
1.1 Graphically represent a Vehicle class and three Vehicle objects named car1, car2,

and car3.

1.2 Graphically represent a Person class with the following components:

• Instance variables name, age, and gender.

• Instance methods setName, getName, and getAge.

 • Class method getAverageAge.

1.3 Design a CD class where a CD object represents a single music CD. What kinds

of information (artist, genre, total playing time, etc.) do you want to know about a

CD? Among the information in which you are interested, which are instance

variables? Are there any class variables or class constants?

State

Album Name instance variable

Artist instance variable

Genre instance variable

Total Playing Time instance variable

Maximum Playing Time class constant

Vehicle

car3:Vehicle car2:Vehicle car1:Vehicle

 Person

name

age

gender

setName()

getAge()

age

getGender()

gender

getAverageAge()

average age

Comprehensive Introduction to Object Oriented Programming with Java 1st Edition Wu Solutions Manual
Full Download: https://alibabadownload.com/product/comprehensive-introduction-to-object-oriented-programming-with-java-1st-edition-wu-solutions-manual/

This sample only, Download all chapters at: AlibabaDownload.com

https://alibabadownload.com/product/comprehensive-introduction-to-object-oriented-programming-with-java-1st-edition-wu-solutions-manual/

Behaviors

 getAlbumName(), setAlbumName() instance methods

 getArtist(), setArtist() instance methods

 getGenre(), setGenre() instance methods

 getPlayingTime(), setPlayingTime() instance methods

 getMaxPlayingTime() class method

Students may also include a list of songs on the CD and methods to access them.

A song itself would probably have its own class to represent it. However this

concept is more advanced than is necessary at this stage.

1.4 Suppose the Vehicle class in Exercise 1 is used in a program that keeps track of

vehicle registration for the Department of Motor Vehicles. What kinds of

instance variables would you define for such Vehicle objects? Can you think of

any useful class variables for the Vehicle class?

Instance variables

 owner

 licenseID

registrationNumber

 make

 model

 color

 value

Class variables

At this stage, the number of total vehicles could be thought to belong to

the class. Information relating to the length of a licenseID or

registrationNumber could be stored as class constants. Aside from these,

there are no obviously necessary traits for which all vehicles share the

same value or which the class may need to function.

1.5 Suppose the following formulas are used to compute the annual vehicle

registration fee for the vehicle registration program in Exercise 1.4:

• For cars, the annual fee is 2 percent of the value of the car.

• For trucks, the annual fee is 5 percent of the loading capacity (in

pounds) of the truck.

 Define two new classes Car and Truck as subclasses of Vehicle.

Hint: Associate class and instance variables common to both Car and Truck to

Vehicle.

 Vehicle Class

 See Exercise 1.4

 Car Class (subclass of Vehicle)

 registrationRate class constant

Note: Value is already an instance variable in Vehicle since all vehicles

have some value.

Truck Class (subclass of Vehicle)

 registrationRate class constant

 loadingCapacity instance variable

1.6 Consider a student registration program used by the registrar’s office. The

program keeps track of students who are registered for a given semester. For each

student registered, the program maintains the student’s name, address, and phone

number; the number of classes in which the student is enrolled and the student’s

total credit hours. The program also keeps track of the total number of registered

students. Define instance and class variables of a Student class that is suitable for

this program.

Instance variables

 name

 address

 phoneNumber

 numClassesThisSemester

 totalCreditHours

Class variables

 numStudentsRegistered

1.7 Suppose the minimum and maximum number of courses for which a student can

register are different depending on whether the student is a graduate,

undergraduate, or work-study student. Redo Exercise 6 by defining classes for

different types of students. Relate the classes using inheritance.

Student

 See Exercise 1.6

GraduateStudent (subclass of Student)

 maximumHours class constant

 minimumHours class constant

UndergraduateStudent (subclass of Student)

 maximumHours class constant

 minimumHours class constant

WorkStudyStudent (subclass of Student)

 maximumHours class constant

 minimumHours class constant

1.8 Imagine you are given a task of designing an airline reservation system that keeps

track of flights for a commuter airline. List the classes you think would be

necessary for designing such a system. Describe the data values and methods you

would associate with each class you identify. Note: For this exercise and

Exercises 9 through 12, we are not expecting you to design the system in

complete detail. The objective of these exercises is to give you a taste of thinking

about a program at a very high level. Try to identify about a half dozen or so

classes, and for each class, describe several methods and data members.

Database

 Data Members

Collection of clients

 Collection of flights

 Methods

Accessors (get___()) and Mutators (set___()) for clients and flights1

 Make reservation

 Add new flight

Client

 Data Members

Name

 Address

 Phone

Collection of reservations

BillingInformation

Methods

Accessors and Mutators for name, address, BillingInformation, and

collection of reservations

Add reservation

Flight

 Data Members

Departure city

 Arrival city

 Departure time

 Arrival time

 Seats available

 Aircraft type

1 Accessors and Mutators (also called gets and sets) allow other people to use your

classes data members while allowing you to control just how they access them. This

allows you to perform various activities like bounds checking (making sure the value set

is not illegal, such as –6 for an age data member). This is part of the concept of

encapsulation and is fundamental to the object-oriented paradigm.

 Collection of passengers

Methods

Accessors and Mutators for departure and arrival information, seats

available, aircraft type

 Compute flight time

 Compute ticket price (may vary with departure date, time, seats

available…)

 Reservation

 Data Members

Client

 Flight

 Paid Status (i.e., true/false)

 Methods

Accessors and Mutators for client and flight

BillingInformation

 Data Members

Name

 Billing Address

 Credit Card number

 Credit Card expiration

 Credit Card type

 Methods

Accessors and Mutators for all data members

Note: This is a high-level design and by no means the only appropriate one.

When designed in more detail, there will be ways to eliminate the duplicate data.

1.9 Repeat Exercise 8, designing a university course scheduling system. The system

keeps track of classes offered in a given quarter, the number of sections offered,

and the number of students enrolled in each section.

Quarterly Database

 Data Members

 Collection of courses

 Methods

Add Course

Remove Course

Course

 Data Members

 Collection of Sections

 Title

 Code

 College

 Department

 Methods

Add Section

Remove Section

Accessors and Mutators for all data members

Section

 Data Members

 Maximum number of students

 Current number of students

 Section ID

 Methods

Add Student

Remove Student

Accessors and Mutators for all data members

1.10 Repeat Exercise 8, designing the state Department of Motor Vehicles registration

system. The system keeps track of all licensed vehicles and drivers. How would

you design objects representing different types of vehicles (e.g., motorcycles and

trucks) and drivers (e.g., class A for commercial licenses and class B for towing

vehicles)?

Vehicle

 Data Members

 VIN

 Class type (A, B, etc.)

 Make

 Model

 Year

 Registration fee

 Owner

Methods

Accessors and Mutators for all data members

Note: Could also implement with several subclasses of Vehicle, one for each

class (car, commercial truck, livery, etc.) especially if each type required some

specialized information.

Driver

 Data Members

 License number

 Name

 Address

 Collection of Vehicles

 Collection of Violations

 Methods

Add Vehicle/Violation

Remove Vehicle/Violation

Accessors and Mutators for all data members

Violation

 Data Members

 Number

 Date

 Location

 Charge

 Officer

Methods

Accessors and Mutators for all data members

1.11 Repeat Exercise 8, designing a sales tracking system for a fast-food restaurant.

The system keeps track of all menu items offered by the restaurant and the

number of daily sales per menu item.

Menu

 Data Members

Collection of menu items

 Total Sales

Methods

Get Menu Item

Add Menu Item

Delete Menu Item

 MenuItem

 Data Members

Name

 Price

 Total Sales

 Methods

 Accessors and Mutators for name, price, and total sales

1.12 When you write a term paper, you have to consult many references: books,

journal articles, newspaper articles, and so forth. Repeat Exercise 8, designing a

bibliography organizer that keeps track of all references you used in writing a

term paper.

Document

 Data Members

Collection of sources

 Methods

Add Source

 Delete Source

Source

 Data Members

Author

 Title

 Publisher

 Copyright Date

 City of Publication

 Volume (or Issue)

 Pages Used

 Methods

 Print Bibliography Entry

It would be common practice for there to be several different subclasses of

Source, each with a slightly different implementation of Print Bibliography Entry,

for example: paper in a conference proceedings, article in a journal, journal,

book, article in a magazine, magazine, etc.

1.13 Consider the inheritance hierarchy given in Figure 1.12. List the features

common to all classes and the features unique to individual classes. Propose a

new inheritance hierarchy based on the types of accounts your bank offers.

Possible Common Features:

 Account Number

 Opening Balance

 Opening Date

 Current Balance

 Minimum Balance

 Owner(s)

Possible Unique Features:

 Number of free withdrawals

 Fee per withdrawal

 Interest Rate

 Check writing privileges

 Debit Card information

1.14 Consider a program that maintains an address book. Design an inheritance

hierarchy for the classes such as Person, ProfessionalContact, Friend, and Student

that can be used in implementing such a program.

Account

Money Market Account Checking Account Savings Account

Business Checking Classic Checking Student Checking

1.15 Do you think the design phase is more important than the coding phase? Why or

why not?

The design phase is much more important than the coding phase. Design has a

huge impact on not only the ease and speed of implementation during the coding

phase but also on the testing and maintenance phases. A proper design allows

testing to be done in terms of structural components, which makes bugs easier to

trace back to the improper implementation. Furthermore, a good design is far

more maintainable. Maintenance is considered the most expensive of all the

phases, thus a more easily maintained project is considerably less expensive. It is

important to remember that maintenance includes more than just fixing bugs;

extension of the original design to meet new requirements is a common and

important task.

1.16 How does the quality of design affect the total cost of developing and maintaining

software?

A low quality design will not only slow implementation, thus increasing expense

and delay, but will also force design decisions to be revisited later. Inevitably,

the design will have to change. Related implementation will have to be adapted

or recoded. Testing will have to be redone. The more patchwork done, the more

likely new errors are injected into the code. Not only are the maintenance

programmers burdened with what is almost certainly a less coherent design (and

documentation that tended to become outdated as more changes to the design

were made), but they must also hunt for more bugs.

Comprehensive Introduction to Object Oriented Programming with Java 1st Edition Wu Solutions Manual
Full Download: https://alibabadownload.com/product/comprehensive-introduction-to-object-oriented-programming-with-java-1st-edition-wu-solutions-manual/

This sample only, Download all chapters at: AlibabaDownload.com

https://alibabadownload.com/product/comprehensive-introduction-to-object-oriented-programming-with-java-1st-edition-wu-solutions-manual/

