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Chapter 1 
 

 

Multiple choice questions 
 

1. (c) A rolling ball is an example of a physical phenomenon. A point-like object is a 

simplified model of an object. Acceleration is a physical quantity for describing motion, 

while free fall is a model of a process. 

 

2. (b) Average speed, path length, and clock reading are all scalar quantities. 

Displacement and acceleration are examples of vector quantity. 

 

3. (b) A time interval is the difference between two times. Both statements, (2) The 

lesson lasted for 45 minutes and (4) An astronaut orbited Earth in 4 hours, are examples 

of time interval. 

 

4. (a) The student should have said: “The distance between my dorm and the lecture hall 

is 1 km.” There is no indication of the direction (needed for indicating displacement). The 

path length depends on the path followed and that is also not indicated. 

 

5. (b) With   212 4x t t t ,  1 the corresponding velocity and acceleration are 

  4 2xv t t 2  and   2xa t  1  Therefore, we see that the object is accelerating with 

22 0 m/sxa  1 . The speed of the object first decreases, reaches zero at t = 2.0 s, and then 

increases beyond that. So (b) is not true. 

 

6. (a) The motion of the car is described by graph (a). The non-zero flat part corresponds 

to the car moving at a constant velocity. The car then begins to slow down (indicated by 

the negative slope), coming to a stop (v = 0, through the x-axis), and moves in the 

opposite direction with the same acceleration. 

 

7. (d) The average velocity and instantaneous velocity are equal when the object moves at 

a constant velocity or does not move (zero velocity). 

 

8. (c) At the instant the second ball is released, the first ball not only has traveled 3 cm, it 

also has acquired non-zero velocity. Therefore, the distance between the balls will 

increase with time. Mathematically, the positions of the two balls can be written as 

   
21

1 2
y t g t t    and   21

2 2
y t gt , where t is the time interval between dropping the 

first ball and the second. The distance between them is given by (taken downward 

direction to be positive +y)      
21

1 2 2
y y y t g t t g t       , which shows clearly that 

y increases with t. 
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9. (b) The position of the car can be written as   21
0 0 2x xx t x v t a t ,    where x0 = +20 m. 

Since the car is traveling west (−x-axis), 0 12 m/sxv  2 With   0x x xv t v a t,  the 

acceleration ax is positive in order to bring the velocity of the car to zero at the stoplight. 

 

10. (c) The velocity-versus-time graph in (c) describes the motion of the car with 

  0x x xv t v a t,   v0x = − 12m/s, and ax > 0. 

 

11. (c) velocity-versus-time graph in (c) can be written as   0x x xv t v a t,   with v0x < 0 

and ax > 0. The velocity remains negative until the object comes to rest. 

 

12. (c) At the moment the sandbag is released, it has the same upward velocity as the hot 

air balloon, according to the ground observer 2. Therefore, he sees the sandbag going up 

first then coming down. On the other hand, observer 1 in the hot air balloon sees the 

sandbag undergo free fall. 

 

13. (b) The height of the tree is 
 

 

22

2

5 0 m/s
1 3 m

2 2 9 8 m/s

v
h

g


    


 The closest value is (b). 

 

14. (c) Whether you drop the ball or throw it down, the acceleration of the ball is due to 

gravitational force exerted by Earth, and it remains the same: ay = − g = − 9.8 m/s2 

(where we have taken upward to be +y). So statement (c) is incorrect. 

 

15. (c) The total flight time of the ball is 02t v / g, which is linear in v0. Thus, the 

second ball, with twice the initial speed of the first one, will spend twice as much time in 

flight. Note that the maximum height the ball reaches is given by 2

max 0 2y v / g , which is 

quadratic in v0. 

 

16. (a) The total flight time is given by 02t v / g, where v0 is the initial speed. The fact 

that t is linear in v0 means that if it takes twice as much time for the second ball to come 

back, the initial speed of the second ball must be twice that of the first one. 

 

 

Conceptual questions 
 

17. Both (b) and (e) correctly describe the Armstrong’s motion. Graph (e) corresponds to 

the fact that his cycling speed is constant, and graph (b) shows that his displacement 

(from starting point) increases linearly. 

 

18. One scenario is as follows: As the light turns green, the car starts to accelerate from 

rest. Upon reaching the appropriate speed, the driver stops accelerating and the car moves 

at a constant speed. Upon seeing a red light some distance ahead, the driver starts to 



College Physics, Etkina, Gentile, Van Heuvelen 

1-3 
Copyright 2014 © Pearson Education, Inc. 

brake. With constant deceleration, the car comes to a complete stop at the light. The 

velocity-versus-time and acceleration-versus-time graphs are shown below. 

  
Another possibility is that the car starts from rest with constant acceleration. Seeing 

another traffic light a short distance ahead, the driver abruptly applies the brake and 

slows the car to a complete stop. The velocity-versus-time and acceleration-versus-time 

graphs are shown below. 

 
  

 

19. Speed is a scalar quantity that characterizes how fast an object moves. An example of 

speed is 55 mi/h. On the other hand, velocity refers to the rate of change of position; it is 

a vector quantity that has both magnitude and direction. An example of a velocity vector 

is 55 mi/h, due north. 

 

The path length is how far an object moves as it travels from its initial position to its final 

position. Imagine laying a string along the path the object takes; the length of the string is 

the path length. On the other hand, distance is the magnitude of displacement. Path length 

is not necessarily equal to distance. To illustrate the distinction, consider a person 

running from 0ix   to 1fx x  along the path shown below. 

 

The distance the person has run is 

 1f ix x x x      

However, the path length is 

 

 2 2 1 2 12l x x x x x     . 

 

Displacement is the difference between two positions in space; it is a vector quantity that 

has both magnitude and direction. For example, if an object moves from its initial 

position at 0ix  to 3 0 m,fx  2 its displacement is 3 0x f id x x m     2  The 

displacement is negative since the object moves in the negative x-direction. The distance 

the object has traveled is 3.0 m, the magnitude of the displacement. 
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20. Listed below are some examples of physical quantities that are used to describe 

motion: 

 

Physical 

quantity 
Symbol 

SI 

units 

Scalar/

vector 
What it characterizes 

time t s scalar reading on a clock 

time interval t s scalar the difference between two times 

position x, y, z m vector 
location of an object with respect to a given 

coordinate system 

displacement d
r

 m vector the difference between two positions in space 

distance d m scalar the magnitude of displacement 

path length l  m scalar 
how far an object moves as it travels from its 

initial position to its final position 

velocity v
r

 m/s vector the rate of change of position 

speed v m/s scalar how fast an object moves 

acceleration a
r

 m/s2 vector the rate of change of velocity 

 

21. In all of the following, we choose a reference frame with Earth as the object of 

reference. 

 

(a) As the light turns green, a car starts to accelerate from rest. Upon reaching the speed 

limit, the driver stops accelerating and the car moves at a constant speed. Upon seeing a 

red light some distance ahead, the driver starts to brake. With constant deceleration, the 

car comes to a complete stop at the light. 

 

(b) A ball is projected vertically upward with an initial velocity of 40 m/s. About 4.0 

seconds later, it reaches a maximum height and its instantaneous velocity is zero. The ball 

then undergoes free fall to return to its initial position. Its velocity before impacting the 

ground is –40 m/s. 

 

(c) A ball is initially at rest on a frictionless incline plane. It begins to slide down at a 

constant acceleration of 27 5 m/s  (positive taken to be upward). 

 

22. (a) The graphs are shown below.  

 

 
 

The acceleration is zero throughout. 
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Note that technically there is non-zero acceleration at t1, t2, t4, t5, and t6 because the 

velocity changes abruptly at these instants. However, we ignore the “endpoints” of each 

time interval. 

(b) 

 

 
 

The acceleration is zero throughout. 

 

(c) 

 
 

 

23. Yes. For example, a car driving at a constant speed of 35 mi/h due east has non-zero 

velocity but zero acceleration, which is defined as the rate of change of velocity. 

 

24. Yes. For example, if you throw a ball vertically upward, when the ball reaches its 

maximum height, the ball comes to rest momentarily and its instantaneous velocity is 

zero, but its free-fall acceleration is non-zero. 

 

25. We first measure the distance traveled by the toy truck at regular time intervals. If the 

truck is moving in a straight line and the distances traveled during each time interval 

remains unchanged, then we may conclude that the truck is moving at a constant velocity 

with no acceleration. In this case, we would have a straight line on the position-versus-

time graph. 

 

On the other hand, if the distance traveled varies from one time interval to another, then 

the truck has non-zero acceleration, with changing velocity and speed. In this case, the 

curve on the position-versus-time graph would not be a straight line, as shown in the 

figure below. 
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Whether the acceleration is constant or not can be deduced by looking at the velocity-

versus-time graph. A straight line would imply a constant acceleration. 

 

26. Disagree with your friend. At the top of the flight, while the instantaneous velocity of 

the ball reaches zero, its free-fall acceleration is non-zero. 

 

 

Problems 
 

1. The motion diagram is shown below. 

 

 
 

2. (a) The motion diagrams are shown below. 

  
 

(b) In the reference frame of runner 1, he sees runner 2 coming toward him at a speed 

equal to 1 2 2v v v  q q q q  

 
 

3. The motion diagram is shown below. We choose a reference frame with Earth as the 

object of reference. 

 
 

4. The motion diagram of the hat as seen by the man is shown to the right. 

 

5. (a) The motion diagram is shown below. 
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(b) We choose a reference frame with Earth as the object of reference. The origin of the 

coordinate system is the initial position of the car and the positive direction is toward east. 

The position of the car when you stop for lunch is    100 km 50 km 50 kmx       

 

(c) As in (b), we choose Earth to be the object of reference. The origin of the coordinate 

system is the initial position of the car and the positive direction is toward west. The 

position of the car when you stop for lunch is    100 km 50 km 50 kmx     2  

 

(d) We choose a reference frame with Earth as the object of reference. However, in this 

case, let the origin of the coordinate system be +50 km due east of the initial position of 

the car, and the positive direction is toward east. The position of the car when you stop 

for lunch then becomes      50 km 100 km 50 km 0x      2  

 

6. We choose a reference frame with Earth as the object of reference. For simplicity, let 

the motion of the two people be one dimensional, and the positive direction is to the right. 

Suppose the initial and final positions of the two people are 

 

A A

B B

A: 20 m, 30 m;

B: 20 m, 70 m

i f

i f

x x

x x

 

  

2 1

1 1
 

The corresponding displacements are 

 

   

   

A A A

B B B

30 m 20 m 50 m;

70 m 20 m 50 m

f i

f i

x x x

x x x

       

        

1

1
 

 

Thus, we see that two people starting and ending their trips at different locations can still 

have the same displacement vectors. 

 

7. Choose Earth to be the object of reference. Let the displacement be positive when 

moving in the east direction. Thus, the x-component of the displacement vector can be 

written as 70 kmx  2  On the other hand, if the displacement is defined to be positive 

when moving in the west direction, then we would have 70 kmx  1  

 

 
 

 

8. (a) You can simply count your steps or use a pedometer, and a watch to record the time. 
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(b) There are uncertainties associated with the recording of time as well as the number of 

steps counted as you move from the front door. Both quantities have been rounded to the 

nearest integer. 

 

(c) Your position (measured in number of steps) relative to the front door as a function of 

time (in seconds) is shown below. 

 
 

(d) The mailman has just delivered your mail. You’ve been waiting impatiently to receive 

the new physics textbook you’d ordered. You rushed from the front door of your house to 

the mailbox located 20 steps away and picked up the mail 6 seconds later. As you hurried 

back, you started looking through the mail, and were disappointed that the package had 

not yet arrived. 

 

(e) Assuming the motion to be one-dimensional (along a straight path), the values for x 

given in Table 1.9 would represent the displacement (relative to the door). In this case, 

the distance is the same as the path length since both measure the total number of steps 

walked. 

 

t (s) 1 2 3 4 5 6 7 8 9 

x (steps) 2 4 9 13 18 20 16 11 9 

path length 

(steps) 
2 4 9 13 18 20 24 29 31 

 

 
 

9. To determine the time interval it takes for light to pass through an atomic nucleus, we 

first need to know the size of the nucleus. The size depends on the atomic mass of the 
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sample you use, but generally is on the order of a few Fermi (1 fm =1015 m). We also 

assume that the nucleons (protons and neutrons) have their mass distributed uniformly 

throughout the nucleus. By further assuming that the speed of light in the nucleus is the 

same as that in vacuum, we estimate the time taken to pass through the nucleus to be 

   15 8 235 10 m / 3 10 m/s 10 st     2 2 Typically, it takes a few yoctoseconds (1024s) 

for light to traverse through a nucleus. 

 

10. (a) Using the conversion factors 

 

1 mi 5280 ft 1 609 km 1609 m

1 h 60 min 3600 s,

   

 
 

we have 

mi mi 1h 5280ft
65 65 95 3ft/s

h h 3600s 1mi

   
       

   
 

 

mi mi 1h 1609m
65 65 29 1m/s

h h 3600s 1mi

   
       

   
 

 

mi mi 1 609km
65 65 104 6km/h

h h 1mi

 
    

 
 

 

(b) The speed of the car in mi/h is 

 

km 1mi
100 km/h 100 62 1mi/h

h 1 609km

 
    

 
 

 

11. With the conversion factors for distance and time 

 

1 mi 5280 ft 1 609 km 1609 m

1 h 60 min 3600 s

   

 
 

 

we obtain the following conversion factors for speed: 

 

mi 1h 1609m
1 mph 1 0 447 m/s

h 3600s 1mi

mi 1 609km
1 mph 1 1 609km/h

h 1mi

km 1000m 1 h
1 km/h 1 0 278m/s

h 1km 3600s

   
       

   

 
    

 

   
       

   
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(a)    
1 609 km/h 0 447 m/s

36 mph 36 mph 57 9 km/h 36 mph 16 1m/s
1 mph 1 mph

    
          

   
 

 

(b)

   
1 mph 0 278 m/s

349 km/h 349 km/h 217 mph 349 km/h 96 9m/s
1 609 km/h 1 km/h

   
         

   
 

 

(c) 

   
1 km/h 1 mph

980 m/s 980 m/s 3528 km/h 3528 km/h 2192mph
0 278 m/s 1 609 km/h

   
        

    

 

12. Assume that the hair grows at a rate of approximately 1.3 cm in one month, we have 

 

9cm cm 0 01 m 1 month
1 3 1 3 5 0 10 m/s

month month 1cm 30 86400 s

   
          

   

2  

or about 5 nm/s. 

 

13. (a) Take the time interval for 80 heartbeats to be about 1 minute. The speed of the van 

is then 

1 mi 1 mi 60 min
60 mi/h 60mph

1 min 1 min 1 h
x

d
v

t

 
      
  

 

 

 

(b) We choose a reference frame with Earth as the 

object of reference. For a person standing at the first 

exit, he notices that the distance of separation between 

him and the van increases as 

   60 mi/hxx t v t t  The position-versus-time graph 

is shown to the right.  

 

14. (a) An example of the simplified map is shown below. 

 

 
(b) For the map shown, the total path length is given by 



College Physics, Etkina, Gentile, Van Heuvelen 

1-11 
Copyright 2014 © Pearson Education, Inc. 

60 m 200 m 50 m 50 m 360 ml       

Assuming that it takes about 5 minutes to walk from the dorm to the classroom, then the 

average speed would be about 
360 m

1 2 m/s
5 60 s

l
v

t
   
 

. 

15. (a) The story can be: A hiker is 10 km away from his camping ground. He walks 

along a straight path at a speed of 4.0 km/h to get back to his tent to rest. The time t = 0 

corresponds to the moment when the hiker has just begun to walk. The observer is 

another hiker who is already back at the camping ground. 

 

Another story could be: A father and his child are 10 km away from home (where the 

mother is). The father then carries the child on his back and starts walking toward the 

mother at a pace of 4 km/h. However, in the reference frame of the child (the observer), it 

is the mother who is moving toward them at a speed of 4 km/h. 

 

(b) The equation      10 km 4 km/hx t t   gives  0 10 kmx    If the value 10 km has 

just one significant digit, the actual distance could fall between 9.5 km and 15 km. 

However, if 10 km has two significant digits, then the actual distance would be between 

9.0 km and 11 km. 

 

16. The average speed of the hike is 

 

317,000 steps
6800 steps/h 6 80 10 steps/h

2 50 h

l
v

t
     
 

 

 

The result above is written in three significant digits, assuming that the value 17,000 has 

at least three significant digits. However, if the step count by the pedometer is known to 

only two significant digits, then using scientific notation, we have 41 7 10 stepsl    , and 

the speed would be 36 8 10 steps/hv      This holds true regardless of whether time is 

given as 2.5 h or 2.50 h. 

 

17. We interpret “four seconds” to be 4.0 s, with two significant digits. The distance 

between the clouds and the hikers is then 

 

  340 m/s 4 0 s 1360 m 1 36 kmd vt       

 

or 1.4 km in two significant digits. To calculate the uncertainty, we write v and t as 

  23 4 0 1 10 mv       and  4 0 0 1 st       Thus, we find the distance to be between 

  23 3 10 m/s 3 9 s 1287 m    and   23 5 10 m/s 4 1s 1435 m    Our result should be 

quoted as  1 4 0 1 kmd       
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18. The time it takes for light to reach the Earth from the Sun is 

 
9

8

150 10 m
500 s

3 0 10 m/s

d
t

c


   

 
 

 

which should be written as 25 0 10 s   in two significant digits. The uncertainties can be 

included by reporting the result as   25 0 0 1 10 s,     which means that one could be off 

by as much as 20 seconds. Note, however, that experimentally both the speed of light and 

the Sun–Earth distance (the astronomical unit) have been measured to much greater 

accuracy, and the travel time can be shown to be about 499.2 s. 

 

19. In SI units, 1 light-year is 

 

   8 151 ly 3 00 10 m/s 365 86,400 s 9 46 10 mc t         

 

Therefore, the distance to Proxima Centauri is 

 

      15 164 22 0 01 ly 4 22 0 01 9 46 10 m 3 99 0 009 10 md                 

 

where 160 009 10 m  (or 139 10 m ) represents the uncertainty in the calculation. 

 

20. With 71 y 365 25 days 3 16 10 s,      we find the distance between the Uranus and 

the Earth to be approximately equal to 

 

   4 7 121 1 10 m/s 12 3 16 10 s 4 2 10 md vt          

 

This distance is about 28 times that of the distance from the Earth to the Sun. In our 

calculation, we have assumed that Uranus remains stationary, and Voyager traveled  

a straight path. In reality, both the Earth and the Uranus orbit around the Sun, so the 

Earth–Uranus distance are constantly changing, depending on their relative position in 

the Solar system. Measurements have shown that the Earth–Uranus distance falls 

between 122 57 10 m   and 123 15 10 m    

 

21. Sketch and translate From Figure P1.21, we see that both Gabriele and Xena, the 

objects of interest, are riding their bicycles at constant speeds, as indicated by the 

horizontal line in the velocity-versus-time plot. 

 

Simplify and diagram We assume that Gabriele and Xena are point-like objects. We 

choose a reference frame with Earth as the object of reference. We choose the origin of 

the coordinate system to be the position of a stationary observer at the parking lot, and 
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the positive direction will be toward the right, in the direction of cycling. The situation is 

depicted below. 

 
Represent mathematically The positions of Gabriele and Xena with respect to the 

parking lot as a function of time are given by 

 

   

   

0

0

8 0 m/s

6 0 m/s

X X

G G

x t x t

x t x t

  

  
 

 

where 0Xx and 0Gx are the distances between Xena and Gabriele and the observer at time t 

= 0. 

 

Solve and evaluate 

(a) At 20 s,t   the displacements with respect to their initial positions are 

    20 s 6 0 m/s 20 s 120 mGx     for Gabriele and  20 s 160 mXx   for Xena. 

 

(b) The relative speed between Xena and Gabriele is 

 

       rel 8 0 m/s 6 0 m/s 2 0 m/sX Gv v t v t          

 

With a separation of 60 m,d   the time it takes for Xena to catch up would be 

 

rel

60 m
30 s

2 0 m/s

d
t

v
  


 

 

The position of Gabriel as function of time can be written as    60 m 6 0 m/sGx t t   

 Thus, when Xena catches up, G Xx x ,  or    8 0 m/s 60 m 6 0 m/st t      Solving for t, 

we find 30 s,t  which agrees with the answer obtained above. 

 

(c) The position of Gabriel relative to Xena as function of time can be written as 

 

        rel 60 m 6 0 m/s 8 0 m/s 60 m 2 0 m/sG X G Xx t x x t t t              
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Their positions as function of time are plotted below. 

 

 
 

22. (a) The object of reference is the Earth. At t = 0, the person was 80 m east of the post 

office (taken to be the origin). He wanted to get to school that is located 120 m due west 

of the post office. He started to walk at a constant speed, passing the post office after 20 

seconds, and then got to school at t = 50 s. 

 

(b) The motion diagram is shown below. 

 

 
 

The position as a function of time can be written as    80 m 4 0 m/sx t t,    and is 

plotted below. 

 

 
 

 

23. (a) The object of reference is Earth, with east as the positive direction. At t = 0, your 

friend Tom is 200 m due west of the physics building (taken to be the origin). He wants 

to get to the math building located 200 m east of the physics building. He starts to ride his 

bicycle at a constant speed, passing the physics building after 25 seconds, and then 

reaches the math building after another 25 seconds. 
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(b) The motion diagram is shown below. 

 

 
The position as a function of time can be written as    200 m 8 0 m/sx t t,  2  and is 

plotted below. 

 

 
 

24. The relative speed between you and your friend is 

 

rel friend you 1 3 m/s 1 0 m/s 0 30 m/sv v v          
 

After walking for two minutes (t0 = 120 s), the initial separation between you and your 

friend is   you 0 1 0 m/s 120 s 120 md v t      Therefore, the time it takes for your friend 

to catch up to you would be 
2

rel

1 2 10 m
400 s

0 30 m/s

d
t

v

 
  


 

 

or 24 0 10 s,   in two significant digits. In solving the problem, we have assumed that 

both you and your friends have walked a straight path at a constant speed (no stopping). 

 

25. Sketch and translate Both Gabriele and Xena, the objects of interest, are riding their 

bicycles at constant speeds, but in opposite directions. We choose a reference frame with 

Earth as the object of reference. 

 

Simplify and diagram We assume that Gabriele and Xena are point-like objects. The 

origin of the coordinate system will be the zero mark on the bike path, where an observer 

stands, and the positive direction will be toward east. 
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Represent mathematically The positions of Gabriele and Xena with respect to the zero 

mark of the bike path as a function of time are given by 

 

   

   

3

3

3 0 10 m 8 0 m/s

1 0 10 m 6 0 m/s

G

X

x t t

x t t

    

    
 

Solve and evaluate 

(a) The functions describing the positions of Gabriele and Xena with respect to Earth are: 

 

   

   

3

3

3 0 10 m 8 0 m/s

1 0 10 m 6 0 m/s

G

X

x t t

x t t

    

    
 

 

(b) The two people meet when G Xx x   Solving the equation gives 

 

   3 33 0 10 m 8 0 m/s 1 0 10 m 6 0 m/st t,          

 

or t = 143 s, which leads to       3 33 0 10 m 8 0 m/s 143 s 1 86 10 m,G Xx t x t          
or approximately 1.9 km, in two significant digits. 

 

The problem can be solved in three different ways. Besides using Earth as the frame of 

reference, we could have used either Gabriele or Xena as our frame of reference. 

 

(c) Xena’s position with respect to Gabriele can be written as 

 

       

 

3 3

rel

3

1 0 10 m 6 0 m/s 3 0 10 m 8 0 m/s

2 0 10 m 14 m/s

X G X Gx x t x t t t

t

             

   2
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The positions of Gabriel and Xena as a function of time are plotted below. 

 

 
 

26. The relative speed between Jim and the police car is 

 

   rel police Jim 36 m/s 32 m/s 4 0 m/sv v v        

 

With a separation of 300 m,d   the time it takes for the police car to catch up to Jim 

would be 

rel

300 m
75 s

4 0 m/s

d
t

v
   


 

 

which implies a distance of   police police 36 m/s 75 s 2700 m,d v t    or 2.7 km. 

 

27. Sketch and translate The average speed is the total 

distance traveled divided by the total time of travel. Let the 

distance to the top of the hill be d. The time taken for the 

first part of the hike is 1 1 1t d / v ,   where d1 is the distance 

and v1 is the speed. Similarly, for the second part, we have 

2 2 2t d / v ,   where d2 is the distance and v2 is the speed. 

 

Simplify and diagram The total distance traveled is 

1 2d d d ,   and the total time of travel is 1 2t t t       

The average speed is given by the slope of the straight line 

connecting the two end points, as shown in the figure. 

 

 

Represent mathematically The total time of travel can be written as 

 

1 2 1 2 2 1
1 2

1 2 1 2

d d d v d v
t t t

v v v v


        

Thus, the average speed is 

1 2
avg

1 2 2 1

v vd
v d

t d v d v
 
 
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Solve and evaluate Given that 1 2 3d d / , 1 3 0 mph,v   2 3d d / , and 2 6 0 mi/h,v    

the above expression simplifies to 

  

     

  

   
avg

3 0 mi/h 6 0 mi/h 3 3 0 mi/h 6 0 mi/h
3 6 mi/h

2 3 6 0 mi/h 3 3 0 mi/h 2 6 0 mi/h 3 0 mi/h

dd
v

t d / d /

   
    
      

 

 

28. Using the result from the previous problem, we find the average speed of the race to 

be (with 1 2 2d d d /  ) 

1 2 1 2
avg

1 2 2 1 1 2

2v v d v vd
v

t d v d v v v
  
    

 

Solving the above expression for v2, we obtain 

 

  

 
1 avg

2

1 avg

2 01 m/s 2 05 m/s
2 09 m/s

2 2 2 01 m/s 2 05 m/s

v v
v

v v

 
   

   
 

 

29. Sketch and translate Let the time taken for the first part of the trip be 1 1 1t d / v ,   

where d1 is the distance traveled and v1 is the speed. Similarly, for the second part, we 

have 2 2 2t d / v ,   where d2 is the distance and v2 is the speed. The total distance traveled 

is 1 2d d d ,   and the total time of travel is 

1 2 1 2 2 1
1 2

1 2 1 2

d d d v d v
t t t

v v v v


        

 

Simplify and diagram Given that 1 2 2 50 kmd d d /   , 

the speed for the first 50 km is 1 50 km/h,v   and we want the 

average speed of the 100-km trip to be 100 km/h. The sketch 

is shown to the right. 

 

Represent mathematically The average speed can be written 

as 

1 2 1 2
avg

1 2 2 1 1 2

2v v d v vd
v

t d v d v v v
  
    

 

Solving the above equation for v2 gives 

1 avg

2

1 avg2

v v
v

v v



 

 

Solve and evaluate With 1 50 km/h,v   we see that in order to attain an average speed of 

100 km/h, the speed for the second part of the trip must be infinite ( 1 avg2 0v v  ), as can 
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be seen from the vertical line shown in the figure above. Therefore, we conclude that it is 

physically impossible to reach this average speed, no matter how fast the driver goes. 

 

30. A stationary observer on the ground sees Jane moving at a speed of 4.0 m/s and Bob 

at a speed of 3.0 m/s. From Jane’s reference frame, Bob is moving toward her at a speed 

of 7.0 m/s. Similarly, from Bob’s reference frame, Jane approaches him at a speed of 7.0 

m/s. In all three frames, the time elapsed for Bob and Jane to meet up is 

 

rel

100 m
14 3 s

7 0 m/s

d
t

v
    


 

 

or about 14 s in two significant digits. Jane has moved about 57 m, while Bob has moved 

43 m. 

 

31. (a) The position functions for the four cases are 

 

   

 

   

   

1

2

3

4

30 m 8 33 m/s

10 m

10 m 5 0 m/s

10 m 3 33 m/s

x t t

x t

x t t

x t t

   



  

   

2

2

2

 

 

(b) For object 1, we have 10 30 mx   and    10 50 m / 6 0 s 8 33 m/sv      2  The object, 

with an initial displacement of +30 m with respect to a reference point which we take to 

be the origin, moves at a constant velocity of 8.33 m/s. Object 2 remains at rest at the 

position 2 10 mx  2  Object 3 has an initial displacement of 10 m with respect to the 

origin, and moves at a constant velocity of 5.0 m/s. Similarly, object 4 has an initial 

displacement of 10 m with respect to the origin, and moves at a constant velocity of 

3.33 m/s. The acceleration is zero in all four cases. 

 

32. The initial speed of the car is 0x iv   and its speed 30 s later is 10 m/sx fv    The 

average acceleration of the car is 

 

210 m/s 0
0 33 m/s

30 s

x
x

v
a

t

 
   


 

 

33. (a) The truck has an initial velocity 0 16 m/sxv    With a constant acceleration 
21 0 m/sxa    for t1 = 5.0 s, its velocity at the end of the time interval is 

 

   2

1 0 1 1 16 m/s 1 0 m/s 5 0 s 21 m/sx x xv v a t        
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The distance the truck has traveled while accelerating is 

 

     
22 2

1 0 1 1 1

1 1
16 m/s 5 0 s 1 0 m/s 5 0 s 92 5 m

2 2
x xx v t a t          

 

(b) With an acceleration of 2

2 2 0 m/sxa  2  for t2 = 3.0 s, the final velocity of the truck is 

 

  2

2 1 2 2 21 m/s 2 0 m/s 3 0 s 15 m/sx x xv v a t         

 

and the displacement during this time interval is 

 

     
22 2

2 1 2 2 2

1 1
21 m/s 3 0 s 2 0 m/s 3 0 s 54 m

2 2
x xx v t a t          

 

The distance traveled by the truck as function of time is plotted below. 

 

 
 

The total distance traveled during the 8-second interval is 92 5 m 15 m 146 5 m      

 

34. We assume constant acceleration during the collision process. In the reference frame 

of a stationary observer on Earth, the velocity change for each car is 3 2 m/sxv   2  

With 228 m/sxa ,2  the time required for the car to come to a complete stop is 

 

 
2

3 2 m/s
0 114 s

28 m/s

x

x

v
t

a

 
   

2

2
 

 

and the corresponding stopping distance is 

 

     
22 2

0

1 1
3 2 m/s 0 114 s 28 m/s 0 114 s 0 183 m

2 2
x xx v t a t           

 or about 18 cm. 
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35. We assume that the bus starts from rest ( 0 0xv  ) at the intersection and undergoes 

constant acceleration with 22 0 m/sxa   1  At the end of a 5.0-second interval, the 

displacement of the bus with respect to the intersection is 

 

  
22 2

0

1 1
0 2 0 m/s 5 0 s 25 m

2 2
x xx v t a t        

 

On the other hand, if the bus has a non-zero initial velocity 0 0xv ,  then its displacement 

after 5.0 s would be  0 5 0 s 25 m,xv    which is greater than 25 m. 

 

36. The acceleration of the bus is 

 

220 m/s 16 m/s
0 50 m/s

8 0 s

x
x

v
a

t

 
   
 

 

 

Since the jogger speeds up at the same acceleration as the bus, his velocity and position 

as a function of time as observed by a stationary observer (standing at where the bus first 

passed him) are 

     

     

2

0

2 2 2

0

4 0 m/s 0 50 m/s

1 1
4 0 m/s 0 50 m/s

2 2

v t v at t

x t v t at t t

     

     
 

 

37. (a) The motion diagram is shown below 

 

 
 

The position, velocity, and acceleration as function of time are given by 

 

     

   

 

2 21
2

2

2

3 0 m/s 0 50 m/s

3 0 m/s 0 50 m/s

0 50 m/s

x t t t

v t t

a t

    

   

 

2  
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(b) A story for the motion could be as follows: At t = 0, a bicyclist, with an initial speed 

of 3.0 m/s due west (east taken to be positive), realizes that he’s going in the “wrong” 

direction and begins to apply the brake. His acceleration is 0.50 m/s2 (due east). He 

comes to a complete stop 6.0 s later at 

 

        
221

2
6 0 s 3 0 m/s 6 0 s 0 50 m/s 6 0 s 9 0 mx t           2  

 

He then quickly turns around and pedals eastward with the same acceleration as before. 

 

38. Sketch and translate The sketch of the process is shown below. The bicycle is the 

object of interest and is moving downhill, which we take to be the positive direction with 

respect to the chosen reference frame. 

 
 

Simplify and diagram With our convention, the components of the bicycle’s velocity 

along the axis of motion are positive at t = 0 and t = 10 s. The speed of the bicycle (the 

magnitude of its velocity) increase; it is moving faster in the positive direction. 

 

Represent mathematically The speed of the cyclist at the end of the descent is 

0x xv v at    Similarly, the distance traveled during this time interval is 21
0 2xx v t at    

 

Solve and evaluate With 0 10 m/sxv   and 21 2 m/sa ,   the speed of the cyclist at the 

end of the descent that lasts for 10 s is 

 

    2

0 10 0 m/s 1 2 m/s 10 s 22 m/sx xv v at        

 

The distance traveled during the 10-s interval is 

 

     
22 2

0

1 1
10 m/s 10 s 1 2 m/s 10 s 160 m

2 2
xx v t at       

 

In arriving at the results above, we have assumed a constant acceleration (ignoring factors 

such as the air resistance and condition of the road), and a completely straight path for 

our one-dimensional kinematics analyses to hold. 
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39. The initial speed of the truck in SI units is 0 16 km/h 4 44 m/sv      With 

6 4 cm,x    we find the acceleration of the truck during the collision to be 

 

 

 

22 2
20

0 4 44 m/s
154 m/s

2 2 0 064 m

v v
a

x

 
  

 
2  

 

or 2 21 5 10 m/s    rounded to two significant digits. The negative sign indicates that the 

truck is slowing down. 

 

40. (a) Using 0v v at,   the time interval required for the speed increase is 

 

0

2

0 45 m/s 0 15 m/s
0 25 s

1 2 m/s

v v
t

a

   
   


 

 

(b) Using 2 2

0 2v v a x,    we find the distance the squid has traveled while accelerating 

to be 

   

 

2 22 2

0

2

0 45 m/s 0 15 m/s
0 075 m

2 2 1 2 m/s

v v
x

a

  
    


 

or about 7.5 cm. 

 

41. The initial and final speeds are 0 0v   and 663 km/h 184 2 m/s,v    respectively. 

The time it takes for her to reach this speed is 3 22 s,t    so the average acceleration is 

 

2184 2 m/s
57 2 m/s

3 22 s

v
a

t

 
   
 

 

 

On the other hand, to stop in 20 s,t    the required acceleration would be 

 

20 184 2 m/s
9 2 m/s

20 s

v
a

t

  
    

 
2  

In our calculations, we have assumed one-dimensional motion, where the dragster is 

taken to be a point-like object. In addition, by ignoring factors such as air resistance and 

road condition, the acceleration is taken to be constant throughout. 

 

42. Sketch and translate The sprinter’s motion consists of two phases: an accelerating 

phase that lasts for 1.8 s, attaining a speed of 10.8 m/s, and a constant-speed phase, in 

which the sprinter maintains a speed of 10.8 m/s until he reaches the finish line. 

 

Simplify and diagram We assume the motion to be one-dimensional, and model the 

sprinter as a point-like object. We also assume a constant acceleration that ends abruptly 
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upon reaching 10.8 m/s, the speed at which the sprinter maintains for the remaining part 

of the race. The situation is depicted below. 

 

 
 

Represent mathematically The acceleration of the sprinter to attain a final speed of  

10.8 m/s in 1.8 s is 

20

1

10 8 m/s 0
6 0 m/s

1 8 s

v v
a

t

  
   


 

During this time interval, the sprinter has advanced 

 

  
22 2

1 0 1 1

1 1
0 6 0 m/s 1 8 s 9 72 m

2 2
x v t at          

 

and the distance remained for the 100-m race is 2 1100 90 28 mx x       

 

Solve and evaluate The time required to finish this segment at a constant speed of  

10.8 m/s is 

2
2

90 28 m
8 36 s

10 8 m/s

x
t

v

 
    


 

So it took the sprinter 1 2 1 8 s 8 36 s 10 2 st t t        to finish the entire race. 

 

43. The motion diagrams for the two runners are shown below. 

 

 
 

From the diagram, we see that the distance between the two runners will continue to 

increase with time. 

 

Quantitatively, the positions of the two runners can be represented by 
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     

     

2

1 0 0

2 2

2 0 0 0 0 0

1

2

1 1

2 2

x t x v t t a t t

x t x v t v t at x v t t at

      

         

 

 

Note that the time origin in the expressions above corresponds to the moment when the 

second runner also begins to accelerate. The separation between the two runners is 

 

       
2 22

1 2

1 1 1

2 2 2
x t x x a t t at a t t a t           

 

Initially the distance between the two runners is  
2

0 2x a t /     However, the linear 

term  a t t  tells us that x  will increase with time, as shown in the position-versus-

time graph below. 

 
 

44. (a) Using 2 2

0 2v v a x,    we find the acceleration of the meteorite to be 

 

 

 

22 2
5 20

0 500 m/s
6 25 10  m/s

2 2 0 20 m

v v
a

x


    

 
2  

 

which has a magnitude of 5 26 25 10  m/s    In the above, we have taken the meteorite to 

be a point-like object, and applied the one-dimensional kinematics analysis. 

 

(b) The time it takes for the meteorite to come to a complete stop is 

 

40

5 2

0 500 m/s
8 0 10 s

6 25 10 m/s

v v
t

a

 
    

 

2

2
 

 

45. The acceleration of the froghopper is 

 

3 2

3

4 0 m/s 0
4 0 10 m/s

1 0 10 s

v
a

t

  
    
   2
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The distance moved while accelerating is 

 

 

 

22 2
30

3 2

4 0 m/s 0
2 0 10  m

2 2 4 0 10 m/s

v v
x

a

 
     

 

2  

 

or about 2.0 mm. 

 

46. The final speed of the tennis ball is 209 km/h 58 1 m/sv      Using 2 2

0 2v v a x,    

the average acceleration of the tennis ball is 

 

 

 

22 2
4 20

58 1 m/s 0
1 7 10  m/s

2 2 0 10 m

v v
a

x

 
    

 
 

The time interval for the racket-ball contact is 30

4 2

58 1 m/s
3 4 10 s,

1 7 10 m/s

v v
t

a

 
    

 

2 or 

about 3.4 ms. 

 

47. To attain a speed of 1 80 km/h 22 2 m/sv     in t1 = 0.40 s, the acceleration during 

launch is 

21
1

1

22 2 m/s 0
55 6 m/s

0 40 s

v
a

t

 
   


 

 

After the launch, the time it takes to stop the motion using a catching net with 

acceleration 2

2 180 m/sa 2 is 

1
2 2

2

0 0 22 2 m/s
0 12 s

180 m/s

v
t

a

  
     

 

The distance traveled while being stopped by the net is 

 

     
22 2

2 1 2 2 2

1 1
22 2 m/s 0 12 s 180 m/s 0 12 s 1 37 m

2 2
x v t a t            

 

or about 1.4 m, rounded to two significant digits. 

 

48. With an initial speed of 0 284 4 m/s,v    the average acceleration required to stop the 

motion in 1.4 s is 

20 284 4 m/s
203 m/s

1 4 s

v
a

t

  
  
 

2  
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The negative sign indicates that the velocity is decreasing. The distance traveled as the 

sled slows down is 

     
22 2

0

1 1
284 4 m/s 1 4 s 203 m/s 1 4 s 199 m

2 2
x v t at           

or about 200 m. 

 

49. (a) Using 0v v at,   we find the acceleration of the sprinter to be 

 

2

1

11 2 m/s
5 6 m/s

2 0 s

v
a

t

 
   


 

(b) The distance traveled during this time interval is 

 

  
22 2

1 0 1 1

1 1
0 5 6 m/s 2 0 s 11 2 m

2 2
x v t at          

 

(c) In our calculations, we have assumed one-dimensional motion, where the sprinter is 

taken to be a point-like object and the path is a straight line. We also take the acceleration 

to be constant throughout the interval. 

 

(d) The distance to the finish line is 2 100 m 11 2 m 88 8 mx        The time required to 

finish this segment of the race at a constant speed of 11.2 m/s is 

 

2
2

88 8 m
7 93 s

11 2 m/s

x
t

v

 
    


 

 

(e) It takes the sprinter 1 2 2 0 s 7 9 s 9 9 st t t        to finish the entire race. With 2 

significant digits, the uncertainty is 0.1 s. 

 

50. Sketch and translate The sprinter’s motion consists of two phases: an accelerating 

phase that lasts for 1.7 s, attaining a maximum speed maxv , followed by a constant-speed 

phase, in which the sprinter maintains his maximum speed maxv  until he reaches the finish 

line. 
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Simplify and diagram We assume the motion to be one-dimensional, and model the 

sprinter as a point-like object. We also assume a constant acceleration that ends abruptly 

upon reaching vmax. The position and velocity as a function of time are depicted below. 
 

 

 

 

Represent mathematically The average acceleration needed to reach the maximum 

speed maxv  in 1 1 7 st    is max 1a v / t   During this phase, the sprinter has traveled 

 

2 2max
1 1 1 max 1

1

1 1 1

2 2 2

v
x at t v t

t

 
    

 
 

 

Note that x1 is the area of the triangle in the velocity-versus-time graph. Thus, the 

distance remaining for the 200-m race is 2 max 1200 m 2x v t /     

 

Solve and evaluate In order to tie for the 19.5-s record, he must complete this distance in 

2 19 5 s 1 7 s 17 8 st         The two statements together imply 

 

max 12 1 1
2 2

max max max max

200 m 2 200 m 200 m 1 7 s
17 8 s 18 65 s

2 2 2

v t /x t t
t t

v v v v

 
             

 

which can be solved to give max 10 7 m/sv     

 

51. The initial speed of the bus is 0 36 km/h 10 m/sv     Assuming that the bus has a 

constant acceleration of 21 2 m/sa , 2  the distance it travels before coming to a 

complete stop is 

 

 

22 2

0

2

0 10 m/s
41 67 m

2 2 1 2 m/s

v v
x

a


    

 
 

 

or about 42 m, in two significant digits. 
 

52. We assume the car to be a point-like object and apply one-dimensional kinematics to 

analyze its motion. The information on the acceleration of the car can be extracted from 

one of the three formulas: a v / t,   or  2 2

0 /2a v v x,   21
2

x at    For example, if we 

know the time (t) it takes for the car to travel a certain distance (x), starting from rest, 
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then the acceleration would be 22a x / t    On the other hand, if we know the speed of 

the car at the end of the accelerating interval, then we can simply use a v / t  to deduce 

the acceleration. 

 

53. During the tth second, the displacement is 2t. For the first t second, the total 

displacement is 12 tt x    Since  1 22 1 . . .t tx t x ,     one can readily show that the 

displacement as a function of time can be written as 

 

2( 1)
( ) 2 4 6 . . . 2 2

2

t t
x t t t t


         

Comparing with the standard form   21
0 2

x t v t at   for constant acceleration a, we see 

that the equation above indeed describes a motion with constant acceleration 22 0 m/sa    

(and 0 1 0 m/sv   ). 

 

54. (a) Using 0v v at,   we find the acceleration of the car to be 

 

  2
20 m/s 10 m/s

2 5 m/s
4 0 s

v
a

t

 
   
 

2
2  

 

(b) In this case, the acceleration is 
  2

18 m/s 20 m/s
1 0 m/s

2 0 s

v
a

t

 
   
 

2
1 . 

 

(c) In (a), the object is moving in the –x-direction, with acceleration also in the –x-

direction (a < 0). On the other hand, in (b), the object is moving in the –x-direction, while 

the acceleration points in the +x-direction (a > 0). 

 

55. The displacements of cars A and B are tabulated below: 

 

time (s) 0 10 20 30 40 50 60 

xA(m) 200 0 –200 –400 –600 –800 –1000 

xB(m) –200 –100 0 100 200 300 400 

 

Mathematically, the positions can be written as 

 

     

     

A A0 A0

B B0 B0

200 m 20 m/s

200 m 10 m/s

x t x v t t

x t x v t t

   

    
 

 

56. (a) From    10 m 4 0 m/sx t t,    we know that the initial position of the object is 

0 10 mx  and it moves with a constant velocity 0 4 0 m/sv  2  (zero acceleration). 
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(b) A student is 10 m east of the physics building (taken to be the origin) when he realizes 

that there is a special seminar on the origin of the Universe. Not wanting to miss any part 

of it, he starts running at 4.0 m/s toward the building. 

 

(c) The position-versus-time graph is shown below. 

 
 

The student reaches the physics building after    10 m / 4 0 m/s 2 5 st       

 

57. (a) The function      2 2100 m 30 m/s 3 0 m/sx t t t   2  describes a motion with 

constant acceleration. 

 

(b) The object is initially at 0 100 mx 2  (with respect to some reference frame) with an 

initial velocity of 0 30 m/s,v 1  and a constant acceleration 26 0 m/sa     

 

(c) A car is initially 100 m west of an intersection (origin, with east taken to be positive) 

and heading east at a speed of 30 m/s when the driver notices that the traffic light has 

turned yellow. He steps on the gas pedal and the car starts to accelerate at 3.0 m/s2. 

 

(d) The velocity function of the car is    230 m/s 6 0 m/sv t t     

 
 

(e) The time 5 0 st  2  is the only time where the speed of the car is zero. It is at 

175 mx  2  One can think of this instant as 5.0 s before some reference time. 
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58. (a) From      2 2 2 215 m 3 0 m/s 15 m 3 0 m/sx t t t ,       we find the initial 

position of the object to be at 0 15 mx    Its initial velocity is 0 0v ,  and the object is 

undergoing a constant acceleration with 26 0 m/sa     Its velocity can be written as 

   26 0 m/sv t t    The graphs of position, velocity, and acceleration as function of time 

are plotted below. 

 

   

 

Story: A car is initially parked illegally 15.0 m due east of an intersection (taken to be the 

origin). Seeing a police car coming, the driver starts his car and moves away (eastbound) 

with acceleration 3.0 m/s2. 

 

(b) From    230 0 m 1 0 m/sx t t,    we find the initial position of the object to be at 

0 30 mx    Its initial velocity is 0 10 m/sv ,2  with zero acceleration. The graphs of 

position, velocity, and acceleration as function of time are plotted below. 
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Story: A student is 30 m due east of his classroom (taken to be the origin, with east 

positive) when he realizes that he forgot to turn in his homework. He starts walking at a 

speed of 1.0 m/s toward the classroom, and gets there after 30 s. 

 

(c) For 10 m,x 2  the initial position of the object is at 0 10 mx 2 (with respect to 

some reference point). The object is at rest there with zero velocity and zero acceleration. 

 

Story: A car has been parked 10 m due west of a stop sign (the origin, with east being the 

positive x-direction). The graphs of position, velocity, and acceleration as function of 

time are plotted below. 

 

   
 

59. Sketch and translate We choose Earth as the object of reference with the observer’s 

position as the reference point. The positive direction points to the east. We have two 

objects of interest here – A and B, which we treat as point-like. 

 

Simplify and diagram The initial position of object A is A0 10 mx  and its constant 

velocity is A0 4 0 m/sv  2  (the velocity is negative since it’s moving westward). Object 

B’s initial position is B0 12 mx 2  and its constant velocity is B0 6 0 m/sv  1 . 

The motion diagram of the objects is shown below. 

 

 
 

Represent mathematically The positions of objects A and B are given by 

 

     

     

A A0 A0

B B0 B0

10 m 4 0 m/s

12 m 6 0 m/s

x t x v t t

x t x v t t

    

     
 

 

Solve and evaluate From the graph shown above, we see that the two objects would 

meet between 2.0 and 3.0 s later at a position between x = 0 and x = 2.0 m. 

 

We also plot the graphs of position and velocity as function of time. 



College Physics, Etkina, Gentile, Van Heuvelen 

1-33 
Copyright 2014 © Pearson Education, Inc. 

  
Solving the equation mathematically, we find 

 

       10 m 4 0 m/s 12 m 6 0 m/st t       

 

which gives 2 2 st     So the two object meet at 

  A B 10 m 4 0 m/s 2 2 s 1 2 mx x         

 

60. The velocities and positions of the two cars can be written as 

 

   

   

2

1

2

2

30 m/s 6 0 m/s

24 m/s 6 0 m/s

v t t

v t t

  

  
 

and 

     

     

2 21
1 2

2 21
2 2

30 m/s 6 0 m/s

24 m/s 6 0 m/s

x t t t

x t t t

  

  
 

 

Using 0v v at,   we find that Car 1 stops after 5.0 s, and Car 2 stops after 4.0 s. The 

distances traveled while stopping are 

 

       

       

221
1 2

221
2 2

5 0 s 30 m/s 5 0 s 6 0 m/s 5 0 s 75 m

4 0 s 24 m/s 4 0 s 6 0 m/s 4 0 s 48 m

x t

x t

       

       
 

 

The graphs below show how their velocities and positions change with time. 
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61. (a) At t = 0, a car is moving at a constant velocity of 20 m/s. At t = 8.0 s, the driver 

begins to slow down by applying a negative constant acceleration, and the car comes to a 

complete stop at t = 20 s. 

 

(b) The acceleration of the car is     220 m/s / 12 s 1 67 m/sa v / t       2  So the 

velocity of the car at 10 st   is   2

10 20 m/s 1 67 m/s 10 s 8 0 s 16 67 m/sv          The 

displacement of the car during a time interval is given by the area under the velocity-

versus-time curve. Thus, between 10 s and 20 s, we have 

 

  10 20

1
16 67 m/s 20 s 10 s 83 3 m

2
x        

 

(c) The displacement for the first 8 seconds is 

 

  0 8 20 m/s 8 0 s 160 mx      

 

Similarly, from 8.0 s to 20 s, we have 

   8 20

1
20 m/s 20 s 8 0 s 120 m

2
x       

 

Thus, the total distance traveled is 0 20 0 8 8 20 160 m 120 m 280 m,x x x        and the 

corresponding average speed is 

 

0 20
avg

280 m
14 m/s

20 s

x
v

t

  


 

62. (a) The following story could be used to describe the graph: At t = 0, the driver of a 

car that is moving at a constant velocity of 20 m/s due west (with east taken to be the 

positive x-direction) has just realized that he was going the wrong way. He steps on the 

brake (which applies a constant deceleration) and the car comes to a stop 30 s later. He 

quickly turns around and heads east with a constant acceleration, reaching a speed of 10 

m/s at t = 45s. Between 45 s and 60 s, the car maintains this speed. At t = 60 s, the driver 

thinks that he might be late for his appointment and begins to accelerate; the car reaches 

20 m/s at t = 70s. 

 

 (b) The acceleration between 0 and 45 s is 

 

  2
10 m/s 20 m/s

0 67 m/s
45 s

v
a

t

 
   


 

 

During this interval, the displacement of the car is the area under the curve: 
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     0 45 0 30 30 45

1 1
20 m/s 30 s 10 m/s 45 s 30 s

2 2

300 m 75 m 225 m

x x x       

  2 2

 

 

The same result can be obtained using 

 

     
22

0 45

1
20 m/s 45 s 0 67 m/s 45 s 225 m

2
x      2  

 

The path traveled is 300 m 75 m 375 ml     q q q q  

 

(c) For the next two time intervals, we have 

 

  

  

45 60

60 70

10 m/s 60 s 45 s 150 m

1
20 m/s 10 m/s 10 s 150 m

2

x

x





  

  
 

 

Thus, the total displacement for the first 70 s is 

 

0 70 0 30 30 45 45 60 60 75 300 m 75 m 150 m 150 m 75 mx x x x x            2  

 

and the average velocity is 0 70
avg

75 m
1 07 m/s

70 s

x
v

t

   


. On the other hand, the path 

length the car has traveled is 

 

0 70 0 30 30 45 45 60 60 75 300 m 75 m 150 m 150 m 675 ml x x x x            q q q q q q q q  

 

giving an average speed of 0 70
avg

675 m
9 64 m/s

70 s

l
s

t

    


 

 

63. From the figure, we see that Car 2 is moving at a constant velocity since the spacing 

between dots is uniform. On the other hand, the non-uniformity in the spacing between 

dots for Car 1 implies that it has non-zero acceleration. 

 

Qualitatively, we see that both cars are at the same position at t = 1.0 s and have the same 

displacement between t =3 and t = 4 s. Thus, the cars should have roughly the same speed 

at t = 3.5 seconds. 

 

We can also analyze the problem more quantitatively. Let’s assume that the velocity of 

Car 1 is initially zero, so its position is represented as   21
1 10 12

x t x a t ,   where a1 is the 
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constant acceleration. Similarly, for Car 2, we have  2 20x t v t   Now at t = 1 s, both cars 

are at the same position: 

10 1 20

1

2
x a v    

 

In addition, both cars have the same displacements between 3.0 s and 4.0 s. This gives: 

 

 2 2

20 10 1 1

1 7
4 3

2 2
v x a a      

(a) The speeds of the two cars are 

 

   1 1 2 20v t a t, v t v   

 

We readily see that the two speeds are the same at t = 3.5 s. 

 

(b) The positions of the cars as function of time can be written as (in SI units) 

 

 

 

21
1 1 12

2 1

3

3 5

x t a a t

x t a t

 

 
 

 

For simplicity, we set 2

1 1 0 m/sa ,   so that 20 3 5 m/s,v    and 10 3 0 mx     Thus, 

according to this model, 

 

     
   

2 21
1 2

2

3 0 m 1 0 m/s

3 5 m/s

x t t

x t t

   

 
 

we find that the cars are at the same positions at two different times: t = 1.0 s and 

6 0 st     However, exactly when both cars would meet again depends on the details of 

the initial conditions. 

 
 

64. A possible story for the processes is as follows: A truck with failed brake begins to 

slide down an inclined ramp at constant acceleration. At t = t1, it runs into another parked 

truck, and finally comes to a complete stop 0.40 s later. 
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From the two equations given, the speed of the truck before hitting the second truck is 

1 20 m/sv    With 25 0 m/sa ,   the time it takes for the truck to slide down is 

   2

1 1 1 20 m/s / 5 0 m/s 4 0 s,t v / a      and the distance traveled is (Part I) 

 

  
22 2

1 1 1

1 1
5 0 m/s 4 0 s 40 m

2 2
x a t      

 

For Part II, we find the acceleration to stop the truck in 0.40 s to be 

 

21
2

2

20 m/s
50 m/s

0 40 s

v
a

t
  



2 2
2  

 

The total distance the truck has traveled (relative to its initial position at the top of the 

ramp) is 

     
22

2 1

1
20 m/s 0 40 s 50 m/s 0 40 s 44 m

2
x x        

 

65. (a) Using 21
0 2

y y gt  with 29 8 m/sg ,   the time it takes for the eraser to reach the 

ground (y = 0) is 

 
 0

2

2 15 m2
1 75 s

9 8 m/s

y
t

g
   


 

 

(b) The speed just before striking the ground is   29 8 m/s 1 75 s 17 1 m/sv gt        

 

(c) The result would be   17 1 m/s 1 75 s 30 m,vt      which is greater than 15 m. The 

result is expected since the speed in (b) represents the maximum speed of the eraser. 

 

66. The average speed of the eraser is 

 

 0
avg

15 m
8 57 m/s

1 75 s

y
v

t
   


 

 

which is half of the speed just before impact. Using the average value we obtain 

  avg 8 57 m/s 1 75 s 15 m,v t      which is the height from which the eraser was dropped. 

 

67. Sketch and translate We choose Earth as the object of reference with the ground 

observer’s position as the reference point (y = 0). The positive direction points up. The 

tennis ball is our object of interest, which we treat as point-like. 
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Simplify and diagram The object’s acceleration is 29 8 m/s  on the way up; 29 8 m/s   

on the way down; and even 29 8 m/s   at the instant when the object is momentarily at 

rest at the highest point of its motion. At all times during the object’s flight, its velocity is 

changing at a rate of 9 8 m/s   each second. The position and velocity as a function of 

time are plotted below. 

  
 

Represent mathematically The vertical motion of the tennis ball can be represented by 

 

 

 

21
0 2

0

y t v t gt

v t v gt

 

 
 

 

Note that y(t) is the position of the ball relative to where it was first released. 

 

Solve and evaluate With an initial speed of 0 12 m/s,v   the ball reaches its maximum 

height maxy in 

 

   2

0 12 m/s / 9 8 m/s 1 22 st v / g      

with 

     
22

max

1
12 m/s 1 22 s 9 8 m/s 1 22 s 7 35 m

2
y         

 

The total flight time of the tennis ball is  2 2 1 22 s 2 44 sT t       Note that a speed of 

12 m/s, or about 27 mi/h, is a reasonable value with a human throw. 

 

68. The acceleration of the parachute is 

 

 28 0 m/s 50 m/s
52 5 m/s

0 80 s

v
a

t

  
   
 

2  

 

Using 
2 2

0 2v v a y,   we find the distance fallen to be 
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   

 

2 22 2

0

2

8 0 m/s 50 m/s
23 2 m

2 2 52 5 m/s

v v
y

a

 
    

 
 

 

The magnitude of the acceleration is 252 5 m/s ,  or about 5.36g. Since it exceeds the 5g 

limit, there’s good probability that the skydiver will faint. In our calculation, we have 

modeled the skydiver as a point-like object and ignored the air resistance, which will 

greatly reduce the acceleration of the skydiver. 

 

69. The vertical motion of the helmet can be represented by 

 

   21
0 02

y t v t gt , v t v gt     

 

where upward is the +y-direction. One can show that at 0t v / g the helmet reaches its 

maximum height 2

max 0 2y v / g   With max 5 0 m,y    we find the initial speed to be 

 

  2

0 max2 2 9 8 m/s 5 0 m 9 9 m/sv gy       

 

The total flight time is simply 

   2

02 2 2 9 9 m/s / 9 8 m/s 2 02 sT t v / g         

 

70. Sketch and translate We choose Earth as the object of reference 

with your position as the reference point (y = 0). The positive 

direction points downward. The rock is our object of interest, which 

we treat as point-like. The situation is depicted in the figure to the 

right. 

 

Simplify and diagram With our convention, the rock’s acceleration 

is 29 8 m/s   on the way down. After hitting the water, the echo propagates up at a speed 

of 340 m/ssv  . 

 

Represent mathematically Let   21
0 2

y t v t gt  (with downward as +y), the time taken 

for the rock to drop a distance y0 is 1 02t y / g . It then takes 2 0 st y / v  for the sound 

to travel back. So the time elapsed before you hear the echo is 

 

0 02

s

y y
t

g v
   

 

Solve and evaluate To solve for y0, we first bring the second term to the left-hand-side 

and then square both sides to obtain 
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2

0 02

s

y y
t

g v

 
  
 

 

 

With 7 0 st    and 340 m/ssv  , after some algebra, we obtain 0 201 my    In our 

calculation, we have ignored air resistance and assumed that the rock and the echo travel 

in a straight path. Taking these factors into consideration will result in a lower 

acceleration, and hence a smaller depth. The time it takes for you to hear the echo as a 

function of canyon depth is plotted below. 

 

 
 

71. The vertical distance fallen t seconds after an object undergoes free fall is 21
2

y gt   

Thus, we find the reaction time to be 

 

 
2

2 0 12 m2
0 156 s

9 8 m/s

y
t

g


   


 

 or about 0.16 s. 

 

72. Using   21
2

y t gt (with downward taken to be +y), the time taken for the diver to fall 

at a distance y is 2t y / g . With 36 m,y   we obtain 

 

 
2

2 36 m2
2 7 s

9 8 m/s

y
t

g
   


 

 

The speed of the diver before entering the water is   29 8 m/s 2 7 s 26 6 m/sv gt      . 

In this calculation, we have modeled the diver as a point-like object and ignored air 

resistance. Taking air resistance into consideration would result in a lower speed for the 

diver. 

 

73. The time required for the first rock to strike the ground is 
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 
1 2

2 55 m2
3 35 s

9 8 m/s

y
t

g
   


 

 

For the second rock to reach the ground the same time as the first one, its travel time 

would be 2 1 3 35 s 0 50 s 2 85 st t t          Let its initial speed be 20v   We then have 

 

     
22 2

20 2 20

1 1
55 m 2 85 s 9 8 m/s 2 85 s

2 2
y v t gt v         

 

which can be readily solved to give 20 5 33 m/sv     

 

74. Sketch and translate Upon release, the lunch bag  

will have an initial upward speed of 7.0 m/s, as the hot air 

balloon. An observer on the ground will first see the bag 

go up and then come down. The situation is depicted to 

the right. 

Represent mathematically Using   2

0 0

1

2
y t y v t gt   , 

the position of the bag, the object of interest, can be 

written as (with upward taken to be the positive y-

direction) 

       2 21
24 m 7 0 m/s 9 8 m/s

2
y t t t      

Solve and evaluate Solving the quadratic equation for y = 0, the condition that the bag 

has reached the ground, we obtain 3 04 st   (the other solution t = 1.61 s can be 

rejected). With   0v t v gt,   the velocity of the bag right before hitting the ground is 

 

    2

0 7 m/s 9 8 m/s 3 04 s 22 8 m/sv t v gt       2  

 

The negative sign indicates that the bag is traveling in the –y-direction. The speed of the 

bag is simply +22.8 m/s. The position and velocity of the bag as a function of time are 

plotted below. 
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75. The position of the knife can be written as, with upward taken to be positive y-

direction,   21
0 0 2

y t y v t gt ,    where 0 20 my   and 0 10 m/sv  2  Solving the 

quadratic equation for y = 0, the condition that the knife has reached the ground, we 

obtain 1 24 st   (the other solution t = 3.3 s can be rejected). The velocity of the knife 

right before reaching the ground is 

 

    2

0 10 m/s 9 8 m/s 1 24 s 22 2 m/sv t v gt       2 2  

 

The negative sign indicates that the knife is traveling in the –y-direction. The speed of the 

knife is simply +22.2 m/s. 

 

76. Assuming that the driver of the car before you applied an acceleration of 25 0 m/s   to 

stop his car, it would take    2

1 20 m/s / 5 0 m/s 4 0 st v / a         for the car to stop, 

and the distance traveled during this time interval is 

 

     
22 2

1 0 1 1

1 1
20 m/s 4 0 s 5 0 m/s 4 0 s 40 m

2 2
x v t at          

 

Driving at a distance 20 m behind the first car, you have a total of 4.0 s to respond to 

avoid a collision. With a reaction time of t = 0.60 s, your car has advanced a “reaction 

distance” of   20 m/s 0 60 s 12 mx      This means that you must be able to stop your 

car within 2 1 4 0 s 0 60 s 3 4 s,t t t         and the “braking distance” be less than 

40 m 20 m 12 m 48 mcx       The acceleration to stop in 3.4 s is 

    2

2 2 20 m/s / 3 4 s 5 88 m/sa v / t      2 , and the distance traveled is 

 

     
22 2

2 0 2 2 2

1 1
20 m/s 3 4 s 5 88 m/s 3 4 s 34 m

2 2
x v t a t          

 

This is less than 40 m, so a collision can be avoided. 

 

77. Suppose Car 1 traveling with a speed of v10 applies a constant acceleration a1. It 

would take 1 10 1t v / a2 (a1 < 0) for the car to stop, and the distance traveled during this 

time interval is 
2

2 10
1 10 1 1 1

1

1

2 2

v
x v t a t

a
  2  

 

Similarly, if Car 2 is traveling with a speed of v20, with a constant acceleration a2, it 

would take 2 20 2t v / a2 (a2 < 0) for Car 2 to stop, and the distance traveled during this 

time interval is 2

2 20 22x v / a 2  For the driver in Car 2, his reaction time is Rt , so his 
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reaction distance is 20R Rx v t   If the initial separation between the two cars is d, then the 

condition for avoiding a rear-end collision is 2 1Rx x d x   , with 2 1Rt t t    The above 

expressions can be combined to give 
2 2

10 20
20

1 22 2
R

v v
d v t

a a
    

 

If both cars have the same initial speed, 10 20 0v v v ,   then the condition for stopping 

0 2 2 0 1 10 v a t v a t     would imply 

01 1
2 1 1

2 1 1R R

vt t
a a a

t t t t t
  

 
2  

 

and the above expression can be simplified to 0 2Rd v t /   Note that this represents the 

minimum distance required with  2 0 1 Ra v / t t 2  given above to avoid collision. For 

example, if the reaction time is 0 60 s,Rt    with 0 80 km/h 22 2 m/s,v    the minimum 

distance of separation would be   0 2 22 2 m/s 0 60 s /2 6 7 mRd v t /      , provided 

that the condition 2 2 1 1a t a t  is met (car 2 brakes harder than car 1). 

 

78. The distance traveled during reaction time is   0 21 m/s 0 80 s 16 8 mR Rx v t       

After applying the brake, the distance traveled before coming to a stop is 

 

 

 

22

0

2

21 m/s
31 5 m

2 2 7 0 m/s
b

v
x

a
   

 
2 2  

 

79. Sketch and translate We choose Earth as the object 

of reference with your position as the reference point  

(y = 0). The positive direction points upward. The water 

balloon is our object of interest, which we treat as point-

like. The situation is depicted in the figure to the right. 

 

Simplify and diagram The balloon’s acceleration is 
29 8 m/s   as it is dropped. The position of the water 

balloon can be written as, with upward taken to be 

positive y-direction,   21
0 2

y t y gt    

 

Represent mathematically The vertical distance traveled between 1t  and 1t t   is 

       
2 22

1 1 1 1 1

1 1 1

2 2 2
h y t y t t g t t gt gt t g t            
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Solve and evaluate With 1 6 mh    and 0 15 s,t    we solve for t1 and obtain 1 1 01st     

Therefore, we conclude that the water balloon must have been dropped from a height 

 

  
22 2

0 1

1 1
9 8 m/s 1 01s 5 0 m

2 2
y gt       

 

above you. So, look for guest that live 5.0 m, or two floors, above you! 

 

80. According to the problem, to incur zygomatic bone injury, the acceleration of the puck 

must exceed 900 g, with a contact time of 6.0 ms or longer. Suppose the puck hits the 

cheek and the contact time interval lasts 0.0060 s (6.0 ms), during which its speed changes 

by v. The change of speed needed to have an acceleration of 900 g would then be 

 3 2

3
900 8 8 10 m/s 53 m/s

6 0 10 s
c

v
a g v


       

  2
2 2 2 2  

 

or a change of about 118 mi/h. If the puck hits the face and stops, the stopping distance is 

given by 
2 2 2f i cv v a d,  or 

 

 

22 2

3 2

0 53 m/s

2 2 8 8 10 m/s

f i

c

v v
d

a

 
  

  
0.16 m 

 

This stopping distance is unphysical, as it would mean that the puck has gone inside the 

skull. Thus, the puck is not likely to be in contact with the bone long enough to break it. 

 

81. Let the speed of the rocket at the end of 1.6 s be v1. The maximum height it reaches is 
2

max 1 2y v / g   With max 80 m,y   we find the speed to be 

 

  2

1 max2 2 9 8 m/s 80 m 39 6 m/sv gy      

 

Thus, the average acceleration during the launch is 2

avg

39 6 m/s
24 7 m/s

1 6 s

v
a

t

 
   
 

. 

Note that we have assumed the rocket to be a point-like object and neglected air 

resistance. Taking air resistance into consideration would have raised the value of 

avga during launch. 

 

82. The results are tabulated below: 

Speed 

(mi/h) 

Speed v0 

(m/s) 

Reaction 

distance dR (m) 

 Reaction 

time tR (s) 

Braking 

distance dB (m) 

Total stopping 

distance (m) 

Acceleration a 

(m/s2) 

20  8.94  7  0.783  7  14 5.7 

40  17.88  13  0.727  32  45 4.99 

60  26.82  20  0.75  91  111 3.95 
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In the above, the reaction time is dR/v0, while the acceleration is 2

0 2 Ba v / d2 . 

 

83. Suppose the truck is going at v0 = 55 mi/h (25 m/s), and you’re 20 m behind the truck. 

You decide to accelerate at 21 0 m/sa    to pass the truck in t seconds. To pass safely, 

you also want to pass the truck by 20 m before moving back to the lane. Since the truck 

has moved a distance 0v t  in time t, the distance you need to travel is 

 

  020 m 20 m 40 m 25 m/sd v t t        

 

Equating with     
2 221 1

2 2
1 0 m/sa t t     and solving for t,  we have 9 st  . This is 

a reasonable time for passing a truck. 

 

84. We first ignore reaction time. Suppose Car A traveling with a speed of vA0 applies a 

constant acceleration aA. It would take 0A A At v / a2 (aA < 0) for the car to stop, and the 

distance traveled during this time interval is 
2

2 0
0

1

2 2

A
A A A A A

A

v
x v t a t

a
  2  

 

Similarly, if Car B is traveling with a speed of vB0, with a constant acceleration aB, it 

would take B B0 B/t v a2 (aB < 0) for Car B to stop, and the distance traveled during this 

time interval is 2

B B0 B/2x v a 2  Substituting the values given, we find the total distance 

traveled by the two cars to be 

 

 

 
 

 

2 22 2

A0 B0
total A B 2 2

A B

30 m/s 20 m/s

2 2 2 7 0 m/s 2 9 0 m/s

64 3 m 22 2 m 86 5 m

v v
x x x

a a
     

   

     

2 2
2

 

 

which is less than 100 m. Thus, the two cars will not collide. 

 

Realistically, one should take reaction time Rt  into consideration. Suppose R 0 60 st    for 

both drivers. Then the total distance traveled during reaction time would be 

    R R,A R,B A0 B0 R 30 m/s 20 m/s 0 60 s 30 mx x x v v t          In this case, we would 

have 

total A B R,A R,B 86 5 m 30 116 5 mx x x x x          

 

which exceeds their initial separation of 100m, resulting in collision. 

85. (c) The time interval is 2

2

10 m/s
10 s

1000 m/s

v
t

a


    2 . 
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86. (c) The average speed is    1 1
avg 02 2

10 m/s 0 5 0 m/sv v v      . 

 

87. (a) The stopping distance would be   avg 4 0 m/s 0 01 0 04 mx v t        . 

 

88. (e) The stopping distance is 
 

 

22 2

0

2

0 10 m/s
0 05 m

2 2 1000 m/s

v v
x

a


     . 

89. (d) Acceleration can be calculated using 0v v
a

t





 or 

2 2

0

2

v v
a

x





. Thus, we see that 

a longer impact time interval (t), a longer stopping distance (x), and a smaller initial 

speed v0, all reduce the magnitude of the acceleration. 

 

90. (b) From the reading passage, air in the atmosphere absorbs the X-rays before they 

reach Earth-based detectors. 

 

91. (a) The speed of the rocket at the end of the burn is 

 

  2300 m/s 8 0 s 2400 m/sv at     

 

92. (b) The height reached at the end of the fuel burn is 

 

   
22 21 1

300 m/s 8 0 s 9600 m
2 2

y at      

or about 10,000 m. 

 

93. (c) The speed of the rocket at the end of the burn is v1 = 2400 m/s. Its subsequent 

speed is given by   1v t v gt,   and its instantaneous speed at the maximum height is 

zero. The time it takes to get there is 

 

 
2

2400 m/s
245 s

9 8 m/s

v
t

g


   


 

or about 250 s. 

 

94. (a) The maximum height the rocket reaches is 

 

 
 

 

22
51

max 2

2400 m/s
2 94 10  m

2 2 9 8 m/s

v
y

g
    


 

or about 300,000 m. 
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