Cardiopulmonary Anatomy Physiology Essentials of Respiratory Care 6th Edition Jardins Test Bank

Full Download: http://alibabadownload.com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional-com/product/care-6th-edit

Chapter 2 Ventilation

MULTIPLE CHOICE

- 1. What instrument is used to measure P_{atm} ?
 - a. barometer
 - b. hygrometer

ANS: A

	Feedback
Α	A barometer is used to measure barometric (P _B) or atmospheric (P _{atm}) pressure.
В	A barometer is used to measure barometric (P _B) or atmospheric (P _{atm}) pressure.
С	A barometer is used to measure barometric (P _B) or atmospheric (P _{atm}) pressure.
D	A barometer is used to measure barometric (P _B) or atmospheric (P _{atm}) pressure.

PTS: 1 DIF: Recall REF: The Airways

- 2. What is the term for the movement of gas from the external environment to the alveoli?
 - a. ventilation

b. external respiration

c. internal respirationd. osmosis

c. altimeter

d. dynameter

ANS: A

	Feedback
Α	The movement of gas from the external environment to the alveoli is called ventilation.
В	The movement of gas from the external environment to the alveoli is called ventilation.
С	The movement of gas from the external environment to the alveoli is called ventilation.
D	The movement of gas from the external environment to the alveoli is called ventilation.

- PTS: 1 DIF: Recall REF: Introduction OBJ: 1
- 3. At sea level under standard conditions, what would the P_B equal in mm Hg ?
 - a. 760 c. 14.7
 - b. 1034 d. 29.9

ANS: A

	Feedback
Α	At sea level under standard conditions, the normal barometric pressure is 760 mm Hg.
В	At sea level under standard conditions, the normal barometric pressure is 760 mm Hg.
С	At sea level under standard conditions, the normal barometric pressure is 760 mm Hg.
D	At sea level under standard conditions, the normal barometric pressure is 760 mm Hg.

PTS: 1 DIF: Recall REF: Mechanisms of Ventilation OBJ: 2

- 4. What is the general term for a pressure difference between two points in a system?
 - a. pressure gradient

c. system pressure variation

b. diffusion

d. osmotic gradient

ANS: A

This sample only, Download all chapters at: alibabadownload.com

Feedback
A pressure gradient is defined as the difference in pressures occuring between two
points.
A pressure gradient is defined as the difference in pressures occuring between two
points.
A pressure gradient is defined as the difference in pressures occuring between two
points.
A pressure gradient is defined as the difference in pressures occuring between two
points.

PTS:	1	DIF:	Recall	REF:	Pressure Gradients
ODL	2				

- OBJ: 2
- 5. At sea level, what would the alveolar pressure at end-expiration equal?
 - a. 760 mm Hg
 - b. 764 mmHg

- c. 756 mm Hgd. 0 mm Hg
- d

	Feedback
Α	Because the alveolar and atmospheric pressure are identical at end-expiration, no air
	movement occurs.
В	Because the alveolar and atmospheric pressure are identical at end-expiration, no air
	movement occurs.
С	Because the alveolar and atmospheric pressure are identical at end-expiration, no air
	movement occurs.
D	Because the alveolar and atmospheric pressure are identical at end-expiration, no air
	movement occurs.
D	

PTS:	1	DIF:	Recall	REF:	Pressure Gradients
OBJ:	2				

- 6. At what point in the ventilatory cycle would the intra-alveolar pressure be higher than the atmospheric pressure?
 - a. expirationc. inspirationb. end-expirationd. pre-inspiration
 - ANS: A

	Feedback
Α	For gas to leave the lungs during exhalation, the intra-alveolar pressure must be higher than the atmospheric pressure.
В	
В	For gas to leave the lungs during exhalation, the intra-alveolar pressure must be higher
	than the atmospheric pressure.
С	For gas to leave the lungs during exhalation, the intra-alveolar pressure must be higher
	than the atmospheric pressure.
D	For gas to leave the lungs during exhalation, the intra-alveolar pressure must be higher
	than the atmospheric pressure.

PTS: 1 DIF: Recall REF: Pressure Gradients

OBJ: 2

- 7. Which gas law states that at constant temperature, a volume of gas varies inversely proportional to its pressure?
 - a. Boyle's
 - b. Charles

- c. Gay-Lussac's
- d. Henry's

	Feedback
Α	Boyle's law states that at a constant temperature $P_1 \ge V_1 = P_2 \ge V_2$.
В	Boyle's law states that at a constant temperature $P_1 \ge V_1 = P_2 \ge V_2$.
С	Boyle's law states that at a constant temperature $P_1 \ge V_1 = P_2 \ge V_2$.
D	Boyle's law states that at a constant temperature $P_1 \ge V_1 = P_2 \ge V_2$.

PTS: 1 DIF: Recall

REF: Boyle's Law and Its Relationship to Pressure Gradients OBJ: 2

- 8. At what point in the respiratory cycle is the equilibrium point reached?
 - I. Inspiration
 - II. End-inspiration
 - III. Expiration
 - IV. End-expiration
 - a. II and IV only
 - b. II only

- c. IV only
- d. 1 and III only

ANS: A

	Feedback
Α	At end-inspiration and end-expiration, no gas movement occurs because the pressure gradient is zero.
В	At end-inspiration and end-expiration, no gas movement occurs because the pressure gradient is zero.
С	At end-inspiration and end-expiration, no gas movement occurs because the pressure gradient is zero.
D	At end-inspiration and end-expiration, no gas movement occurs because the pressure gradient is zero.

PTS: 1 DIF: Recall

REF: The Primary Mechanism of Ventilation Applied to the Human Airways OBJ: 3

- 9. What is the general term for the inward movement of tissue between the ribs during inspiration due to increased negative intrapleural pressure generated during respiratory distress?
 - a. intercostal retractions

c. dyspnea

b. pectus excavatum

d. supraclavicular retractions

	Feedback			
Α	ntercostal retractions are the inward movement of tissue between ribs during			
	inspiration due the high negative intapleural pressure generated during respiratory			
	distress, especially in newborns and infants.			
В	Intercostal retractions are the inward movement of tissue between ribs during			

	inspiration due the high negative intapleural pressure generated during respiratory distress, especially in newborns and infants.
С	Intercostal retractions are the inward movement of tissue between ribs during inspiration due the high negative intapleural pressure generated during respiratory distress, especially in newborns and infants.
D	Intercostal retractions are the inward movement of tissue between ribs during inspiration due the high negative intapleural pressure generated during respiratory distress, especially in newborns and infants.

PTS: 1 DIF: Recall

REF: The Primary Mechanism of Ventilation Applied to the Human Airways|Clinical Connection 2-1: Inspiratory Intercostal Retractions OBJ: 4

- 10. What is the general term for the force required to move gas or fluid through a tube or vessel?
 - a. driving pressure

c. transpulmonary pressure

b. transmural pressure

d. transthoracic pressure

ANS: A

Feedback
The driving pressure is the pressure difference between two points in a tube or vessel.
The driving pressure is the pressure difference between two points in a tube or vessel.
The driving pressure is the pressure difference between two points in a tube or vessel.
The driving pressure is the pressure difference between two points in a tube or vessel.
,

PTS:	1	DIF:	Recall	REF:	Driving Pressure
OBJ:	5				-

- 11. Which pressure is represented by $P_{rs} = P_B P_{alv}$?
 - a. transrespiratory pressure
- c. transthoracic pressure
- b. transmural pressure d. transpulmonary pressure

ANS: A

	Feedback
Α	Transrespiratory pressure is the difference between the atmospheric pressure and
	alveolar pressure.
В	Transrespiratory pressure is the difference between the atmospheric pressure and
	alveolar pressure.
С	Transrespiratory pressure is the difference between the atmospheric pressure and
	alveolar pressure.
D	Transrespiratory pressure is the difference between the atmospheric pressure and
	alveolar pressure.

PTS:	1	DIF:	Recall	REF:	Transrespiratory Pressure
OBJ:	5				

- 12. What is the term for the pressure difference that occurs across the airway wall ?
 - a. Transmural pressure
- c. Transpulmonary pressure
- b. Transrespiratory pressure
- d. Transthoracic pressure

ANS: A

Feedback

Α	The transmural pressure is derived by subtracting the pressure on the inside of the
	airway from the pressure on the ouside of the airway.
В	The transmural pressure is derived by subtracting the pressure on the inside of the
	airway from the pressure on the ouside of the airway.
С	The transmural pressure is derived by subtracting the pressure on the inside of the
	airway from the pressure on the ouside of the airway.
D	The transmural pressure is derived by subtracting the pressure on the inside of the
	airway from the pressure on the ouside of the airway.

PTS: 1 DIF: Recall REF: Transmural Pressure OBJ: 5

- 13. What is the term for the difference between the alveolar pressure and the pleural pressure?
 - a. transpulmonary pressure
- c. transrespiratory pressure
- b. transmural pressure
- d. transthoracic pressure

ANS: A

	Feedback
Α	The transpulmonary pressure is the difference between the alveolar pressure and the
	pleural pressure.
В	The transpulmonary pressure is the difference between the alveolar pressure and the
	pleural pressure.
С	The transpulmonary pressure is the difference between the alveolar pressure and the
	pleural pressure.
D	The transpulmonary pressure is the difference between the alveolar pressure and the
	pleural pressure.

PTS: 1 DIF: Recall REF: Transpulmonary Pressure OBJ: 5

14. What is the term for the difference between the alveolar pressure and the body surface pressure?

a. transthoracic pressure

c. transrespiratory pressure

b. transmural pressure

d. transpulmonary pressure

ANS: A

	Feedback
Α	Transthoracic pressure is the difference between the alveolar pressure and the body
	surface pressure.
В	Transthoracic pressure is the difference between the alveolar pressure and the body
	surface pressure.
С	Transthoracic pressure is the difference between the alveolar pressure and the body
	surface pressure.
D	Transthoracic pressure is the difference between the alveolar pressure and the body
	surface pressure.

PTS: 1 DIF: Recall REF: Transthoracic Pressure OBJ: 5

15. In a flail chest, which pressure gradients are responsible for the inward movement on inspiration of the section of unattached ribs?

I. Transpulmonary II. Transmural III.Transthoracic IV.Transrespiratory

a. I and III only

b. II and IV only

c. I and II only

d. II and III only

ANS: A

	Feedback
Α	When a flail chest occurs, the section of unattached ribs moves inward on inspiration
	due to the transpulmonary and transthoracic pressure gradients.
В	When a flail chest occurs, the section of unattached ribs moves inward on inspiration
	due to the transpulmonary and transthoracic pressure gradients.
С	When a flail chest occurs, the section of unattached ribs moves inward on inspiration
	due to the transpulmonary and transthoracic pressure gradients.
D	When a flail chest occurs, the section of unattached ribs moves inward on inspiration
	due to the transpulmonary and transthoracic pressure gradients.

PTS: 1 DIF: Recall

REF: Lung Compliance|Clinical Connection 2-2: The Harmful Effects of Pressure Gradients When the Thorax is Unstable OBJ: 6

- 16. Which clinical measurement is used to evaluate the elastic forces of the lungs?
 - a. lung compliance
 - b. airway resistance

- c. elastance
- d. surface tension

ANS: A

	Feedback
Α	The elastic forces of the lungs can be evaluated by measuring lung compliance.
В	The elastic forces of the lungs can be evaluated by measuring lung compliance.
С	The elastic forces of the lungs can be evaluated by measuring lung compliance.
D	The elastic forces of the lungs can be evaluated by measuring lung compliance.

PTS: 1DIF: RecallREF: Elastic Properties of the Lung and Chest WallOBJ: 7

17. What of the following is used to calculate lung compliance?

a.	$\Delta V / \Delta P$	с.	P1V1=P2V2
b.	Δ P/ Δ V	d.	P=(2ST) / r

ANS: A

	Feedback
Α	Lung compliance is defined as the change in lung volume per unit of pressure change.
В	Lung compliance is defined as the change in lung volume per unit of pressure change.
С	Lung compliance is defined as the change in lung volume per unit of pressure change.
D	Lung compliance is defined as the change in lung volume per unit of pressure change.

PTS: 1 DIF: Recall REF: Lung Compliance OBJ: 8

18. What would the lung compliance equal if a pressure change of 4 cm H20 resulted in a volume change of 600 mL?

- a. 0.15L/cm H20
- b. 0.066 L/cm H20

- c. 1.5 L/cm H20
- d. 0.24 L/cm H20

ANS: A

	Feedback
Α	A volume change of 0.6 L from pressure change of 4 cm H20 would result in a lung
	compliance of 0.15 L/cm H20 (0.6L/4 cm H20).
В	A volume change of 0.6 L from pressure change of 4 cm H20 would result in a lung
	compliance of 0.15 L/cm H20 (0.6L/4 cm H20).
С	A volume change of 0.6 L from pressure change of 4 cm H20 would result in a lung
	compliance of 0.15 L/cm H20 (0.6L/4 cm H20).
D	A volume change of 0.6 L from pressure change of 4 cm H20 would result in a lung
	compliance of 0.15 L/cm H20 (0.6L/4 cm H20).

PTS: 1 DIF: Application REF: Lung Compliance OBJ: 9

- 19. How does air trapping and hyperinflation of the lungs affect lung compliance?
 - a. lung compliance is reduced
 - b. lung compliance is increased
 - c. lung compliance is normal
 - d. lung compliance is unaffected by hyperinflation

ANS: A

	Feedback
Α	When air trapping and hyperinflation of the lungs occur, lung compliance decreases.
В	When air trapping and hyperinflation of the lungs occur, lung compliance decreases.
С	When air trapping and hyperinflation of the lungs occur, lung compliance decreases.
D	When air trapping and hyperinflation of the lungs occur, lung compliance decreases.

PTS: 1 DIF: Recall

REF: Lung Compliance/Clinical Connection 2-3: Pulmonary Disorders that Force the Patient to Breathe at the Top Flat Portion of the Volume Pressure Curve OBJ: 10

- 20. How do obstructive lung diseases that cause air trapping affect lung compliance?
 - a. Lung compliance is reduced
 - b. Lung compliance is increased
 - c. Lung compliance remains normal
 - d. Lung compliance is unaffected by air trapping

	Feedback
Α	Lung compliance is decreased in the presence of obstructive lung diseases that cause air
	trapping and hyperinflation.
В	Lung compliance is decreased in the presence of obstructive lung diseases that cause air
	trapping and hyperinflation.
С	Lung compliance is decreased in the presence of obstructive lung diseases that cause air
	trapping and hyperinflation.
D	Lung compliance is decreased in the presence of obstructive lung diseases that cause air

trapping and hyperinflation.

PTS: 1 DIF: Recall

REF: Lung Compliance|Clinical Connection 2-3: Pulmonary Disorders that Force the Patient to Breathe at the Top Flat Portion of the Volume Pressure Curve OBJ: 10

- 21. What effect do restrictive lung diseases have on lung compliance?
 - a. Lung compliance decreases
 - b. Lung compliance increases
 - c. Lung compliance remains normal
 - d. Restrictive lung diseases do not affect lung compliance.

ANS: A

	Feedback
Α	Restrictive lung diseases shift the volume-pressure curve to the right so lung compliance
	is reduced.
В	Restrictive lung diseases shift the volume-pressure curve to the right so lung compliance
	is reduced.
С	Restrictive lung diseases shift the volume-pressure curve to the right so lung compliance
	is reduced.
D	Restrictive lung diseases shift the volume-pressure curve to the right so lung compliance
	is reduced.

PTS: 1 DIF: Recall

REF: Lung Compliance|Clinical Connection 2-4: Pulmonary Disorders that Shift the Pressure Volume Curve to the Right OBJ: 11

22. Which of the following would shift the volume-pressure curve to the right?

- I. Acute asthma episode
- II. Pneumothorax
- III. Pleural effusion
- IV. Pulmonary edema
- a. II, II, and IV only
- b. I, II, and IV only

- c. I. III and IV only
- d. Ii and IV only

ANS: A

	Feedback
Α	Restrictive lung conditions, including pneumothorax, pleural effusion, and pulmonary
	edema shift the volume pressure curve to the right.
В	Restrictive lung conditions, including pneumothorax, pleural effusion, and pulmonary
	edema shift the volume pressure curve to the right.
С	Restrictive lung conditions, including pneumothorax, pleural effusion, and pulmonary
	edema shift the volume pressure curve to the right.
D	Restrictive lung conditions, including pneumothorax, pleural effusion, and pulmonary
	edema shift the volume pressure curve to the right.

PTS: 1 DIF: Recall

REF: Lung Compliance|Clinical Connection 2-4: Pulmonary Disorders that Shift the Pressure Volume Curve to the Right OBJ: 11

23. What is the reciprocal of compliance?

- a. elastance
- b. resistance

	Feedback
Α	The reciprocal of compliance is elastance.
В	The reciprocal of compliance is elastance.
С	The reciprocal of compliance is elastance.
D	The reciprocal of compliance is elastance.

PTS: 1 DIF: Recall REF: Hooke's Law

OBJ: 12

- 24. Which physical law explains elastance?
 - a. Hooke's law
 - b. Boyle's law

ANS: A

	Feedback
Α	Hooke's law explains elastance.
В	Hooke's law explains elastance.
С	Hooke's law explains elastance.
D	Hooke's law explains elastance.

PTS: 1	DIF:	Recall	REF:	Hooke's Law

OBJ: 12

- 25. When a positive pressure breath is delivered from a mechanical ventilator, how would intra-alveolar and intrapleural pressures be affected during inspiration?
 - a. Both would increase
 - b. The intra-alveolar pressure would rise while the intrapleural pressure remains subatmospheric
 - c. Both would decrease
 - d. Both would remain constant at their resting levels

ANS: A

	Feedback
Α	The intra-alveolar and intrapleural pressures would increase during a positive pressure
	breath from a mechanical ventilator.
В	The intra-alveolar and intrapleural pressures would increase during a positive pressure
	breath from a mechanical ventilator.
С	The intra-alveolar and intrapleural pressures would increase during a positive pressure
	breath from a mechanical ventilator.
D	The intra-alveolar and intrapleural pressures would increase during a positive pressure
	breath from a mechanical ventilator.

PTS: 1 DIF: Recall

REF: Hooke's Law|Clinical Connection 2-5: Positive Pressure Ventilation

OBJ: 13

c. Gay-Lussac's law

d. Charles' law

d. viscosity

- 26. When a tension pneumothorax occurs during positive pressure ventilation, how will the cardiac output and blood pressure affected?
 - a. Both will decrease
 - b. Both will increase
 - c. The cardiac output will increase but the BP will decrease
 - d. The BP will increase but the BP will decrease

	Feedback
Α	When a tesnion pneumothorax occurs, the cardiac output and blood pressure decrease
	due to compression of major vessels from accumulated gas in the pleural cavity.
В	When a tesnion pneumothorax occurs, the cardiac output and blood pressure decrease
	due to compression of major vessels from accumulated gas in the pleural cavity.
С	When a tesnion pneumothorax occurs, the cardiac output and blood pressure decrease
	due to compression of major vessels from accumulated gas in the pleural cavity.
D	When a tesnion pneumothorax occurs, the cardiac output and blood pressure decrease
	due to compression of major vessels from accumulated gas in the pleural cavity.

PTS: 1 DIF: Recall

REF: Hooke's Law|Clinical Connection 2-6: Hazards of Positive Pressure Ventilation OBJ: 14

- 27. Which law best explains the basic operation of the negative pressure ventilator? Charles'
 - a. Boyle's
 - b. Dalton's d. Hooke's

ANS: A

	Feedback
Α	The basic pressure and volume relationships described by Boyle's law are implemented
	by negative pressure ventilators.
В	The basic pressure and volume relationships described by Boyle's law are implemented
	by negative pressure ventilators.
С	The basic pressure and volume relationships described by Boyle's law are implemented
	by negative pressure ventilators.
D	The basic pressure and volume relationships described by Boyle's law are implemented
	by negative pressure ventilators.

c.

PTS: 1 DIF: Recall

REF: Hooke's Law|Clinical Connection 2-7: Negative Pressure Ventilation

OBJ: 15

28. Which of the following are periods of no gas flow during negative pressure ventilation?

- I. Inspiration
- II. End inspiration
- III. Expiration
- IV. End expiration
- a. II and IV only
- b. II only

- c. IV only
- d. I and III only

ANS: A

Feedback

Α	During negative pressure ventilation, no gas flow occurs at end-expiration and
	end-inspiration.
В	During negative pressure ventilation, no gas flow occurs at end-expiration and end-inspiration.
С	During negative pressure ventilation, no gas flow occurs at end-expiration and end-inspiration.
D	During negative pressure ventilation, no gas flow occurs at end-expiration and end-inspiration.

PTS: 1 DIF: Recall

REF: Hooke's Law|Clinical Connection 2-7: Negative Pressure Ventilation OBJ: 15

- 29. What is the term for the molecular cohesive force at a liquid-gas interface?
 - a. surface tension
 - c. resistance b. compliance d. elastance

ANS: A

	Feedback
Α	Surface tension is the molecular, cohesive force that occurs at a liquid-gas interface.
В	Surface tension is the molecular, cohesive force that occurs at a liquid-gas interface.
С	Surface tension is the molecular, cohesive force that occurs at a liquid-gas interface.
D	Surface tension is the molecular, cohesive force that occurs at a liquid-gas interface.

PTS: 1 DIF: Recall REF: Surface Tension and its Effect on Lung Expansion OBJ: 16

30. Who is credited with the following equation : P = (2ST)/r?

- a. LaPlace c. Dalton
- b. Hooke d. Boyle

ANS: A

	Feedback
Α	The equation for LaPlace's law with one liquid-gas interface is written as P=(2ST)/r.
В	The equation for LaPlace's law with one liquid-gas interface is written as P=(2ST)/r.
С	The equation for LaPlace's law with one liquid-gas interface is written as P=(2ST)/r.
D	The equation for LaPlace's law with one liquid-gas interface is written as $P=(2ST)/r$.

PTS: 1 DIF: Recall REF: Laplace's Law OBJ: 17

- 31. Which substance in the alveoli is responsible for lowering the surface tension?
 - a. pulmonary surfactant
 - b. mucus

c. saline d. plasma

	Feedback
Α	Surfactant helps to reduce alveolar surface tension and helps prevent alveoli from
	collapsing.
В	Surfactant helps to reduce alveolar surface tension and helps prevent alveoli from
	collapsing.

С	Surfactant helps to reduce alveolar surface tension and helps prevent alveoli from
	collapsing.
D	Surfactant helps to reduce alveolar surface tension and helps prevent alveoli from
	collapsing.

PTS: 1 DIF: Recall REF: LaPlace's Law Applied to the Alevolar Fluid Lining OBJ: 18

32. What is the primary surface tension lowering chemical in pulmonary surfactant?

a.	DPPC	c.	PCP
b.	CPPD	d.	BPD

. CPPD

ANS: A

	Feedback
Α	Dipalmitoyl phospatidycholine (DPPC) is the primary surface tension lowering
	component of pulmonary surfactant.
В	Dipalmitoyl phospatidycholine (DPPC) is the primary surface tension lowering
	component of pulmonary surfactant.
С	Dipalmitoyl phospatidycholine (DPPC) is the primary surface tension lowering
	component of pulmonary surfactant.
D	Dipalmitoyl phospatidycholine (DPPC) is the primary surface tension lowering
	component of pulmonary surfactant.

PTS: 1 DIF: Recall

REF: How Pulmonary Surfactant Regulates Alveolar Surface Tension

OBJ: 19

- 33. IWhen the average alveolus is fully distended,, what is the approximate surface tension?
 - a. 50 dynes/cm

- c. 5-15 dynes/cm
- b. 50 cm H20 d. 5-15 cm H20

ANS: A

	Feedback
Α	When the average alveolus is inflated, the surface tension is approximately 50
	dynes/cm.
В	When the average alveolus is inflated, the surface tension is approximately 50
	dynes/cm.
С	When the average alveolus is inflated, the surface tension is approximately 50
	dynes/cm.
D	When the average alveolus is inflated, the surface tension is approximately 50
	dynes/cm.

PTS: 1 DIF: Recall

REF: How Pulmonary Surfactant Regulates Alveolar Surface Tension

OBJ: 19

34. Which of the following can cause pulmonary surfactant deficiency?

I. Pulmonary embolism II. Pulmonary edema III. Atelectasis IV. ARDS

a.	I, II, III, and IV	c.	I, II, and III only
b.	II and IV only	d.	II and III only

ANS: A

	Feedback
Α	All of the factors listed can cause pulmonary surfactant deficiency.
В	All of the factors listed can cause pulmonary surfactant deficiency.
С	All of the factors listed can cause pulmonary surfactant deficiency.
D	All of the factors listed can cause pulmonary surfactant deficiency.

PTS: 1 DIF: Recall REF: Summary of the Lung's Elastic Properties OBJ: 20

35. What is the treatment of choice for the early stages of RDS in premature infants?

a. CPAP

c. steroids

b. oxygen therapy d. long acting bronchodilators

ANS: A

	Feedback
Α	CPAP is the treatment for the early stages of RDS.
В	CPAP is the treatment for the early stages of RDS.
С	CPAP is the treatment for the early stages of RDS.
D	CPAP is the treatment for the early stages of RDS.

PTS: 1 DIF: Recall

REF: Summary|Clinical Connection 2-8: Pulmonary Surfactant Deficiency OBJ: 21

- 36. What term is used in respiratory care to describe the movement of gas in and out of the lung and the
 - pressure changes required to move the gas?
 - a. dynamic c. passive
 - b. static d. respiration

ANS: A

	Feedback
A	Dynamic refers to movement f gas in and out of the lungs and the accompanying pressure changes.
В	Dynamic refers to movement f gas in and out of the lungs and the accompanying pressure changes.
С	Dynamic refers to movement of gas in and out of the lungs and the accompanying pressure changes.
D	Dynamic refers to movement f gas in and out of the lungs and the accompanying pressure changes.

PTS: 1 DIF: Recall REF: Dynamic Characteristics of the Lungs OBJ: 22

37. When Poiseuille's law is rearranged for flow with pressure remaining constant, what impact would reducing the radius of a tube by 50% have on the gas flow?

- a. It would be reduced to 1/16 of the original flow
- b. It would increase to 16 times more than the original flow
- c. It would increase to 16 times more than the original flow
- d. It would be reduced to 1/4 the original flow

	Feedback
Α	When the radius of a tube is halved, the flow will decrease to 1/16 of the original
	output.
В	When the radius of a tube is halved, the flow will decrease to 1/16 of the original
	output.
С	When the radius of a tube is halved, the flow will decrease to 1/16 of the original
	output.
D	When the radius of a tube is halved, the flow will decrease to 1/16 of the original
	output.

PTS: 1 DIF: Application REF: Poiseuille's Law Arranged for Flow OBJ: 23

- 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50% ?
 - a. The pressure must be increased to 16 times the original
 - b. The pressure must be doubled
 - c. The pressure must be reduced by 50%
 - d. The pressure must be increased to 4 times the original pressure

ANS: A

Feedback
Pressure is a function of the radius to the fourth power so 16 times the original pressure
would be required to restore the flowrate when the radius of the tube is halved.
Pressure is a function of the radius to the fourth power so 16 times the original pressure
would be required to restore the flowrate when the radius of the tube is halved.
Pressure is a function of the radius to the fourth power so 16 times the original pressure
would be required to restore the flowrate when the radius of the tube is halved.
Pressure is a function of the radius to the fourth power so 16 times the original pressure
would be required to restore the flowrate when the radius of the tube is halved.

PTS: 1 DIF: Application REF: Poiseuille's Law Arranged for Pressure OBJ: 25

- 39. When the radius of the bronchial airways decreases during exhalation, what change must occur to maintain a constant gas flow?
 - a. The transthoracic pressure must vary inversely with the fourth power of the radius
 - b. The transthoracic pressure must vary directly with the fourth power of the radius
 - c. The transthoracic pressure must remain constant
 - d. The transthoracic pressure must vary inversely with the second power of the radius

	Feedback			
Α	A As the radius of the bronchial airways decrease during exhalation, the transthoracic			
	pressure must vary inversely with the fourth power of the radius.			

В	As the radius of the bronchial airways decrease during exhalation, the transthoracic					
	pressure must vary inversely with the fourth power of the radius.					
С	As the radius of the bronchial airways decrease during exhalation, the transthoracic					
	pressure must vary inversely with the fourth power of the radius.					
D	As the radius of the bronchial airways decrease during exhalation, the transthoracic					
	pressure must vary inversely with the fourth power of the radius.					

PTS: 1 DIF: Recall

REF: Poiseuille's Law Rearranged to Simple Proportionalities OBJ: 25

- 40. What is derived when the pressure difference between the mouth and alveoli is divided by the flowrate?
 - a. airway resistance

- c. lung compliance
- b. surface tension d. chest wall compliance

ANS: A

	Feedback
Α	Airway resistance is defined as the change in transrespiratory pressure divided by flow
	rate.
В	Airway resistance is defined as the change in transrespiratory pressure divided by flow
	rate.
С	Airway resistance is defined as the change in transrespiratory pressure divided by flow
	rate.
D	Airway resistance is defined as the change in transrespiratory pressure divided by flow
	rate.

PTS:	1	DIF:	Recall	REF:	Airway Resistance
OBJ:	27				

- 41. If an individual generates a flow rate of 4 L/sec by generating a transrespiratory pressure of 6 cm H20, what would Raw equal?
 - a. 1.5 cm H20/L/sec
 - b. 0.67 cm H20/L/sec

- c. 2.4 L/sec/ cm H20
- d. 1.5 L/sec/cm H20

ANS: A

	Feedback	
Α	Airway resistance would be derived as	6 cm H20/4 L/sec to equal 1.5 cm H2O/L/sec.
		6 cm H20/4 L/sec to equal 1.5 cm H2O/L/sec.
С	Airway resistance would be derived as	6 cm H20/4 L/sec to equal 1.5 cm H2O/L/sec.
D	Airway resistance would be derived as	6 cm H20/4 L/sec to equal 1.5 cm H2O/L/sec.

PTS: 1 DIF: Application REF: Airway Resistance OBJ: 28

- 42. If a patient who generates an intrapleural pressure of -4 mmHg to inhale 450 mL experiences inflammation and bronchospasm that reduce the radius of the bronchial airways to one-half of their original size, what pressure must the patient generate to inhale the same tidal volume?
 - a. 64 mm Hg

- $c. \quad 20 \text{ mm Hg}$
- b. 48 mm Hg d. 16 mm Hg

	Feedback						
Α	To maintain the same tidal volume when the radius of the bronchial airways is reduced						
	by one half, the intrapleural pressure must increase by a factor of 16 so the required						
	pressure would be 4 x 16 or 64 mm Hg.						
В	To maintain the same tidal volume when the radius of the bronchial airways is reduced						
by one half, the intrapleural pressure must increase by a factor of 16 so the re							
	pressure would be 4 x 16 or 64 mm Hg.						
С	C To maintain the same tidal volume when the radius of the bronchial airways is reduced						
	by one half, the intrapleural pressure must increase by a factor of 16 so the required						
	pressure would be 4 x 16 or 64 mm Hg.						
D	To maintain the same tidal volume when the radius of the bronchial airways is reduced						
	by one half, the intrapleural pressure must increase by a factor of 16 so the required						
	pressure would be 4 x 16 or 64 mm Hg.						

PTS: 1 DIF: Application

REF: Poiseuille's Law Arranged for Simple Proportionalities|Clinical Connection 2-9: Respiratory Disorders that Decrease the Radius of the Airways OBJ: 26

- 43. Which flow pattern occurs in airways at low flow rates and low pressure-gradients?
 - a. laminar flow

- c. transitional flow
- b. turbulent flow d. tracheobronchial flow

ANS: A

	Feedback
Α	Laminar flow occurs in airways where flow rate and pressure gradients are both low.
В	Laminar flow occurs in airways where flow rate and pressure gradients are both low.
С	Laminar flow occurs in airways where flow rate and pressure gradients are both low.
D	Laminar flow occurs in airways where flow rate and pressure gradients are both low.

PTS:	1	DIF:	Recall	REF:	Laminar Flow
OBJ:	27				

- 44. Which flow pattern occurs in airways at high flow rates and high pressure gradients?
 - a. turbulent flow

c. tracheobronchial flow

b. laminar flow

d. transitional flow

ANS: A

	Feedback
Α	Turbulent flow occurs in airways at high flow rates and high pressure gradients.
В	Turbulent flow occurs in airways at high flow rates and high pressure gradients.
С	Turbulent flow occurs in airways at high flow rates and high pressure gradients.
D	Turbulent flow occurs in airways at high flow rates and high pressure gradients.

PTS: 1 DIF: Recall REF: Turbulent Flow OBJ: 27

- 45. What is defined as "the time required to inflate a lung region to 60% of its filling capacity"?
 - a. time constant

- c. inspiratory time
- b. dynamic compliance
- d. maximum inspiratory time

	Feedback			
Α	A time constant is the amount of time required to inflate a lung region to 60% its			
	potential filling capacity.			
В	B A time constant is the amount of time required to inflate a lung region to 60% its			
	potential filling capacity.			
С	A time constant is the amount of time required to inflate a lung region to 60% its			
	potential filling capacity.			
D	D A time constant is the amount of time required to inflate a lung region to 60% its			
	potential filling capacity.			

PTS:	1	DIF:	Recall	REF:	Time Constants
OBJ:	29				

- 46. When lung compliance is reduced by half, how will time constants be affected?
 - a. The time constant will be reduced by half
 - b. The time constants will double
 - c. The time constant will be reduced to one-fourth of the original
 - d. The time constant will increase to four times the original

	Feedback
Α	When lung compliance is halved, the time constant will also be halved.
В	When lung compliance is halved, the time constant will also be halved.
С	When lung compliance is halved, the time constant will also be halved.
D	When lung compliance is halved, the time constant will also be halved.

PTS: 1 DIF: Recall REF: Time Constants OBJ: 29

- 47. What effect will increased R_{aw} and increased C_L have on the time constants in the affected lung regions?
 - a. Both factors require more time for the affected region to inflate.
 - b. Both factors require less time for the affected lung region to inflate
 - c. Time constants are unaffected by $R_{aw}\;\;$ but will require less time to inflate due to the increased $C_L\;$
 - d. Time constants are unaffected by C_{L} but will require more time to inflate in the affected region due to the increased R_{aw}

ANS: A

	Feedback
Α	Lung regions with increased airway resistance and increased lung compliance require
	more time to inflate
В	Lung regions with increased airway resistance and increased lung compliance require
	more time to inflate
С	Lung regions with increased airway resistance and increased lung compliance require
	more time to inflate
D	Lung regions with increased airway resistance and increased lung compliance require
	more time to inflate

PTS: 1 DIF: Recall REF: Time Constants

OBJ: 29

- 48. What term is defined as "the change in volume of the lungs divided by the change in transpulmonary pressure during the time required for one breath"?
 - a. dynamic compliance

c. airway resistance

b. static compliance

d. time constant

ANS: A

	Feedback					
Α	Dynamic compliance is the change in volume of the lungs divided by the change in					
	transpulmonary pressure during the time required for one breath.					
В	Dynamic compliance is the change in volume of the lungs divided by the change in					
	transpulmonary pressure during the time required for one breath.					
С	Dynamic compliance is the change in volume of the lungs divided by the change in					
	transpulmonary pressure during the time required for one breath.					
D	Dynamic compliance is the change in volume of the lungs divided by the change in					
	transpulmonary pressure during the time required for one breath.					

PTS: 1 DIF: Recall REF: Dynamic Compliance OBJ: 30

- 49. In the presence of restrictive lung disorders, how do patients typically offset the decreased time constants?
 - a. They adopt an increased respiratory rate
 - b. They adopt a decreased respiratory rate
 - c. They adopt a decreased respiratory rate and add a breath hold
 - d. They adopt a decreased respiratory rate with an increased tidal volume

ANS: A

	Feedback
Α	With restrictive lung disorders, patients typically adopt an increased respiratory rate.
В	With restrictive lung disorders, patients typically adopt an increased respiratory rate.
С	With restrictive lung disorders, patients typically adopt an increased respiratory rate.
D	With restrictive lung disorders, patients typically adopt an increased respiratory rate.

PTS: 1 DIF: Recall

REF: Dynamic Compliance|Clinical Connection: Restrictive Lung Disorders, Time Constants, and Breathing Pattern Relationships OBJ: 31

- 50. What changes in breathing patterns do patients with obstructive pulmonary disorders with increased R_{aw} and increased time constants typically adopt?
 - a. They decrease their respiratory rate and increase their tidal volume
 - b. The decrease their respiratory rate and tidal volume
 - c. They increase their respiratory rate and tidal volume
 - d. They increase their respiratory rate and decrease their tidal volume

	Feedback					
Α	Patients with obstructive pulmonary disorders with increased R _{aw} and increased time					
	constants typically decrease their respiratory rates and increase their tidal volumes.					
В	Patients with obstructive pulmonary disorders with increased R _{aw} and increased time					
	constants typically decrease their respiratory rates and increase their tidal volumes.					

С	Patients with obstructive pulmonary disorders with increased R _{aw} and increased time					
	constants typically decrease their respiratory rates and increase their tidal volumes.					
D	Patients with obstructive pulmonary disorders with increased R _{aw} and increased time					
	constants typically decrease their respiratory rates and increase their tidal volumes.					

PTS: 1 DIF: Recall

REF: Dynamic Compliance|Clinical Connection 2-11: Obstructive Lung Disorders. Time Constants and Breathing Pattern Relationships OBJ: 32

- 51. When rapid ventilatory rates occur, what is the term for the condition in which positive pressure remains in the alveoli during exhalation due to the insufficient expiratory time?
 - a. auto-PEEP
 - b. WOB

- c. pendulluft
- d. frequency dependence

ANS: A

	Feedback					
Α	Auto-PEEP is the condition in which positive pressure remains in the alveoli during					
	exhalation due to insufficient expiratory time.					
В	Auto-PEEP is the condition in which positive pressure remains in the alveoli during					
	exhalation due to insufficient expiratory time.					
С	Auto-PEEP is the condition in which positive pressure remains in the alveoli during					
	exhalation due to insufficient expiratory time.					
D	Auto-PEEP is the condition in which positive pressure remains in the alveoli during					
	exhalation due to insufficient expiratory time.					

PTS: 1 DIF: Recall

REF: Dynamic Compliance|Clinical Connection 2-12: Auto-PEEP and its Relationship to Raw During Rapid Ventilatory Rates OBJ: 33

- 52. What is the term for the volume of gas that is typically measured during exhalation of one quiet breath?
 - a. tidal volume
 - b. expiration

- c. minute volume
- d. expiratory reserve volume

ANS: A

	Feedback
Α	The amount of gas exhaled from one quiet breath is the tidal volume.
В	The amount of gas exhaled from one quiet breath is the tidal volume.
С	The amount of gas exhaled from one quiet breath is the tidal volume.
D	The amount of gas exhaled from one quiet breath is the tidal volume.

PTS:1DIF:RecallREF:The Normal Ventilatory PatternsOBJ:34

- 53. What is the average respiratory rate for an adult at rest?
 - a. 12-18 breaths/min

c. 14-24 breath/min

b. 5-12 breaths/min

d. 19-26 breaths/min

	Feedback
Α	The average respiratory rate for an adult at rest is 12-18 breaths/min.

В	The average respiratory rate for an adult at rest is 12-18 breaths/min.
С	The average respiratory rate for an adult at rest is 12-18 breaths/min.
D	The average respiratory rate for an adult at rest is 12-18 breaths/min.

PTS: 1 DIF: Recall REF: The Normal Ventilatory Patterns OBJ: 34

54. With the end expiratory pause is factored in, what is the normal I:E ratio for an adult at rest?

- a. 1:2 c. 1:1
- b. 1:3 d. 1:2.5

ANS: A

	Feedback					
Α	When the end expiratory pause is included, the normal I:E ratio for an adult at rest is					
	1:2.					
В	When the end expiratory pause is included, the normal I:E ratio for an adult at rest is					
	1:2.					
С	When the end expiratory pause is included, the normal I:E ratio for an adult at rest is					
	1:2.					
D	When the end expiratory pause is included, the normal I:E ratio for an adult at rest is					
	1:2.					

PTS:	1	DIF:	Recall	REF:	The Normal Ventilatory Patterns
OBJ:	34				

- 55. What is the average respiratory rate for a healthy toddler at rest?
 - a. 25 40 breaths/min c. 30-60 breaths/min
 - b. 15-24 breaths/min d. 12-20 breaths/min

ANS: A

	Feedback
Α	The average respiratory rate for a healthy toddler at rest is 25-40 breaths/min.
В	The average respiratory rate for a healthy toddler at rest is 25-40 breaths/min.
С	The average respiratory rate for a healthy toddler at rest is 25-40 breaths/min.
D	The average respiratory rate for a healthy toddler at rest is 25-40 breaths/min.

PTS: 1 DIF: Recall

REF: The Normal Ventilatory Patterns|Clinical Connection 2-13: Normal Respiratory Rates for Different Age Groups OBJ: 35

- 56. A 5 ft tall female who weighs 300 lb requires mechanical ventilation. If the prescribed tidal volume for this patient's condition is 6 mL/kg IBW, where should the set tidal volume be set?
 - a. approximately 290 mL

- c. approximately 520 mL
- b. approximately 380 mL d. approximately 820 mL

	Feedback
Α	A 5 ft tall female's IBW would be approximately 100-105 pounds or 47 kg, so 47 x
	6mL/kg would equal approximately 290 mL.
В	A 5 ft tall female's IBW would be approximately 100-105 pounds or 47 kg, so 47 x
	6mL/kg would equal approximately 290 mL.

С	A 5 ft tall female's IBW would be approximately 100-105 pounds or 47 kg, so 47 x
	6mL/kg would equal approximately 290 mL.
D	A 5 ft tall female's IBW would be approximately 100-105 pounds or 47 kg, so 47 x
	6mL/kg would equal approximately 290 mL.

PTS: 1 DIF: Application

REF: The Normal Ventilatory Patterns|Clinical Connection 2-14: Tidal Volume and Breathing Rate Strategies for Mechanical Ventilation OBJ: 36

- 57. What are the boundaries of anatomic dead space?
 - a. nose and mouth through the terminal bronchioles
 - b. nose and mouth to the alveolar sacs
 - c. nose and mouth to the segmental bronchi
 - d. nose and moth to the bronchioles

ANS: A

	Feedback
Α	Anatomic deadspace extends from the nose and mouth through the terminal bronchioles.
В	Anatomic deadspace extends from the nose and mouth through the terminal bronchioles.
С	Anatomic deadspace extends from the nose and mouth through the terminal bronchioles.
D	Anatomic deadspace extends from the nose and mouth through the terminal bronchioles.

PTS:	1	DIF:	Recall	REF:	Anatomic Deadspace
OBJ:	37				_

- 58. What is the approximate volume of anatomic deadspace?
 - a. 1 mL/lb of ideal body weightb. 2.2 mL/lb of ideal body weight
- c. 2.2 mL/kg actual body weight
 - d. 1 mL/kg of ideal body weight

ANS: A

t.
t.
t.
t.
11

PTS: 1 DIF: Recall REF: Anatomic Deadspace OBJ: 37

- 59. What does frequency multiplied by (V_T-V_D) equal?
 - c. physiologic deadspace ventilation
 - a. minute alveolar ventilationb. minute ventilation
- d. alveolar deadspace

	Feedback
Α	The minute alveolar ventilation equals the frequency multiplied by (tidal volume minus
	anatomic deadspace).
В	The minute alveolar ventilation equals the frequency multiplied by (tidal volume minus
	anatomic deadspace).
С	The minute alveolar ventilation equals the frequency multiplied by (tidal volume minus
	anatomic deadspace).

D The minute alveolar ventilation equals the frequency multiplied by (tidal volume minus anatomic deadspace).

- PTS: 1 DIF: Recall REF: Ana OBJ: 37
 - REF: Anatomic Deadspace
- 60. What is the term for alveolar ventilation without pulmonary capillary perfusion?
 - a. alveolar deadspace

c. physiologic deadspace

b. anatomic deadspace

d. minute alveolar ventilation

ANS: A

	Feedback
Α	Alveolar deadspace is alveolar ventilation without pulmonary capillary perfusion
В	Alveolar deadspace is alveolar ventilation without pulmonary capillary perfusion
С	Alveolar deadspace is alveolar ventilation without pulmonary capillary perfusion
D	Alveolar deadspace is alveolar ventilation without pulmonary capillary perfusion

PTS:	1	DIF:	Recall	REF:	Anatomic Deadspace
OBJ:	37				_

61. What does the sum of anatomic deadspace and alveolar deadspace equal?

- a. physiologic deadspace
- b. minute ventilation

- c. alveolar ventilaion
- d. total gas exchange

ANS: A

	Feedback
Α	Anatomic deadspace plus alveolar deadspace equals physiologic deadspace.
В	Anatomic deadspace plus alveolar deadspace equals physiologic deadspace.
С	Anatomic deadspace plus alveolar deadspace equals physiologic deadspace.
D	Anatomic deadspace plus alveolar deadspace equals physiologic deadspace.

PTS: 1 DIF: Recall REF: Physiologic Deadspace OBJ: 37

- 62. How would the addition of a length of tubing between a ventilator and the endotracheal tube affect on dead space?
 - a. It would increase the deadspace
 - b. It would decrease the deadspace
 - c. It would have no effect on deadspace
 - d. It would have no effect on deadspace but would increase the tidal volume

	Feedback
Α	When a length of tubing is added between the ventilator and endotracheal tube, the
	deadspace increases.
В	When a length of tubing is added between the ventilator and endotracheal tube, the
	deadspace increases.
С	When a length of tubing is added between the ventilator and endotracheal tube, the
	deadspace increases.
D	When a length of tubing is added between the ventilator and endotracheal tube, the
	deadspace increases.

PTS: 1 DIF: Recall

REF: Physiologic Deadspace|Clinical Connection 2-15: A Giraffe's Neck: Alveolar Ventilation vs Deadspace Ventilation OBJ: 40

63. Which of the following can cause pulmonary emboli?

- I. Prolonged inactivity
- II. Pregnancy and childbirth
- III. Obesity
- IV. Hypercoagulation disorders
- a. I, II, III, and IV
- b. I and IV only

- c. I, III, and IV only
- d. I, II, and III only

ANS: A

	Feedback
Α	Pulmonary emboli can result from prolonged inactivity, pregnancy and childbirth,
	obseity, and hypercoagulation disorders.
В	Pulmonary emboli can result from prolonged inactivity, pregnancy and childbirth,
	obseity, and hypercoagulation disorders.
С	Pulmonary emboli can result from prolonged inactivity, pregnancy and childbirth,
	obseity, and hypercoagulation disorders.
D	Pulmonary emboli can result from prolonged inactivity, pregnancy and childbirth,
	obseity, and hypercoagulation disorders.

PTS: 1 DIF: Recall

REF: Physiologic Deadspace/Clinical Connection 2-16: Pulmonary Embolus and Deadspace Ventilation OBJ: 41

- 64. What would the minute alveolar ventilation equal if a 6 ft tall, 170 lb male has a VT of 550 mL and a respiratory rate of 11 breaths/min?
 - a. (550-170) x 11 = 4.18 L b. (550 + 170) x 11 = 7.9 L
- c. 550 + (170 x 11) = 1.87 L
- d. 550 (170/2.2) x 11= 4.65 L

ANS: A

	Feedback
Α	The alveolar ventilation would be [550 mL tidal volume-170 anatomic dead space
	volume) x 11 breaths/min = 4.18 L /min .
В	The alveolar ventilation would be [550 mL tidal volume-170 anatomic dead space
	volume) x 11 breaths/min = 4.18 L /min .
С	The alveolar ventilation would be [550 mL tidal volume-170 anatomic dead space
	volume) x 11 breaths/min = 4.18 L /min .
D	The alveolar ventilation would be [550 mL tidal volume-170 anatomic dead space
	volume) x 11 breaths/min = 4.18 L /min.

PTS: 1 DIF: Application REF: Anatomic Deadspace OBJ: 39

65. In the upright position, which portion of the lungs has the most negative pleural pressure?

- a. apex
- b. base

- c. hilum
- d. intrapleural pressure is uniform throughout all lung areas

	Feedback
Α	In the upright postion the apex of the lung has a more negative pleural pressure than at the bases.
В	In the upright postion the apex of the lung has a more negative pleural pressure than at the bases.
С	In the upright postion the apex of the lung has a more negative pleural pressure than at the bases.
D	In the upright postion the apex of the lung has a more negative pleural pressure than at the bases.

PTS: 1 DIF: Recall

REF: How Normal Pleural Pressure Differences Cause Regional Differences in Normal Lung Ventilation OBJ: 42

66. In the upright lung, how does compliance vary across the lung?

- a. The compliance in the apices is lower than in the bases
- b. The compliance in the bases is lower than in the apices
- c. The compliance is uniform in all regions of the lung
- d. The compliance is higher at the hilum than in the apices or bases.

ANS: A

	Feedback
Α	The compliance in the apices of the lungs is lower than the compliance in the bases.
В	The compliance in the apices of the lungs is lower than the compliance in the bases.
С	The compliance in the apices of the lungs is lower than the compliance in the bases.
D	The compliance in the apices of the lungs is lower than the compliance in the bases.

PTS: 1 DIF: Recall

REF: How Normal Pleural Pressure Differences Cause Regional Differences in Normal Lung Ventilation OBJ: 42

67. In a healthy adult at rest, what portion of the total energy output is required for the work of breathing?

a.	5%	с.	25%
b.	15 %	d.	35%

ANS: A

	Feedback
Α	In a healthy adult at rest, the work of breathing consumes 5% of the total energy output.
В	In a healthy adult at rest, the work of breathing consumes 5% of the total energy output.
С	In a healthy adult at rest, the work of breathing consumes 5% of the total energy output.
D	In a healthy adult at rest, the work of breathing consumes 5% of the total energy output.

PTS: 1 DIF: Recall REF: The Effect of Airway Resistance and Lung Compliance on Ventilatory Pressure OBJ: 43

68. What is the term for alteration of the ventilatory pattern to minimize dead space ventilation?

a. ventilatory efficiency

b. metabolic efficiency

- c. hyperventilation
- d. Hyperefficiency

ANS: A

	Feedback
Α	Alteration of the ventilatory pattern to minimize dead space ventilation is called ventilatory efficiency.
В	Alteration of the ventilatory pattern to minimize dead space ventilation is called ventilatory efficiency.
С	Alteration of the ventilatory pattern to minimize dead space ventilation is called ventilatory efficiency.
D	Alteration of the ventilatory pattern to minimize dead space ventilation is called ventilatory efficiency.

PTS: 1 DIF: Recall

REF: The Effect of Airway Resistance and Lung Compliance on Ventilatory Pressure OBJ: 43

- 69. How does the normal adult's respiratory pattern change when lung compliance decreases?
 - a. respiratory rate increases and tidal volume decreases
 - b. respiratory rate decreases and tidal volume increase
 - c. respiratory rate and tidal volume increase
 - d. respiratory rate and tidal volume decrease.

ANS: A

	Feedback
Α	When lung compliance decrease, the respiratory rate increases and tidal volume
	decreases.
В	When lung compliance decrease, the respiratory rate increases and tidal volume
	decreases.
С	When lung compliance decrease, the respiratory rate increases and tidal volume
	decreases.
D	When lung compliance decrease, the respiratory rate increases and tidal volume
	decreases.

PTS: 1 DIF: Recall

REF: The Effect of Airway Resistance and Lung Compliance on Ventilatory Patterns|Clinical Connection 2-17: How the Adopted Breathing Pattern Changes in COPD when Compromised by a Restrictive Disorder OBJ: 44

- 70. How does the breathing pattern change when a patient with COPD develops a secondary restrictive lung condition such as pneumonia?
 - a. respiratory rate increases
 - b. respiratory rate decreases and tidal volume increase
 - c. respiratory rate and tidal volume decrease.
 - d. no breathing pattern changes would occur.

	Feedback
Α	When a patient with COPD develops pneumonia, one would expect hyperventilation to
	occur.

В	When a patient with COPD develops pneumonia, one would expect hyperventilation to
	occur.
С	When a patient with COPD develops pneumonia, one would expect hyperventilation to
	occur.
D	When a patient with COPD develops pneumonia, one would expect hyperventilation to
	occur.

PTS: 1 DIF: Recall

REF: The Effect of Airway Resistance and Lung Compliance on Ventilatory Patterns|Clinical Connection 2-17: How the Adopted Breathing Pattern Changes in COPD when Compromised by a Restrictive Disorder OBJ: 44

- 71. Which ventilatory pattern is defined as the complete absence of spontaneous breathing?
 - a. apnea c. eupnea
 - b. apneusis d. dyspnea

ANS: A

	Feedback
Α	The absence of spontaneous breathing is called apnea.
В	The absence of spontaneous breathing is called apnea.
С	The absence of spontaneous breathing is called apnea.
D	The absence of spontaneous breathing is called apnea.

PTS: 1 DIF: Recall REF: Overview of Specific Breathing Conditions OBJ: 45

72. What is the term for the breathing condition in which short episodes of rapid, uniform deep breaths are followed by 10-30 seconds of apnea?

а.	Diot s				
9	Biot's				

- c. Kussmaul'sd. Levy's
- b. Cheyne-Stokes

ANS: A

	Feedback
Α	Biot's breathing is characterized by short episodes of uniform, rapid deep breaths
	followed by 10-30 seconds of apnea.
В	Biot's breathing is characterized by short episodes of uniform, rapid deep breaths
	followed by 10-30 seconds of apnea.
С	Biot's breathing is characterized by short episodes of uniform, rapid deep breaths
	followed by 10-30 seconds of apnea.
D	Biot's breathing is characterized by short episodes of uniform, rapid deep breaths
	followed by 10-30 seconds of apnea.

PTS: 1 DIF: Recall REF: Overview of Specific Breathing Conditions OBJ: 45

- 73. What is the term for a rapid respiratory rate?
 - a. tachypnea

c. hyperventilation

b. hyperpnea

d. eupnea

ANS: A

Feedback

Α	A rapid respiratory rate is called tachpnea.
В	A rapid respiratory rate is called tachpnea.
С	A rapid respiratory rate is called tachpnea.
D	A rapid respiratory rate is called tachpnea.

PTS: 1 DIF: Recall REF: Overview of Specific Breathing Conditions OBJ: 45

74. What is the term for the breathing pattern in which the depth of breathing increases?

- a. hyperpnea c. hyperventilation
- b. tachypnea d. Kussmaul's

ANS: A

	Feedback
Α	Hyperpnea is an increase in the depth of breathing.
В	Hyperpnea is an increase in the depth of breathing.
С	Hyperpnea is an increase in the depth of breathing.
D	Hyperpnea is an increase in the depth of breathing.

PTS: 1 DIF: Recall REF: Overview of Specific Breathing Conditions OBJ: 45

- 75. In which breathing pattern is an individual only able to breathe comfortably in the upright position?
 - a. orthopnea
 - b. tachypnea

- c. eupnea
- d. hyperpnea

ANS: A

	Feedback
Α	When one can only breathe comfortably while in the upright position, it is called
	orthopnea.
В	When one can only breathe comfortably while in the upright position, it is called
	orthopnea.
С	When one can only breathe comfortably while in the upright position, it is called
	orthopnea.
D	When one can only breathe comfortably while in the upright position, it is called
	orthopnea.

PTS: 1 DIF: Recall REF: Overview of Specific Breathing Conditions OBJ: 45

76. Which abnormal breathing pattern is most commonly associated with ketoacidosis?

a. Kussmaul'sb. Biot's

- c. Cheyne Stokes
- d. Hypopnea

	Feedback
Α	Kussmaul's breathing is most often associated with ketoacidosis.
В	Kussmaul's breathing is most often associated with ketoacidosis.
С	Kussmaul's breathing is most often associated with ketoacidosis.
D	Kussmaul's breathing is most often associated with ketoacidosis.

Cardiopulmonary Anatomy Physiology Essentials of Respiratory Care 6th Edition Jardins Test Bank

Full Download: http://alibabadownload.com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional com/product/cardiopulmonary-anatomy-physiology-essentials-of-respiratory-care-6th-editional com/product/care-6th-editional com/product/care-6th-editional com/product/care-6th-editional com/product/care-6th-editional com/product/care-6th-editional com/product/care-6th-editional com/product/care-6th-editional com/product/care-6th-editional com/product/

PTS: 1DIF: RecallREF: Overview of Specific Breathing ConditionsOBJ: 45

- 77. What is the only absolute way of confirming hyperventilation?
 - a. monitor the PaCO₂b. assess the respiratory rate
- c. assess the tidal volume
- d. ask the patient

ANS: A

	Feedback
Α	The absolute confirmation of hyperventilation is made by assessing the PaCO ₂
В	The absolute confirmation of hyperventilation is made by assessing the PaCO ₂
С	The absolute confirmation of hyperventilation is made by assessing the PaCO ₂
D	The absolute confirmation of hyperventilation is made by assessing the PaCO ₂

PTS: 1 DIF: Recall

REF: Overview of Specific Breathing Conditions|Clinical Connection 2-18: The Arterial Carbon Dioxide Level and its Relationship to the Clinical Verification of Hyperventilation and Hypoventilation