Full Download: http://alibabadownload.com/product/chemical-principles-5th-edition-atkins-test-bank/

Chapter 2: Quantum Mechanics In Action: Atoms

- The total number of orbitals in a shell with principal quantum number 5 is A) 32. B) 50. C) 25. D) 40. E) 5. Ans: C
- 2. Which set of quantum numbers, n, l, m_l, could correspond to one of the highest energy electrons in Zr?
 A) 4, 2, -2 B) 4, 2, +3 C) 3, 2, -2 D) 4, 3, -2
 Ans: A

3. Which set of quantum numbers could correspond to a 4f-orbital?

A)	$n = 4, l = 4, m_l = +3$	D)	$n = 3, l = 2, m_l = +1$
B)	$n = 4, l = 3, m_l = +4$	E)	$n = 3, l = 2, m_l = 0$
C)	$n = 4, l = 3, m_l = -3$		
Ans:	С		

4. Which set of quantum numbers corresponds to the electrons in He?

A)	$n = 1, l = 0, m_l = 1$	D)	$n = 1, l = 0, m_l = -1$
B)	$n = 1, l = 0, m_l = 0$	E)	$n = 1, l = 2, m_l = 0$
C)	$n = 1, l = 1, m_l = -0$		
Ans:	B		

5. What is the only secondary quantum number associated with the 4s orbital?

 A) l = 0 D) l = 3

 B) l = 1 E) l = 4

 C) l = 2 Ans: A

6. What are the possibilities of the spin quantum number for Mg?

A)	$m_s = 1$		D)	$m_s = -\frac{1}{2}$
B)	$m_s = 0$		E)	Both C and D
C)	$m_s = + 1/2$			
Ans:	E			

7. What is the principle quantum number for gallium?

- A) n = 1D) n = 4B) n = 2E) n = 5
- C) n = 3Ans: D

8. What is the *l* corresponding to the outermost p electrons in sulfur?

A)	l = 0	D)	l = 3
B)	l = 1	E)	l = 4
C)	l = 2		
Ans:	В		

- 9. How many total nodal planes are present in the 3d-orbitals?
 A) 15 B) 0 C) 5 D) 20 E) 10 Ans: E
- 10. How many nodes are present in a 3s- and a 3p-orbital, respectively?
 A) 2;1 B) 0;1 C) 0;2 D) 1;1 E) 2;2
 Ans: E

- 11. Nodal planes in orbitals can be accounted for by the wavelike behavior of electrons. Ans: True
- 12. How many nodal planes are present in an f-orbital?
 A) 2 B) 3 C) 7 D) 4 E) 5
 Ans: B
- 13. Which of the following statements is true?
 - A) A 2s orbital has one nodal plane.
 - B) An electron in a p-orbital has zero probability of being found at the nucleus.
 - C) A p-orbital has a spherical boundary surface.
 - D) An s-orbital becomes more dense as the distance from the nucleus increases.

E) An electron in an s-orbital has a zero probability of being found at the nucleus.Ans: B

- 14. Where is the nodal plane in a 1s orbital?
 - A) Along the x-axis.
 - B) Along the y-axis.
 - C) Along the z-axis.
 - D) Mid-way between the x and y-axes.
 - E) There is none.

Ans: E

- 15. What shape do the p-orbitals have that each accommodates one nodal plane?
 - A) A spherical shape.
 - B) A dumbbell shape centered at the nucleus.
 - C) A clover leaf shape centered at the nucleus.
 - D) A clover leaf shape centered above and below the nucleus.
 - E) A toroidal shape around a dumbbell.

Ans: B

- 16. Which set of orbitals encompass two shapes?
 - A) The s orbitals.
 - B) The p orbitals.
 - C) The d orbitals.
 - D) Both B and C, above.
 - E) Both A and C, above.

Ans: C

- 17. Which of the following statements is true?
 - A) The s orbital is spherical.
 - B) The s orbital has no nodal planes.
 - C) The s orbital is symmetrical.
 - D) The s orbital is associated with the *l* quantum number 0.
 - E) All of the above.
 - Ans: E

18. Where is the nodal plane for the p_x orbital?

- A) On the x-z plane.
- B) On the y-z plane.
- C) On the x-y plane.
- D) Midway between the x-y and the y-z plane.
- E) The p_x orbital does not have a nodal plane.
- Ans: B
- 19. Which orbitals have the greatest number of nodes?
 - A) The s orbitals.
 - B) The p orbitals.
 - C) The d orbitals.
 - D) The f orbitals.
 - E) All orbitals have the same number of nodes.

Ans: D

- 20. The three quantum numbers for an electron in a hydrogen atom in a certain state are n = 4, l = 1, m_l = 1. The electron is located in what type of orbital?
 A) 4s
 B) 3p
 C) 3d
 D) 4d
 E) 4p
 Ans: E
- 21. The three quantum numbers for an electron in a hydrogen atom in a certain state are n = 4, l = 2, m_l = 1. The electron is located in what type of orbital?
 A) 4p B) 3p C) 4s D) 4d E) 3d
 Ans: D
- 22. Which of the following statements is true?
 - A) A *p*-electron penetrates more than an *s*-electron through the inner shells of an atom.
 - B) A *p*-electron penetrates less than a *d*-electron through the inner shells of an atom.
 - C) A *p*-electron has a nonzero probability density at the nucleus.
 - D) A *d*-electron has a nonzero probability density at the nucleus.
 - E) A *p*-electron experiences a smaller effective nuclear charge than an *s*-electron.Ans: E

- 23. How many unpaired electrons are in a chromium atom?
 A) 0
 B) 5
 C) 6
 D) 4
 E) 3
 Ans: C
- 24. How many unpaired electrons are in a calcium atom? A) 1 B) 2 C) 3 D) 4 E) 5 Ans: B
- 25. An aluminum atom contains how many unpaired electrons?
 A) 7 B) 6 C) 5 D) 4 E) 3
 Ans: E
- 26. How many f electrons are in a gadolinium atom?
 A) 7 B) 6 C) 5 D) 4 E) 3
 Ans: A
- 27. How many unpaired electrons are in a chromium trivalent ion?
 A) 0
 B) 5
 C) 6
 D) 4
 E) 3
 Ans: E
- 28. How many unpaired electrons are in a xenon atom?
 A) 0
 B) 1
 C) 2
 D) 3
 E) 4
 Ans: A
- 29. A chloride ion contains how many unpaired electrons?
 A) 8 B) 6 C) 4 D) 2 E) 0
 Ans: E

30. Write the ground-state electron configuration of a europium atom. A) $[Xe]5d^76s^2$ D) $[Xe]4f^76s^2$ B) $[Xe]4f^25d^56s^2$ E) $[Xe]4f^55d^26s^2$ C) $[Xe]4f^9$ Ans: D

31. Write the ground-state electron configuration of a terbium atom. A) $[Xe]4f^{11}$ D) $[Xe]4f^45d^56s^2$

A)	$[Xe]4f^{11}$	D)	$[Xe]4f^45d^56.$
B)	$[Xe]4f^{10}6s^{1}$	E)	$[Xe]4f^{6}5d^{5}$
C)	$[Xe]4f^{9}6s^{2}$		
Ans:	С		

32. Write the ground-state electron configuration of a lead atom.

A)	$[Xe]4f^{14}5d^56s^16p^67s^2$	U	D)	$[Xe]4f^{14}5d^{10}6p^4$
B)	$[Xe]4f^{14}5d^{10}6s^26p^2$			$[Xe]4f^{14}5d^96s^26p^3$
C)	$[Xe]4f^{14}5d^{10}6s^{1}6p^{3}$			
Ans:	В			

- 33. Write the ground-state electron configuration of Ru²⁺.
 A) [Kr]4d⁵5s¹ B) [Kr]4d⁷ C) [Kr]4d⁵5p¹ D) [Kr]4d⁸ E) [Kr]4d⁶ Ans: E
- 34. Write the ground-state electron configuration of a samarium atom.
 A) [Xe]4f⁷5d¹ B) [Xe]5d⁸ C) [Xe]4f⁷6s¹ D) [Xe]4f⁸ E) [Xe]4f⁶6s² Ans: E
- 35. Write the ground-state electron configuration of a tin(IV) ion.
 - A) $[Kr]4d^35s^{1}5p^6$ B) $[Kr]4d^45p^6$ D) $[Kr]4d^{5}5p^5$ E) $[Kr]4d^{10}$
 - C) [Kr] $4d^55s^25p^3$ Ans: E

36. Write the ground-state electron configuration of In⁺.

A) $[Kr]4d^{7}5s^{2}5p^{3}$ B) $[Kr]4d^{8}5s^{1}5p^{3}$ C) $[Kr]4d^{5}5s^{1}5p^{6}$ Ans: D

37. Write the ground-state electron configuration of Tl⁺.

A) $[Xe]4f^{14}5d^{10}6p^2$ B) $[Xe]4f^{14}5d^{10}6s^2$ C) $[Xe]4f^{14}5d^{10}6s^16p^1$ Ans: B D) $[Xe]4f^{14}5d^{8}6s^{1}6p^3$ E) $[Xe]4f^{14}5d^{5}6s^{1}6p^6$

38. Write the ground-state electron configuration of Pb^{2+} .

- A) $[Xe]4f^{14}5d^56s^{1}6p^6$ B) $[Xe]4f^{14}5d^{10}6s^2$
- D) [Xe] $4f^{14}5d^{10}6s^{1}6p^{1}$ E) [Xe] $4f^{14}5d^{10}6p^{2}$
- C) $[Xe]4f^{14}5d^56s^26p^5$
- Ans: B

39. Write the ground-state electron configuration of Sb^{3+} .

- A) [Kr] $4d^85s^{1}5p^3$ B) [Kr] $4d^55s^{1}5p^6$
- C) [Kr] $4d^{10}5p^2$
- Ans: E

- D) [Kr] $4d^{10}5s^{1}5p^{1}$
- E) [Kr] $4d^{10}5s^2$

40. Write the ground-state electron configurat A) $[Kr]4d^85s^{1}5p^3$ B) $[Kr]4d^55s^{1}5p^6$ C) $[Kr]4d^{10}5p^2$ Ans: D	ion of S D) E)	$[Kr]4d^{10}5s^25p^3$
41. What is the ground-state electron configur	ation o	of Rb ⁺ ?
A) [Kr] B) [Kr] $5s^1$ C) [Ar] Ans: A	D) E)	[Ar]4 <i>s</i> ¹ [Kr]4 <i>d</i> ¹⁰
42. For F^{-} , write the ground-state electron con	figurat	ion.
A) [Ne] $2p^5$	D)	$[\text{He}]2p^5$
B) [Ne]C) [Ar]Ans: B	E)	$[\mathrm{He}]1s^2$
43. Write the ground-state electron configurat	ion of I	Fe ³⁺ .
A) $[Ar]3d^54s^2$	D)	$[Ar]3d^{6}4s^{1}$
B) $[Ar]3d^{3}4s^{2}$ C) $[Ar]3d^{3}4s^{0}$ Ans: B	E)	$[Ar]3d^34s^3$
44. What is the ground-state electron configur	ation o	of Nb?
A) $[Kr]4d^45s^1$	D)	
B) [Kr] $4d^55s^2$ C) [Kr] $5d^34s^2$ Ans: E	E)	$[Kr]4d^35s^2$
45. Write the ground-state electron configurat	ion of (Cl+.
A) [Ne] $3s^23p^4$	D)	[Ne] $3s^23p^6$ [Ar] $3s^23p^4$
B) [Ne] $3s^23p^5$ C) [Ne] $3s^13p^4$ Ans: A	E)	$[Ar]3s^23p^4$
		(i)

- 46. All the following can have the ground-state electron configuration [Xe]4f¹⁴5d¹⁰ except A) Pb⁴⁺. B) Hg²⁺. C) Bi⁵⁺. D) Tl⁺. E) Au⁺. Ans: D
- 47. All the following can have the ground-state electron configuration [Kr]4d¹⁰ except A) Cd²⁺. B) Ag⁺. C) Pd. D) In⁺. E) Sn⁴⁺. Ans: D

- 48. Which of the following has the smallest atomic radius?A) Cl B) P C) S D) Si E) AlAns: A
- 49. Which of the following has the largest atomic radius?
 A) S²⁻ B) Cl C) Cl⁻ D) K⁺ E) S
 Ans: A
- 50. Which of the following species is isoelectronic with S²⁻?
 A) Mg²⁺ B) Rb⁺ C) Ar D) As³⁻ E) Br⁻
 Ans: C
- 51. Which of the following species is isoelectronic with Kr?
 A) K⁺ B) Cl⁻ C) Ar D) Xe E) Sr²⁺
 Ans: E
- 52. Which of the following species is isoelectronic with As³⁻?
 A) Na⁺ B) Cl⁻ C) Ar D) Kr E) Ba²⁺
 Ans: D
- 53. Si⁴⁺ is isoelectronic with which of the following?
 A) K⁺ B) Ne C) Kr D) Cl⁻ E) Sr²⁺
 Ans: B
- 54. Which of the following atoms or ions is isoelectronic with Be²⁺?
 A) Na⁺ B) Br⁻ C) He D) Xe E) He⁺
 Ans: C
- 55. Which of the following has the largest atomic radius?A) F B) O C) N D) C E) BAns: E
- 56. Of the following, which has the largest atomic radius?A) Ga B) Ge C) As D) Se E) BrAns: A
- 57. Which of the following species is isoelectronic with Ra²⁺?
 A) I⁻ B) Kr C) Xe D) Rn E) Fr
 Ans: D

58.	From the data below,	which element is likely to be a metal?
	,	2

Element	First ionization energy, kJ·mol ⁻¹			
1	1310			
2	1011			
3	418			
4	2080			
5	947			
A) 2 B) 5	C) 3 D) 1 E) 4			
Ans: C				

59. From the data below, which elements are likely to be nonmetals?

Element	First ionization energy, kJ·mol ⁻¹				
1	1310				
2	980				
3	418				
4	2080				
5	947				
A) 3 and 5 Ans: C	B) 3 only	C) 1 and 4	D) 1 and 2	E) 2 and 5	

- 60. Which of the following is likely to form ions two units lower in charge than expected from the group number?A) Tl B) Hg C) Zn D) Se E) Cd Ans: A
- 61. Which of the following is likely to form ions two units lower in charge than expected from the group number?A) Hg B) Cd C) Sb D) Ge E) Zn Ans: C
- 62. Given the elements Cl, Ge, and K and three values of possible first ionization energies, 418, 1255, 784 kJ·mol⁻¹, match the atoms with their first ionization energies.
 - A) Cl (418), Ge (784), and K (1255 $kJ \cdot mol^{-1}$)
 - B) Cl (1255), Ge (784), and K (418 kJ·mol⁻¹)
 - C) Cl (784), Ge (1255), and K (418 kJ·mol⁻¹)
 - D) Cl (1255), Ge (418), and K (784 kJ·mol⁻¹)
 - E) Cl (418), Ge (1255), and K (784 $kJ \cdot mol^{-1}$)

Ans: B

- 63. If the second ionization energy of copper is 1958 kJ⋅mol⁻¹, the first ionization energy is likely to be greater than 1958 kJ⋅mol⁻¹. True or false?
 Ans: False
- 64. Consider the following ground-state electronic configurations. Which atom has both the highest first ionization energy and the highest electron affinity?
 A) [Ne] 3s²3p⁵ B) [Ne] 3s²3p³ C) [Ne] 3s²3p¹ D) [Ne] 3s²3p⁴ Ans: A
- 65. Which atom has the highest first ionization energy?A) Mg B) Ca C) Sr D) Ba Ans: A
- 66. Which atom has the highest second ionization energy?A) Cs B) Na C) Li D) KAns: C
- 67. Consider the following ground-state electronic configurations. Which atom has the highest electron affinity?
 A) [He] 2s²2p⁵ B) [He] 2s²2p³ C) [He] 2s²2p¹ D) [He] 2s²2p⁴ Ans: A
- 68. Which atom has the highest first ionization energy?A) Pb B) Sn C) Ge D) SiAns: D
- 69. Which atom has the lowest electron affinity?A) Al B) Si C) P D) SAns: A
- 70. Consider the following ground-state electronic configurations. Which atom has the lowest first ionization energy?
 A) [Ne] 3s²3p⁵ B) [Ne] 3s²3p³ C) [Ne] 3s²3p¹ D) [Ne] 3s²3p⁴ Ans: C
- 71. In each pair, which ionization reaction is larger?
 (a) *I*₃ of B; or *I*₃ of Be
 (b) *I*₄ of C; or *I*₃ of B
 Ans: (a) *I*₃ of Be
 (b) *I*₄ of C

- 72. What are the subshell notation and the number of orbitals having the quantum numbers n = 4, l = 3?
 A) 4d and 5 B) 4p and 3 C) 3f and 7 D) 3d and 5 E) 4f and 7
 Ans: E
- 73. What are the subshell notation and the number of orbitals having the quantum numbers n = 4, l = 2?
 A) 4d and 10 B) 4f and 14 C) 4d and 5 D) 4p and 3 E) 4f and 7 Ans: C
- 74. Which of the following would be most reactive with air and water?A) Ba B) Mg C) Ga D) BrAns: A
- 75. Which of the following has similar properties to Al?A) Li B) Be C) Si D) Ga E) MgAns: B
- 76. Which of the following elements has the least metal character?A) In B) Ge C) Te D) I E) TlAns: D
- 77. All the following are metalloids except:A) B. B) As. C) Ge. D) Sb. E) Si. Ans: A
- 78. All the following are metals except:A) Cd. B) Zn. C) Ge. D) Al. E) Ga. Ans: C
- 79. All the following are transition metals except:A) Cd. B) Cu. C) Pd. D) Pb. E) Ag. Ans: D
- 80. All the following are non-metals exceptA) C. B) S. C) Ga. D) Se. E) Cl. Ans: C
- 81. Which of the following is not a metal?A) Ba. B) Br. C) Ga. D) Al. E) Hg. Ans: B
- 82. Of the following, which is not an alkali metal?A) Cs. B) Fr. C) K. D) Rb. E) Re. Ans: E

- 83. All the following are diatomic gases exceptA) Hydrogen. B) Fluorine. C) Oxygen. D) Neon. E) Nitrogen.Ans: D
- 84. How many nodal planes are expected for 2s and 4f orbitals, respectively?A) 0 and 4B) 0 and 3C) 2 and 4D) 1 and 4E) 1 and 3Ans: B
- 85. Which of the following subshells cannot exist in an atom?
 A) 4d B) 5g C) 5f D) 4f E) 3f
 Ans: E
- 86. What is the inert-pair effect?Ans: The inert-pair effect is the tendency to form ions two units lower in charge than expected from the group number.
- 87. When an electron is added to a gaseous chlorine atom, 349 kJ·mol⁻¹ of energy is released. What is the ionization energy of a gaseous chloride ion? Ans: +349 kJ·mol⁻¹
- 88. Which of the following atoms has the highest electron affinity?A) Ar B) P C) Al D) SiAns: D
- 89. Because of fluorine's high electronegativity, less energy is required to make F²⁻ from F⁻ than to make O²⁻ from O⁻. True or false? Ans: False
- 90. Which of the following has the largest effective nuclear charge?
 - A) F
 - B) Na
 - C) Li
 - D) He
 - E) N
 - Ans: A

91. Which of the following has the largest radius?

- A) P³⁻
- B) Cl⁻
- C) K⁺
- D) Cl
- E) N³⁻
- Ans: A

92. Which of the following has the largest radius?

- A) Cr
- B) Cl
- C) Cu
- D) Gd
- E) Ga
- Ans: D

93. Which of the following has the smallest radius?

- A) P⁺⁵
- B) P³⁻
- C) N⁺⁵
- D) N
- E) N³⁻
- Ans: C

94. Which of the following has the largest radius?

- A) Fe^{3+}
- B) Fe^{2+}
- C) Fe
- D) F
- E) F⁻
- Ans: C

95. Which of the following has the largest effective nuclear charge?

- A) Al
- B) Si
- C) P
- D) S
- E) Cl
- Ans: E

Chemical Principles 5th Edition Atkins Test Bank

Full Download: http://alibabadownload.com/product/chemical-principles-5th-edition-atkins-test-bank/

Chapter 2: Quantum Mechanics In Action: Atoms

96. Which of the following has the largest radius?

- A) N^{3-}
- B) F-
- C) H⁺
- D) He
- E) O²⁻
- Ans: A
- 97. Which of the following has the smallest radius?
 - A) B³⁺
 - B) C⁴⁺
 - C) Fe^{2+}
 - D) Fe
 - E) Fe^{3+}
 - Ans: E

98. How many unpaired electrons exist in the ground state of a Cu⁺ ion?

- A) 0
- B) 2
- C) 1
- D) 3
- E) 5
- Ans: A

99. Which of the following pairs of elements has members with similar properties?

- A) B and Si
- B) Li and Be
- C) Mg and Al
- D) Na and Ca
- E) Se and I
- Ans: A

100. Which of the following pairs of elements has members with similar properties?

- A) Mg and Al
- B) Li and Be
- C) Mg and Ge
- D) Na and Ca
- E) None of the above.

Ans: E