocated storage that is no
longer needed during the execution of a program.

11. A dangling pointer is a pointer to a unit of storage that has been
returned to the pool of unallocated dynamic storage.

12. The scope of a variable in C relates to the lifetime of its existence
and the places it is visible. During the time a variable exists and is
visible (by virtue of its name not being hidden by another variable
of the same name that has a more local scope), the value stored in
the storage location associated with the variable can be both
assigned and accessed, using the variable’s name. The scope of a
unit of dynamic storage allocated in C can be thought of as global
to the scope of named variables in a C program.  This means that
the lifetime of a unit of dynamically allocated storage lasts from
the moment the unit is allocated (using malloc) until the moment the
unit’s storage is reclaimed (using free(P)). So long as a pointer to a
unit of storage exists, and so long as that unit of storage has not
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been reclaimed, the value in the unit can be accessed and a new
value can be assigned to it.

13. Since units of dynamically allocated storage do not have names in
a C program, they are sometimes called anonymous variables,
meaning variables with no names. Names for variables are created
in the text of a C program, but, since dynamically allocated
storage is created at the time a program is executed, rather than
when the program is written, there is no way to give textual names
to units of dynamically allocated storage. However, the pointer to
a unit of dynamically allocated storage acts in place of the name of
an ordinary variable, since, using the pointer, the value stored in
the storage unit can be both assigned and accessed.

Solutions to  Exercises 2.3
1. It prints  7.

2. It prints  5.

3. Answer depends on the behavior of your C system and is
determined by experiment.

4. Answer depends on the behavior of your C system and is
determined by experiment.

Answers to Review Questions 2.4
1. The null address is a special address that is not the address of any

node, and which, by convention, is used to indicate the end of
linked lists.

2. By a dot ( • ) or by a dot connected to an arrow pointing to the
value NULL.

3. The value NULL represents the null address in C.

4. By a solid dot ( • ) in a link field.

5. An empty linked list is a list L having no nodes on it. By convention,
it is indicated by the value NULL.

6. Explicit pointer variable notation consists of a box containing the
tail of an arrow representing the pointer value, where the box is
labeled on the left with the name of the pointer variable followed
by a colon. Implicit pointer variable notation consists of an oval
containing the pointer variable name in which an arrow connects
the boundary of the oval to the referent of the pointer value. The
two notations are equivalent. The implicit pointer variable
notation is used in most diagrams in the book.
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7. By a question mark (?), or, in the case of a pointer to an unknown
location, by an arrow pointing to a circle containing a question
mark.

Solutions  to  Exercises 2.4
1. (a) NULL, (b) GCM, (c) MEX, (d) NULL.

2. (a) L–>Link, (b) L–>Link–>Link, (c) L, (d) *L.

3. N–>Link = L–>Link–>Link;  L–>Link–>Link = N;

4.

L MIA MEX

Airport AirportLink LinkAirport Link

ORD

Airport Link

GCMN NULL

5. strcpy(L–>Link–>Airport, "JFK");

6. N–>Link = L–>Link–>Link; free(L–>Link);  L–>Link = N;

Answers to Review Questions 2.5
1. In top-down programming using stepwise refinement, one starts

with an outline of a program which leaves out specific details, and
one progressively fills in more details by a process known as
stepwise refinement. In stepwise refinement, at each step more
specific detail is filled in, until finally, a specific executable
program has been created, written in an actual programming
language.

2. We can define a struct for a NodeType that is tagged with the name
NodeTag and we can use this tag to define a Link member of the
struct whose type is a pointer to the NodeType struct being defined,
as shown in the type definition struct given at the beginning of
Exercises 2.5 on page 53.

3. The value NULL belongs to every pointer type in C.

Solutions  to Exercises 2.5
1.
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void InsertNewFirstNode(AirportCode A, NodeType **L)
{ 

NodeType *N;

/* Allocate a new node and let the pointer variable N point to it */
N = (NodeType *) malloc(sizeof(NodeType));

/* Set the Airport field of N’s referent to A */
strcpy(N–> Airport, A);

/* Change the Link field of N’s referent to point to the first node of list L */
N–> Link = *L ;

/* Change L to point to the node that N points to */
*L = N;

}

2.
void  DeleteFirst(NodeType **L)
{

NodeType *N;

if (*L != NULL) {
N =  *L;
*L = (*L)–>Link;
free(N);

}
}

3.
void  InsertBefore(NodeType *N, NodeType *M)
{

AirportCode A;

/* insert node M after node N on list L */
M–>Link = N–>Link;
N–>Link = M;

/* swap airport codes in N and M */
strcpy(A, N–>Airport);
strcpy(N–>Airport, M–>Airport);
strcpy(M–>Airport, A);

}

4.
NodeType *Copy(NodeType *L)
{

NodeType *N, *M, *L2;

if (L == NULL) {

return NULL;

} else {

/* initialization and copying of first node */

M = (NodeType *) malloc(sizeof(NodeType));
L2 = M;
N = L;
strcpy(M–>Airport, N–>Airport);

/* L2 points to the copy of the list L being constructed */
/* N is a pointer that steps along the nodes of L to copy */
/* M is a pointer that steps along the nodes of L2 that are copies */
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/* of the corresponding nodes in L that N points to */

while (N–>Link != NULL) {
M–>Link = (NodeType *) malloc(sizeof(NodeType));
N = N–>Link; /* create new last node on copy list */
M = M–>Link; /* advance pointers on both lists */
strcpy(M–>Airport, N–>Airport); /* copy airport code */

}

/* mark last node of copy as the end of the list L2 */
M–>Link = NULL;

/* return pointer to first node of L2 as the function result */
return L2;

}
}

5.
void Reverse(NodeType **L)
{

NodeType *R, *N;

R = NULL; /* initialize R, the reversed list, to be the empty list */

while (*L != NULL) {
N =  *L; /* let N point to L’s first node */
*L = (*L)–>Link; /* now, let L point to the remainder of L */
N–>Link = R; /* link N to the rest of R */
R = N; /* and make R point to its new first node N */

}

*L = R; /* finally, replace L by a pointer to the reversed list R */

}

6. If L is the null list (meaning L = NULL), then, when the condition in
the while-loop is evaluated, the attempt to find the value of
(strcmp(L–>Airport, A) != 0) will try to dereference the null pointer, NULL.
This error can be fixed by reversing the order of the operands of
the short-circuit & &  operator in the while-condition on line 4
giving: while ( (L != NULL) && (strcmp(L–>Airport, A) != 0) ) {

7.
NodeType *Concat(NodeType *L1, NodeType *L2)
{

NodeType *N;

if  (L1 == NULL) {
return L2;

} else {
N = L1; /* let N point to the first node of L1 */
while (N–>Link != NULL) N = N–>Link; /* find the last node of L1 */
N–>Link = L2; /* set the link of the last node of L1 to L2 */
return L1; /* return the pointer to the concatenated lists */

}

}



Table of Contents — continued

8. If L points to a list consisting of just one node, then the function
call L a s t N o d e ( L )  results in executing a statement that tries to
dereference N U L L . This is another example of a bug found by
checking a boundary case.

9. Suppose L is a list containing only one node. That is, suppose L

contains a pointer to a node whose link is NULL. Then the special
case on lines 9:12 of Program 2.15 applies, and we free the node *L

points to, after which we need to store a NULL pointer in the
variable L external to the function call. To do this, we need to use
L’s external address, &L, as an actual parameter when the function
is called and we need to use *L = NULL inside the function in order to
store NULL in the location to which the actual parameter &L points.
If the function prototype had been void DeleteLastNode(NodeType *L),
there would be no way to set the contents of the external variable
L to NULL  in the case of a list consisting of only one node to be
deleted, since the actual parameter passed for the value of L at
the time of the function call would be the address of the first node
on the list, leaving no way to change the contents of the external
variable L after the deletion from a pointer to the first node of the
list to a NULL pointer.

Answers to Review Questions 2.6
1. Nodes having two separate pointer fields can be linked into two-

way lists, binary trees, and two-way rings.

2. In symmetrically linked lists, nodes point both to their
predecessors and successors in the list — except for the first
node in the list whose predecessor is NULL  and the last node of the
list whose successor is NULL.

x2 SANORDBRU

Airport
Right
Link

Left
LinkAirport

Right
Link

Left
Link Airport

Right
Link

Left
Link

Solution to Exercise 2.6
1.

void Delete(NodeType *L)
{

/* Make L’s predecessor point to its successor */
if (L–>LeftLink != NULL) {

L–>LeftLink–>RightLink= L–>RightLink;
}
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/* Make L’s successor point to its predecessor */
if (L–>RightLink != NULL) {

L–>RightLink–>LeftLink= L–>LeftLink;
}

/* Dispose of the storage for node L */
free(L);

}
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Answers to Review Questions 3.2
1. The base case occurs when a recursive program gives a direct

solution to a subproblem without using any recursive calls to
compute it.

2. Four decomposition methods: (i) First & Rest, where First = m and
Rest = m +1:n; (ii) Last & All but Last, where Last = n and All but
Last = m :n–1, (iii) Split in Halves, where LeftHalf = m :midd le ,
RightHalf = middle+1:n, and middle = (m + n) / 2; and (iv) Edges &
Center, where Edges = (m & n) and Center = m+1:n–1.

3. A call tree is a tree with a recursive call at its root, in which the
descendants of each node show the recursive calls made by the
call at that node. Calls resulting in base cases have no
descendants, and are the so-called leaves of the call tree.

4. A trace of a recursive function call is a sequence of successive
lines on which the calling expressions for successive recursive
calls are given amidst the values waiting to be combined with the
results returned by those recursive calls. When the base cases are
reached and values are returned directly from them, the trace
shows how the values combine to produce the value returned by
the original function call.

5. The number of different combinations of n things taken k at a time

is given by the formula: 
 



 

  n  

  k         =        
n!

k!(n–k)!  .

6. Decompose a non-empty list into its Head (which is its first node)
and its Tail (consisting of the rest of the nodes on the list after
the first one).

Solutions to Selected Exercises in Exercises 3.2
1.

double Power(double x, int n)
{

if   (n == 0)   {
return 1.0; /* base case, x^0 == 1.0 */

} else {
return x * Power(x, n – 1); /* recursion step */

}
}

2.
double Power(double x, int n)
{

double p;

if   (n == 0)   {

return 1.0; /* base case, x**0 = 1.0 */
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} else {

p = Power(x, n / 2); /* let p == x to the half(n) power */

if  ( (n % 2) == 0 ) {
return p * p; /* if n was even, return Square(p) */

} else {
return x * p * p; /* if n was odd, return x*Square(p) */

}

}

}

3.
int Mult(int m, int n)
{

if (m == 1) {
return n;

} else {
return n + Mult(m – 1, n);

}
}

4. Recursive Euclid’s Algorithm:

int  gcd(int m, int n)
{

if   (n == 0) {
return m; /* base case, if remainder is 0, then result is m */

} else {
return gcd(n, m % n) ; /* recursion step */

}
}

5. First, to prove that gcd(m ,n) terminates, we know that when m  is
divided by the divisor n to obtain a quotient q and a remainder r =
m %  n , the quantities obtained obey the relation: m  = q *n  + r,
where 0 ≤ r  < n .  So, the remainder r is either 0 or a positive
integer less than the divisor n . Thus, there can only be a finite
number (less than n) of successive non-zero remainders, r, which
decrease by at least 1 before a zero remainder is produced. Once a
zero remainder is obtained, the base case of the recursion (on line
4 of gcd(m ,n)) is reached, and the function call terminates.  To
prove that gcd(m,n) returns the greatest common divisor, we note
that on successive calls,  if n  = 0, then gcd(m ,n ) = m , and
otherwise, gcd(m,n) = gcd(n,r).  In the latter case, r is related to m
and n by the equation r = m – q*n, so any common divisor of the
pair (m,n) is also a common divisor of the pair (n,r) — including the
greatest common divisor. Consequently, the gcd of successive
remainder pairs is preserved. Finally, when n = 0,  gcd(m,n) = m, so
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m  is the last non-zero remainder in the sequence of remainder
pairs, all of which were divisible by the gcd. This implies that m
itself is the gcd.

6.
int Product(int m, int n)
{

if   (m < n) {
return m * Product(m+1,n);

} else {
return n;

}
}

7. Despite what some conceive to be the elegance and simplicity of
the R e v e r s e  function given in the solution below, the overall
solution is a poor one on two counts: (1) The overall running time is
quadratic instead of linear because of repeated scanning and
character copying of the successively smaller tails that are
reversed, and (2) The scratch storage used to accommodate
concatentations and tails is taken from the dynamic storage pool
using malloc, and is never freed after use.

/****
*
*  Solution to Exercise 3.2.7 in Chapter 3, page 81.
*
****/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *EmptyString = "";

/* ------------------------------------------------------------------------------ */

int Empty(char *S)
{

return (S[0] == '\0');
}

/* -------------------------------------------------------------- */

char *Head(char *S)
{

char *t;

t = (char *) malloc(2*sizeof(char));
t[0] = S[0];
t[1] = '\0';

return t;
}

/* -------------------------------------------------------------- */
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char *Tail(char *S)
{

char *t, *temp;
int n;

n = strlen(S);

if (n <= 1) {
return EmptyString;

}else {
t = (char *) malloc(n*sizeof(char));
temp = t;
S++;
while ((*t++ = *S++) != '\0')

;
}

return temp;
}

/* -------------------------------------------------------------- */

char *Concat(char *S, char *T)    /* see Program 8.17 on page 315 */
{

char *P;
char *temp;

P = (char *) malloc((1+strlen(S)+strlen(T))*sizeof(char));     

temp = P;

while ((*P++ = *S++) != '\0')
;

P--;

while ((*P++ = *T++) != '\0')
;

return temp;
}

/* -------------------------------------------------------------- */

char *Reverse(char *S) /* to Reverse a String S */
{

char *temp;

if (Empty(S)) { /* the empty string is returned */
return EmptyString; /* for the base case */

} else  {
return Concat(Reverse(Tail(S)), Head(S));

}
}

/* ------------------------------------------------------------------------------ */

int main(void)
{

char *S = "abcdefg", *S1;
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printf("the string S == %s\n",S);
S1 = Reverse(S);
printf("the reverse of S == %s\n",S1);

}

/* ------------------------------------------------------------------------------ */

8. The answer to exercise 8 is not given.

9.
int Length(NodeType *L) /* to compute the number of  */
{ /* nodes in a linked list L */

if (L == NULL) {
return 0; /* since the empty list has no nodes in it */

} else {
return 1 + Length(L–>Link); /* length = 1 + length of L’s tail */

}
}

10.
int Min2(int A[ ], int m, int n) /* first define an auxiliary function Min2 */
{

int MinOfRest;

if (m == n) {
return A[m];

} else {
MinOfRest = Min2(A,m+1,n);
if  (A[m] < MinOfRest) {

return A[m];
} else {

return MinOfRest;
}

}
}

int  Min(int A[ ]) /* to find the smallest integer in an integer array A[0:n–1] */
{

return Min2(A,0,n–1);
}

11.
int Ack(int m, int n)                     /* assume m ≥ 0 and n ≥ 0 */
{

if (m == 0) {
return (n+1);

} else if (n == 0) {
return Ack(m–1,1);

} else {
return Ack(m–1,Ack(m,n–1));

}
}

12. The answer to exercise 12 depends on the behavior of your C
system.
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13. The procedure, P(n), writes the digits of the non-negative integer
n.

14. The procedure, R(n), writes the digits of the  integer n in reverse
order.

15. Using the auxiliary function NewtonSqrt(x,epsilon,a), call Sqrt(x,epsilon) in
what follows (making sure to #include <math.h> beforehand):

double NewtonSqrt(double x, double epsilon, double a)
{

if (fabs(a*a – x) <= epsilon) {
return a;

} else {
return NewtonSqrt(x, epsilon, (a + x/a)/2.0);

}
}

double Sqrt(double x, double epsilon)
{

return NewtonSqrt(x,epsilon,x/2.0);
}

16.
int C(int n, int k)    /* where n and k are non-negative integers */
{

if ((k == 0) | | (n == k)) {
return 1;

}else {
return C(n–1,k) + C(n–1,k–1);

}
}

17. The answer to exercise 17 is not given.

Answers to Review Questions 3.3
1. An infinite regress occurs when a recursive program calls itself

endlessly.

2. Two programming errors that can cause infinite regresses are: (1)
a recursive program with no base case, or (2) a recursive program
with a base case that never gets called.

3. An infinite regress causes an unending sequence of recursive calls.
To evaluate each such call, the C run-time system allocates a new
call frame which it allocates in a run-time call-frame storage
region. Thus, the call-frame region will become exhausted when
the run-time system attempts endlessly to allocate new call
frames.

4. If single precision integers were used as the integer
representation of the parameter, n, in Program 3.12, then the call
Factorial(0) would result in the recursive calls Factorial(0),
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Factorial(–1), Factorial(–2), and so on, being made. If, for example,
single precision integers are represented by 16-bit, two’s
complement integers, then after descending to the value –32,768,
the values cycle back to 32,767 and descend towards 0 again,
eventually reaching the value 1. When Factorial(1) is called, the
function terminates with the value 1. Then, all the values in the
range –32768:32768 are multiplied together, giving the value 0.
This scenario can happen only if there is enough memory space to
hold all 65536 calls in the call-frame storage region. But many
contemporary computers will have enough memory to do this.

Solution to Exercise 3.3
1. The function call F(2) causes an infinite regress.

Answers to Review Questions 3.4
1. The complexity class that characterizes the recursive solution of

the Towers of Hanoi puzzle is called the  exponential complexity
class.

2. The principal disadvantage  of the  exponential complexity class is
that the running time of the algorithms that fall in this class
require very large running times for all but very small arguments.
Such running times are so large that we cannot expect an answer
from these algorithms given a reasonably sized input for a long,
long time. Thus, we generally try to avoid using such exponential
algorithms.

Solution to Exercise 3.4
1. Since there are 3.1536*107 seconds in one year, and the length of

the instruction sequence is L(n ) = 2n – 1, we need to find the
largest n such that

 2n – 1   ≤   3.1536*107.

The largest such n is 24 (which can be determined by finding the
largest n such that n ≤ log2(3.1536*107 + 1), where log2(3.1536*107

+ 1) = 24.91049639). Hence, a tower of at most 24 disks can be
moved in a year’s time.
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Answers to Review Questions 4.2
1. A C module M is a program consisting of two separate coordinated

text files, M . h , its interface file (or header file) and M . c , its
implementation f i le (or source file), such that M  provides a
collection of related entities all of which work together to offer a
set of capabilities or to provide a set of services or components
that can be used to help solve some class of problems.

2. The interface file M.h of a module M  is a text which declares
entities that are visible to (and hence usable by) external users.
These entities can include declarations of constants, typedefs,
variables, and functions. Only the prototypes of functions are
given (and in them, only the argument types, and not the argument
names, are given).

3. The implementation file M.c of a module M is a program text which
declares local program entities that are private to the module
(and cannot be seen or used by external users), and which also
gives the full declarations of functions whose prototypes are
given in the interface header file, M.h , and which are visible to
external users.

4. To use the services provided by a module M, you place an include
directive which includes the header file M.h at the beginning of
your program, using the syntax #include "M.h". The effect is as if the
declarations inside M.h had been substituted in your program at
the place the include directive is given. The module M  is usually
compiled separately. The extern declarations in M.h tell the linker
how to link in externally defined functions from other modules
compiled separately.

Answers to Review Questions 4.3
1. A priority queue is a collection of prioritized items in which items

can be inserted in any order of ranking of their priorities, but are
removed in highest-to-lowest order of their priorities.

2. A priority queue’s items could be stored in arrays (or linked lists,
or trees, or many other kinds of data structures acting as
containers). Considering only arrays as containers, the items could
be stored either in sorted or unsorted order (where sorting is
done with respect to the order implied by the items’ priorities). If
an unsorted array is used, you add a new item at the end of the
array, and to remove an item, you scan the array to locate the
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item of highest priority, remove it, and then move the last item
into the hole created by the removal of the highest priority item.
For sorted arrays, to insert an item, you move all items of priority
greater than the item one space to the right, and insert the item
into the hole created. To remove an item you simply remove the
last item in the array.

3. Given the sketch in the answer to the previous question, the
unsorted array representation has a more efficient insertion
operation while the sorted array has a more efficient removal
operation. The reason is that these two efficient operations
operate on only one item, whereas insertion into a sorted array
and removal from an unsorted array potentially require all items
in the array either to be scanned or to be moved.

Answers to Exercises 4.3

1.
| PQItem Remove(PriorityQueue *PQ)
| {

80 | PQItem temp;
| PQListNode *NodeToFree;
|
| if ( ! Empty(PQ)) { /* result undefined if PQ empty */
| NodeToFree = PQ–>ItemList; /* otherwise, remove the */

85 | temp = NodeToFree–>NodeItem; /* highest priority item */
| PQ–>ItemList = NodeToFree–>Link; /* from the front of the list */
| PQ–>Count – –; /* decrease the item count */
| free(NodeToFree); /* and free the space for the */
| return (temp); /* node that was removed */

90 | }
| }

2. The items in the ItemArray are stored in positions 0:Count – 1. Given an
I temAr ray  that currently contains Count items, its last item will
therefore be found in the Count – 1 position. Thus, to remove the
last item, we first decrement the Count  member of the PriorityQueue

struct, using  PQ–>Count – –, and then we move the last item at P Q –

>I temArray[PQ–>Count ]  into the hole opened up by removal of the
maximum priority item at the position PQ–>ItemArray[MaxIndex].

Answers to Review Questions 4.4
1. A program shell is a top-level program with “holes” that invokes

and uses plug-in modules and organizes the operations and
services these modules provide to define the topmost level of
operation of the overall program.
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2. Using modules can help organize the work in a software project by
providing a clean way to break the work of the project into
subprojects associated with implementation of the separate
modules.

3. Using modules can help structure a software system design during
the design phase, by first defining only the interfaces (or header
files) of the modules (and not their detailed implementations) so
that the modules fit together cleanly in the overall design. The
overall design will be clean, in general, if it is composed from a
few modules having simple, well-defined interactions.

Answers to Exercises 4.4
1. Tic-Tac-Toe Program Shell:

| /* the following is the text of a TicTacToe Program Shell */
|
| #include <stdio.h>
| #include  "TicTacToeUserInterface.h"

5 | #include "MoveCalculationModuleInterface.h"
|
| Move theMove; /* theMove contains current player's move*/
| Board theBoard; /* theBoard gives the configuration of the game */
|

10 | int main (void)
| {
|
| InitializeAndDisplayTicTacToeBoard( );
|

15 | do {
|
| GetAndProcessOneEvent( ); /* Gets and displays user's move */
| /* if user clicks in a square */
| /* on the board. */

20 | /* Otherwise, lets user select X or O */
| /* to play, and let's user choose who */
| /* plays first — the user or the machine */
|
| if (ItIsMachinesTurnToMove( ) {

25 | theMove = CalculateMove(theBoard); /* done by */
| /* MoveCalculationModule*/
| Display(theMove); /* done by */
| /* TicTacToeUserInterfaceModule */
| }

30 |
| if (GameIsOver( ) ) {
| DisplayResults( ); /* X wins, O wins, or Draw */
| AskIfUserWantsToPlayAgain( );
| }

35 |
| } while ( ! UserWantsToQuit( ) );
|
| Shutdown( );
|
| }
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Interface file of a module to handle the Tic-Tac-Toe user
interface:

|  /* the text of the file  "TicTacToeUserInterface.h" */
|
| #include <stdio.h>
|

5 | typedef enum { false, true } Boolean ;
| typedef enum {X, O, Blank} Token;
| typedef Token Board[3][3];
| typedef struct {
| int row;

10 | int column;
| } Move;
|
| extern Boolean ItIsMachinesTurnToMove(void);
| extern Boolean UserWantsToQuit(void);

15 | extern void InitializeAndDisplayTicTacToeBoard(void);
| extern void GetAndProcessOneEvent(void);
| extern void Display(Move);
| extern Boolean GameIsOver(void); /* true if there was a win or draw */
| extern void DisplayResults(void);

20 | extern void AskIfUserWantsToPlayAgain(void);
| extern void Shutdown(void);
|
| /* end of file "TicTacToeUserInterface.h" */

Interface file of a module to calculate the machine’s move:

|  /*  the text for the file "MoveCalculationModuleInterface.h" */
|
| #include <stdio.h>
| #include "TicTacToeUserInterface.h" /* included in order to import the */

5 | /* typedefs for Move and Board */
| /* needed below */
| extern Move CalculateMove(Board);
|
|  /*  end of  file "MoveCalculationModuleInterface.h" */

Answers to Review Questions 4.5
1. An available space list is a linked list of unused list nodes that is

organized as a pool of available storage to allocate during the
operation of a list-processing program. It is generally linked
together during the initialization of the program. Freshly allocated
nodes are removed from it, and freed nodes are returned to it
during the execution of the program. It thus provides the basis for
a storage allocation and management policy for user-defined
linked lists.

2. Information hiding occurs when program entities are declared and
used locally within a function or module, preventing them from
being seen and/or used outside the function or module.
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3. Information hiding can promote ease of program modification by
confining the region of program text in which changes have to be
made to a local region of the total program text. When entities are
defined locally within a function, or privately inside a module in its
implementation file, then changes in the local or private entities
can be made without interfering with entities outside.

4. A representation-independent notation is a notation which does
not have to be changed when its underlying data representation is
changed.  For example, GetLink(N) is a representation-independent
notation for getting the Link of node N in a linked-list, whereas the
three expressions  N – > L i n k , L i s tMemory [N ] . L i nk , and L ink [N ]  are
representation-dependent notations (from which, by looking at
the notations, one can discover what the underlying data
representations are).

5. If one does not use a representation-independent notation, then
the users of the module will have to use notations that depend on
the data representations chosen, in which case the data
representation isn’t hidden properly (since it can be discovered
by studying the notation of use outside the module in which the
representation is supposed to be hidden).

6. Efficiency trades off against generality whenever making a
program more general makes it more costly to execute, or
whenever making it more efficient entails making it less general.
Using a representation-dependent notation makes a program
more efficient but less general than using a representation-
independent notation that hides a specific representation-
dependent data access notation behind a general function call
notation. The latter, though more general, is less efficient because
it incurs the expense of making extra function calls (i.e., those
providing the representation-independent “wrapper,” as it is
sometimes called, which hides the representation-dependent
notation inside).

7. The representation-independent notation for operating on nodes
of a linked list is less efficient than the particular kinds of
representation-dependent notations because using it incurs the
extra cost of transmitting procedure parameters and making
procedure calls and returns — which are extra expenses not
incurred by using the representation-dependent notations.

Answers to Selected Exercises in Exercises 4.5
6. Nothing is wrong with the program. It will work as it is. However,

note that it redeclares the variable, Avai l, to be a string variable
local to the function main( ), when an identically named variable is
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used in the implementation section of the module, ParallelArrayLists.
This is acceptable, since the variable, Ava i l , used inside the
implementation file "L is t Imp lementa t ion .c "  for the Parallel Array
Representation module of Program 4.23 does not interfere with
any identically named locally defined variables inside the main( )

procedure.

Answers to Review Questions 4.6
1. Modules are also called un i ts  or p a c k a g e s  in other modern

languages such as Pascal and Ada.

2. Procedural abstraction occurs when one creates a procedure, P(a1,
a2, ..., an), as a named unit of action. Then, one can use the action
represented by P, knowing only what  P does and not how  P is
implemented. Later, one can change how P is implemented without
changing every instance of P’s use (which could not have happened
if the instructions giving P’s action had been repeated every time
P was used). The use of procedural abstraction therefore promotes
ease of use and change.

3. Data abstraction occurs when one hides the representation of a
data structure and the implementation details of the operations
on it using a representation-independent notation. This enables
the abstract data to be used knowing only what it does, not how its
details are implemented.  As with procedural abstraction, so also
with data abstraction, by separating the what from the how, both
ease of use and ease of modification are promoted.

4. Encapsu la t ion  consists of hiding program entities (or certain
features of externally visible program entities) inside a
protective wall, called the capsule boundary, so that they can
neither be seen nor used outside the capsule.

5. In summary, using C modules properly can provide for: (a) separate
compilation (which can reduce compilation times since the whole
program doesn’t need to be compiled each time), (b) ease of
modification, (c) ease of use of the services provided by the
module, (d) help with software system design, and (e) help in
organizing the work of a software project.
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