

8

Chapter Two

DATA MANIPULATION

 Chapter Summary

This chapter introduces the role of a computer's CPU. It describes the machine cycle and the various
operations (or, and, exclusive or, add, shift, etc.) performed by a typical arithmetic/logic unit. The
concept of a machine language is presented in terms of the simple yet representative machine
described in Appendix C of the text. The chapter also introduces some alternatives to the von
Neumann architecture such as multiprocessor machines.

The optional sections in this chapter present a more thorough discussion of the instructions
found in a typical machine language (logical and numerical operations, shifts, jumps, and I/O
communication), a short explanation of how a computer communicates with peripheral devices, and
alternative machine designs.

The machine language in Appendix C involves only direct and immediate addressing.
However, indirect addressing is introduced in the last section (Pointers in Machine Language) of
Chapter 7 after the pointer concept has been presented in the context of data structures.

Comments

1. Much of Comment 1 regarding the previous chapter is pertinent here also. The development of
skills in the subjects of machine architecture and machine language programming is not required
later in the book. Instead, what one needs is an image of the CPU/main memory interface, an
understanding of the machine cycle and machine languages, an appreciation of the difference in
speeds of mechanical motion compared to CPU activities, and an exposure to the limited repertoire
of bit manipulations a CPU can perform.

2. To most students at this stage the terms millisecond, microsecond, nanosecond, and picosecond
merely refer to extremely short and indistinguishable units of time. In fact, most would probably
accept the incorrect statement that activities within a computer are essentially instantaneous. Once a
student of mine wrote a recursive routine for evaluating the determinant of a matrix in an
interpreted language on a time-sharing system. The student tried to test the program using an 8 by 8
matrix, but kept terminating the program after a minute because "it must be in a loop." This student
left with an understanding of microseconds as real units of time that can accumulate into significant
periods.

3. A subtle point that can add significantly to the complexity of this material is combining notation
conversion with instruction encoding. If, for example, all the material in Chapters 1 and 2 is new to
a student, the problem, "Using the language of Appendix C, write an instruction for loading register
14 with the value 124" can be much more difficult than the same problem stated as, "Using the
language of Appendix C, write an instruction for loading register D with the (hexadecimal) value
7C." In general, notation conversion is a subject of minor importance and should not be allowed to
cloud the more important concerns.

4. If you want your students to develop more than a simple appreciation of machine language
programming, you may want to use one of the many simulators that have been developed for the
machine in Appendix C. A nice example is included on the Addison-Wesley website at
http://www.aw.com/brookshear or you can find other simulators by searching the Web.

Formatted

Computer Science An Overview 11th Edition Brookshear Solutions Manual
Full Download: http://alibabadownload.com/product/computer-science-an-overview-11th-edition-brookshear-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/computer-science-an-overview-11th-edition-brookshear-solutions-manual/

9

5. Here are some short program routines in the machine language presented in Appendix C of the
text, followed by their C language equivalents. (These examples are easily converted into Java, C++,
and C#.) Each machine language routine starts at address 10. I've found that they make good
examples for class presentations or extra homework problems in which I give the students the
machine language form and ask them to rewrite it in a high-level language.

 Address Contents Address Contents Address Contents
 0D 00 14 20 1B 0F

 0E 00 15 5A 1C 50

 0F 00 16 30 1D 12

 10 20 17 0F 1E 30

 11 5C 18 11 1F 0D

 12 30 19 0E 20 C0

 13 0E 1A 12 21 00

C language equivalent:

 {int X,Y,Z;

 X = 92;

 Y = 90;

 Z = X + Y;

 }

If the contents of the memory cell at address 1C in the preceding table is changed from 50 to 60 the
C equivalent becomes:

 {float X, Y, Z;

 X = 1.5;

 Y = 1.25;

 Z = X + Y;

 }

Here's another example:

 Address Contents Address Contents Address Contents
 0E 00 19 0F 24 20

 0F 00 1A 20 25 01

 10 20 1B 04 26 50

 11 02 1C B1 27 01

 12 30 1D 2C 28 30

 13 0E 1E 12 29 0F

 14 20 1F 0E 2A B0

 15 01 20 50 2B 18

 16 30 21 12 2C C0

 17 0F 22 30 2D 00

 18 11 23 0E

C equivalent:

 {int X, Y;

 X = 2; Y =1;

 while (Y != 4) {X = X + Y; Y = Y + 1;}

 }

10

6. Here are two C program segments that can be conveniently translated into the machine language
of Appendix C.

{int X, Limit;

 X = 0;

 Limit = 5;

 do X = X + 1 while (X != Limit);

}

Program segment in machine language:

 Address Contents Address Contents Address Contents
 0E 00 (X) 18 22 (R2 = 1) 22 10 (R0 = Limit)

 0F 00 (Limit) 19 01 23 0F

 10 20 (X = 0) 1A 11 (R1 = X) 24 B1 (go to end

 11 00 1B 0E 25 28 if X == Limit)

 12 30 1C 50 (X = X+1) 26 B0 (return)

 13 0E 1D 12 27 1A

 14 20(Limit = 5)1E 30 28 C0 (halt)

 15 05 1F 0E 29 00

 16 30 20 11 (R1 = X)

 17 0F 21 0E

 {int X, Y, Difference;

 X = 33;

 Y = 34;

 if (X > Y)Difference = X - Y

 else Difference := Y – X}

Program segment in machine language:

 Address Contents Address Contents Address Contents
 0D 00 (X) 1D 01 2D 16 (Diff = X-Y)

 0E 00 (Y) 1E 24 (R4=FF) 2E 30

 0F 00 (Diff) 1F FF 2F 0F

 10 20 (X = 33) 20 96 (R6=not Y) 30 B0 (branch to

 11 21 21 24 31 3A halt)

 12 30 22 56 (R6= -Y) 32 90 (R0=not X)

 13 0D 23 36 33 14

 14 20 (Y = 34) 24 50 (R0=X-Y) 34 50 (R0 = -X)

 15 22 25 16 35 03

 16 30 26 25 (R5=80Hex) 36 50 (R0 = Y-X)

 17 0E 27 80 37 02

 18 11 (R1=X) 28 80 (mask low) 38 30 (Diff = Y-X)

 19 0D 29 50 7 bits) 39 0F

 1A 12 (R2=Y) 2A B5 (if R0=R5 3A C0 (halt)

 1B 0E 2B 32 then Y>X 3B 00

 1C 23 (R3=1) 2C 50

11

Answers to Chapter Review Problems

1. a. General purpose registers and main memory cells are small data storage cells in a computer.

b. General purpose registers are inside the CPU; main memory cells are outside the CPU.

(The purpose of this question is to emphasize the distinction between registers and memory cells—a
distinction that seems to elude some students, causing confusion when following machine language
programs.)

2. a. 0010001100000100

 b. 1011

 c. 001010100101

3. Eleven cells with addresses 98, 99, 9A, 9B, 9C, 9D, 9E, 9F, A0, A1, and A2.

4. CD

5. Program Instruction Memory cell
 counter register at 02

 02 2211 32

 04 3202 32

 06 C000 11

6. To compute x + y + z, each of the values must be retrieved from memory and placed in a register,
the sum of x and y must be computed and saved in another register, z must be added to that sum,
and the final answer must be stored in memory.

A similar process is required to compute (2x) + y. The point of this example is that the
multiplication by 2 is accomplished by adding x to x.

7. a. OR the contents of register 2 with the contents of register 3 and place the result in register 1.

b. Move the contents of register E to register 1.

c. Rotate the contents of register 3 four bits to the right.

d. Compare the contents of registers 1 and 0. If the patterns are equal, jump to the instruction at
address 00. Otherwise, continue with the next sequential instruction.

e. Load register B with the value (hexadecimal) CD.

8. 16 with 4 bits, 64 with 6 bits

9. a. 2677 b. 1677 c. BA24 d. A403 e. 81E2

10. The only change that is needed is that the third instruction should be 6056 rather than 5056.

11. a. Changes the contents of memory cell 3C.

b. Is independent of memory cell 3C.

c. Retrieves from memory cell 3C.

d. Changes the contents of memory cell 3C.

e. Is independent of memory cell 3C.

12. a. Place the value 55 in register 6. b. 55

13. a. 1221 b. 2134

12

14. a. Load register 2 with the contents of memory cell 02.
 Store the contents of register 2 in memory cell 42.
 Halt.

 b. 32

 c. 06

15. a. 06 b. 0A

16. a. 00, 01, 02, 03, 04, 05

 b. 06, 07

17. a. 04 b. 04 c. 0E

18. 04. The program is a loop that is terminated when the value in register 0 (initiated at 00) is finally
incremented by twos to the value in register 3 (initiated at 04).

19. 11 microseconds.

20. The point to this problem is that a bit pattern stored in memory is subject to interpretation—it
may represent part of the operand of one instruction and the op-code field of another.

a. Registers 0, 1, and 2 will contain 32, 24, and 12, respectively.

 b. 12

 c. 32

21. The machine will alternate between executing the jump instruction at address AF and the jump
instruction at address B0.

22. It would never halt. The first 2 instructions alter the third instruction to read B000 before it is
ever executed. Thus, by the time the machine reaches this instruction, it has been changed to read
"Jump to address 00." Consequently, the machine will be trapped in a loop forever (or until it is
turned off).

23. a. b. c.
 14D8 14D8 2000

 34B3 15B3 1144

 C000 358D B10A

 34BD 22FF

 C000 B00C

 2201

 3246

 C000

24. a. The single instruction B000 stored in locations 00 and 01.

 b. Address Contents
 00,01 2100 Initialize

 02,03 2270 counters.

 04,05 3109 Set origin

 06,07 320B and destination.

 08,09 1000 Now move

 0A,0B 3000 one cell.

 0C,0D 2001 Increment

 0E,0F 5101 addresses.

 10,11 5202

 12,13 2333 Do it again

 14,15 4010 if all cells

 16,17 B31A have not

13

 18,19 B004 been moved.

 1A,1B 2070 Adjust values

 1C,1D 3071 that are

 1E,1F 2079 location

 20,21 3075 dependent.

 22,23 207B

 24,25 3077

 26,27 208A

 28,29 3087

 2A,2B 2074

 2C,2D 3089

 2E,2F 20C0

 30,31 30A4

 32,33 2000

 34,35 20A5

 36,37 B070 Make the big jump!

c. Address Contents
 00,01 2000 Initialize counter.

 02,03 2100 Initialize origin.

 04,05 2270 Initialize destination.

 06,07 2430 Initialize references

 08,09 1530 to table.

 0A,0B 310D Get origin

 0C,0D 1600 value.

 0E,0F B522 Jump if value must be adjusted.

 10,11 3213 Place value

 12,13 3600 in new location.

 14,15 2301 Increment

 16,17 5003 R0,

 18,19 5113 R1, and

 1A,1B 5223 R2.

 1C,1D 233C Are we done?

 1E,1F B370 If so, jump to relocated program.

 20,21 B00A Else, go back.

 22,23 2370 Add 70 to

 24,25 5663 value being

 26,27 2301 transferred and

 28,29 5443 update R4 and

 2A,2B 342D R5 for next

 2C,2D 1500 location.

 2E,2F B010 Return (from subroutine).

 30,31 0305 Table of

 32,33 0709 locations that

 34,35 0B0F must be

 36,37 111F updated for

 38,39 212B new location.

 3A,3B 2FFF

25.
 20A0

 21A1

 6001

 21A2

 6001

 21A3

 6001

 30A4

 C000

14

26. The machine would place a halt instruction (C000) at memory location 04 and 05 and then halt
when this instruction is executed. At this point its program counter will contain the value 06.

27. The machine would continue to repeat the instruction at address 08 indefinitely.

28. It copies the data from the memory cells at addresses 00, 01, and 02 into the memory cells at
addresses 10, 11, and 12.

29. Let R represent the first hexadecimal digit in the operand field;
 Let XY represent the second and third digits in the operand field;
 If the pattern in register R is the same as that in register 0,
 then change the value of the program counter to XY.

30. Let the hexadecimal digits in the operand field be represented by R, S, and T;
 Activate the two's complement addition circuitry with registers S and T
 as inputs;
 Store the result in register R.

31. Same as Problem 24 except that the floating-point circuitry is activated.

32. a. 02 b. AC c. FA d. 08 e. F2

33. a. b. c. d.
 1044 1034 10A5 10A5

 30AA 21F0 210F 210F

 8001 8001 8001

 3034 12A6 4001

 21F0 A104

 8212 7001

 7002 30A5

 30A6

34. a. 101001 b. 000000 c. 000100 d. 110011 e. 111001 f. 111110

 g. 010101 h. 111111 i. 010000 j. 101101 k. 000101 l. 001010

35. a. OR the byte with 11110000.

 b. XOR the byte with.10000000.

 c. XOR the byte with 11111111.

 d. AND the byte with 11111110.

 e. OR the byte with 01111111.

36. XOR the input string with 10000001.

37. First AND the input byte with 10000001, then XOR the result with 10000001.

38. a. 11010 b. 00001111 c. 010 d. 001010 e. 10000

39. a. CF b. 43 c. FF d. DD

40. a. AB05 b. AB06

41. Address Contents
 00,01 2008 Initialize registers.

 02,03 2101

 04,05 2200

 06,07 2300

 08,09 148C Get the bit pattern;

 0A,0B 8541 Extract the least significant bit;

 0C,0D 7335 Insert it into the result.

 0E,0F 6212

15

 10,11 B218 Are we done?

 12,13 A401 If not, rotate registers

 14,15 A307

 16,17 B00A and go back;

 18,19 338C If yes, store the result

 1A,1B C000 and halt.

42. The idea is to complement the value at address A1 and then add. Here is one solution:

 21FF

 12A1

 7221

 13A2

 5423

 34A0

43. An uncompressed video stream of the specified format would require a speed of about 1.5 Gbps. Thus,

both USB 1.1 and USB 2.0 would be incapable of sending a video stream of this format. A USB 3.0 serial port

would be required. It is interesting to note that with compression, a video stream of 1920 X 1080 resolution,

30 fps and 24 bit color space could be sent over a USB 2.0 port.

44. The typist would be typing 40 x 5 = 200 characters per minute, or 1 character every 0.3 seconds
(= 300,000 microseconds). During this period the machine could execute 150,000,000 instructions.

45. The typist would be producing characters at the rate of 4 characters per second, which translates
to 32 bps (assuming each character consists of 8 bits).

46. Address Contents
 00,01 2000

 02,03 2101

 04,05 12FE Get printer status

 06,07 8212 and check the ready flag.

 08,09 B004 Wait if not ready.

 0A,0B 35FF Send the data.

47. Address Contents
 00,01 20C1 Initialize registers.

 02,03 2100

 04,05 2201

 06,07 130B

 08,09 B312 If done, go to halt.

 0A,0B 31A0 Store 00 at destination.

 0C,0D 5332 Change destination

 0E,0F 330B address,

 10,11 B008 and go back.

 12,13 C000

48. 15 Mbps is equivalent to 1.875 MBs / sec (or 6.75 GBs / hour). Therefore, it would take 29.63
hours to fill the 200 GB drive.

49. 1.74 megabits

50. Group the 64 values into 32 pairs. Compute the sum of each pair in parallel. Group these sums
into 16 pairs and compute the sums of these pairs in parallel. etc.

51. CISC involves numerous elaborate machine instructions that can be time consuming. RISC
involves fewer and simpler instructions, each of which is efficiently implemented.

52. How about pipelining and parallel processing? Increasing clock speed is another answer.

53. In a multiprocessor machine several partial sums can be computed simultaneously.

Computer Science An Overview 11th Edition Brookshear Solutions Manual
Full Download: http://alibabadownload.com/product/computer-science-an-overview-11th-edition-brookshear-solutions-manual/

This sample only, Download all chapters at: alibabadownload.com

http://alibabadownload.com/product/computer-science-an-overview-11th-edition-brookshear-solutions-manual/

