
3 DIFFERENTIATION

3.1 Definition of the Derivative

Preliminary Questions
1. Which of the lines in Figure 11 are tangent to the curve?

A

B

C

D

FIGURE 11

solution Lines B and D are tangent to the curve.

2. What are the two ways of writing the difference quotient?

solution The difference quotient may be written either as

f (x) − f (a)

x − a

or as

f (a + h) − f (a)

h
.

3. Find a and h such that
f (a + h) − f (a)

h
is equal to the slope of the secant line between (3, f (3)) and

(5, f (5)).

solution With a = 3 and h = 2,
f (a + h) − f (a)

h
is equal to the slope of the secant line between the

points (3, f (3)) and (5, f (5)) on the graph of f (x).

4. Which derivative is approximated by
tan

(
π
4 + 0.0001

) − 1

0.0001
?

solution
tan(π

4 + 0.0001) − 1

0.0001
is a good approximation to the derivative of the function f (x) = tan x at

x = π
4 .

5. What do the following quantities represent in terms of the graph of f (x) = sin x?

(a) sin 1.3 − sin 0.9 (b)
sin 1.3 − sin 0.9

0.4
(c) f ′(0.9)

solution Consider the graph of y = sin x.

(a) The quantity sin 1.3 − sin 0.9 represents the difference in height between the points (0.9, sin 0.9) and
(1.3, sin 1.3).

(b) The quantity
sin 1.3 − sin 0.9

0.4
represents the slope of the secant line between the points (0.9, sin 0.9) and

(1.3, sin 1.3) on the graph.

(c) The quantity f ′(0.9) represents the slope of the tangent line to the graph at x = 0.9.
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Exercises
1. Let f (x) = 5x2. Show that f (3 + h) = 5h2 + 30h + 45. Then show that

f (3 + h) − f (3)

h
= 5h + 30

and compute f ′(3) by taking the limit as h → 0.

solution With f (x) = 5x2, it follows that

f (3 + h) = 5(3 + h)2 = 5(9 + 6h + h2) = 45 + 30h + 5h2.

Using this result, we find

f (3 + h) − f (3)

h
= 45 + 30h + 5h2 − 5 · 9

h
= 45 + 30h + 5h2 − 45

h
= 30h + 5h2

h
= 30 + 5h.

As h → 0, 30 + 5h → 30, so f ′(3) = 30.

2. Let f (x) = 2x2 − 3x − 5. Show that the secant line through (2, f (2)) and (2 + h, f (2 + h)) has slope
2h + 5. Then use this formula to compute the slope of:

(a) The secant line through (2, f (2)) and (3, f (3))

(b) The tangent line at x = 2 (by taking a limit)

solution The formula for the slope of the secant line is

f (2 + h) − f (2)

2 + h − 2
= [2(2 + h)2 − 3(2 + h) − 5] − (8 − 6 − 5)

h
= 2h2 + 5h

h
= 2h + 5

(a) To find the slope of the secant line through (2, f (2)) and (3, f (3)), we take h = 1, so the slope is
2(1) + 5 = 7.

(b) As h → 0, the slope of the secant line approaches 2(0) + 5 = 5. Hence, the slope of the tangent line at
x = 2 is 5.

In Exercises 3–8, compute f ′(a) in two ways, using Eq. (1) and Eq. (2).

3. f (x) = x2 + 9x, a = 0

solution Let f (x) = x2 + 9x. Then

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

(0 + h)2 + 9(0 + h) − 0

h
= lim

h→0

9h + h2

h
= lim

h→0
(9 + h) = 9.

Alternately,

f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

x2 + 9x − 0

x
= lim

x→0
(x + 9) = 9.

4. f (x) = x2 + 9x, a = 2

solution Let f (x) = x2 + 9x. Then

f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

(2 + h)2 + 9(2 + h) − 22

h
= lim

h→0

13h + h2

h
= lim

h→0
(13 + h) = 13.

Alternately,

f ′(2) = lim
x→2

f (x) − f (2)

x − 2
= lim

x→2

x2 + 9x − (22 + 9(2))

x − 2
= lim

x→2

(x − 2)(x + 11)

x − 2
= lim

x→2
(x + 11) = 13.



S E C T I O N 3.1 Definition of the Derivative 199

5. f (x) = 3x2 + 4x + 2, a = −1

solution Let f (x) = 3x2 + 4x + 2. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

3(−1 + h)2 + 4(−1 + h) + 2 − 1

h

= lim
h→0

3h2 − 2h

h
= lim

h→0
(3h − 2) = −2.

Alternately,

f ′(−1) = lim
x→−1

f (x) − f (−1)

x − (−1)
= lim

x→−1

3x2 + 4x + 2 − 1

x + 1

= lim
x→−1

(3x + 1)(x + 1)

x + 1
= lim

x→−1
(3x + 1) = −2.

6. f (x) = x3, a = 2

solution Let f (x) = x3. Then

f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

(2 + h)3 − 8

h

= lim
h→0

8 + 12h + 6h2 + h3 − 8

h
= lim

h→0
(12 + 6h + h2) = 12.

Alternately,

f ′(2) = lim
x→2

f (x) − f (2)

x − 2
= lim

x→2

x3 − 8

x − 2

= lim
x→2

(x − 2)(x2 + 2x + 4)

x − 2
= lim

x→2
(x2 + 2x + 4) = 12.

7. f (x) = x3 + 2x, a = 1

solution Let f (x) = x3 + 2x. Then

f ′(1) = lim
h→0

f (1 + h) − f (1)

h
= lim

h→0

(1 + h)3 + 2(1 + h) − 3

h

= lim
h→0

1 + 3h + 3h2 + h3 + 2 + 2h − 3

h
= lim

h→0
(5 + 3h + h2) = 5.

Alternately,

f ′(1) = lim
x→1

f (x) − f (1)

x − 1
= lim

x→1

x3 + 2x − 3

x − 1

= lim
x→1

(x − 1)(x2 + x + 3)

x − 1
= lim

x→1
(x2 + x + 3) = 5.

8. f (x) = 1
x

, a = 2

solution Let f (x) = 1
x

. Then

f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

1
2+h

− 1
2

h

= lim
h→0

2 − (2 + h)

2h(2 + h)
= lim

h→0

−1

2(2 + h)
= −1

4
.

Alternately,

f ′(2) = lim
x→2

f (x) − f (2)

x − 2
= lim

x→2

1
x

− 1
2

x − 2

= lim
x→2

2 − x

2x(x − 2)
= lim

x→2

−1

2x
= −1

4
.
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In Exercises 9–12, refer to Figure 12.

9. Find the slope of the secant line through (2, f (2)) and (2.5, f (2.5)). Is it larger or smaller than
f ′(2)? Explain.

solution From the graph, it appears that f (2.5) = 2.5 and f (2) = 2. Thus, the slope of the secant line
through (2, f (2)) and (2.5, f (2.5)) is

f (2.5) − f (2)

2.5 − 2
= 2.5 − 2

2.5 − 2
= 1.

From the graph, it is also clear that the secant line through (2, f (2)) and (2.5, f (2.5)) has a larger slope than
the tangent line at x = 2. In other words, the slope of the secant line through (2, f (2)) and (2.5, f (2.5)) is
larger than f ′(2).

10. Estimate
f (2 + h) − f (2)

h
for h = −0.5. What does this quantity represent? Is it larger or smaller

than f ′(2)? Explain.

solution With h = −0.5, 2 + h = 1.5. Moreover, from the graph it appears that f (1.5) = 1.7 and
f (2) = 2. Thus,

f (2 + h) − f (2)

h
= 1.7 − 2

−0.5
= 0.6.

This quantity represents the slope of the secant line through the points (2, f (2)) and (1.5, f (1.5)). It is clear
from the graph that the secant line through the points (2, f (2)) and (1.5, f (1.5)) has a smaller slope than the

tangent line at x = 2. In other words,
f (2 + h) − f (2)

h
for h = −0.5 is smaller than f ′(2).

11. Estimate f ′(1) and f ′(2).

solution From the graph, it appears that the tangent line at x = 1 would be horizontal. Thus, f ′(1) ≈ 0.
The tangent line at x = 2 appears to pass through the points (0.5, 0.8) and (2, 2). Thus

f ′(2) ≈ 2 − 0.8

2 − 0.5
= 0.8.

12. Find a value of h for which
f (2 + h) − f (2)

h
= 0.

0.5

1.0

1.5

2.0

2.5

3.0

f (x)

1.0 2.0 3.00.5 1.5 2.5
x

y

FIGURE 12

solution In order for

f (2 + h) − f (2)

h

to be equal to zero, we must have f (2 + h) = f (2). Now, f (2) = 2, and the only other point on the graph
with a y-coordinate of 2 is f (0) = 2. Thus, 2 + h = 0, or h = −2.

In Exercises 13–16, refer to Figure 13.

13. Determine f ′(a) for a = 1, 2, 4, 7.

solution Remember that the value of the derivative of f at x = a can be interpreted as the slope of the
line tangent to the graph of y = f (x) at x = a. From Figure 13, we see that the graph of y = f (x) is a
horizontal line (that is, a line with zero slope) on the interval 0 ≤ x ≤ 3. Accordingly, f ′(1) = f ′(2) = 0. On
the interval 3 ≤ x ≤ 5, the graph of y = f (x) is a line of slope 1

2 ; thus, f ′(4) = 1
2 . Finally, the line tangent

to the graph of y = f (x) at x = 7 is horizontal, so f ′(7) = 0.
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14. For which values of x is f ′(x) < 0?

solution If f ′(x) < 0, then the slope of the tangent line at x is negative. Graphically, this would mean
that the value of the function was decreasing for increasing x. From the graph, it follows that f ′(x) < 0 for
7 < x < 9.

15. Which is larger, f ′(5.5) or f ′(6.5)?

solution The line tangent to the graph of y = f (x) at x = 5.5 has a larger slope than the line tangent to
the graph of y = f (x) at x = 6.5. Therefore, f ′(5.5) is larger than f ′(6.5).

16. Show that f ′(3) does not exist.

1

2

3

5

4

1 2 3 4 5 6 7 8 9
x

y

FIGURE 13 Graph of f .

solution Because

lim
h→0−

f (3 + h) − f (3)

h
= 0 but lim

h→0+
f (3 + h) − f (3)

h
= 1

2
,

it follows that

f ′(3) = lim
h→0

f (3 + h) − f (3)

h

does not exist.

In Exercises 17–20, use the limit definition to calculate the derivative of the linear function.

17. f (x) = 7x − 9

solution

lim
h→0

f (a + h) − f (a)

h
= lim

h→0

7(a + h) − 9 − (7a − 9)

h
= lim

h→0
7 = 7.

18. f (x) = 12

solution

lim
h→0

f (a + h) − f (a)

h
= lim

h→0

12 − 12

h
= lim

h→0
0 = 0.

19. g(t) = 8 − 3t

solution

lim
h→0

g(a + h) − g(a)

h
= lim

h→0

8 − 3(a + h) − (8 − 3a)

h
= lim

h→0

−3h

h
= lim

h→0
(−3) = −3.

20. k(z) = 14z + 12

solution

lim
h→0

k(a + h) − k(a)

h
= lim

h→0

14(a + h) + 12 − (14a + 12)

h
= lim

h→0

14h

h
= lim

h→0
14 = 14.

21. Find an equation of the tangent line at x = 3, assuming that f (3) = 5 and f ′(3) = 2.

solution By definition, the equation of the tangent line to the graph of f (x) at x = 3 is y = f (3) +
f ′(3)(x − 3) = 5 + 2(x − 3) = 2x − 1.

22. Find f (3) and f ′(3), assuming that the tangent line to y = f (x) at a = 3 has equation y = 5x + 2.

solution The slope of the tangent line to y = f (x) at a = 3 is f ′(3) by definition, therefore f ′(3) = 5.
Also by definition, the tangent line to y = f (x) at a = 3 goes through (3, f (3)), so f (3) = 17.
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23. Describe the tangent line at an arbitrary point on the “curve” y = 2x + 8.

solution Since y = 2x + 8 represents a straight line, the tangent line at any point is the line itself,
y = 2x + 8.

24. Suppose that f (2 + h) − f (2) = 3h2 + 5h. Calculate:

(a) The slope of the secant line through (2, f (2)) and (6, f (6))

(b) f ′(2)

solution Let f be a function such that f (2 + h) − f (2) = 3h2 + 5h.

(a) We take h = 4 to compute the slope of the secant line through (2, f (2)) and (6, f (6)):

f (2 + 4) − f (2)

(2 + 4) − 2
= 3(4)2 + 5(4)

4
= 17

(b) f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

3h2 + 5h

h
= lim

h→0
(3h + 5) = 5.

25. Let f (x) = 1

x
. Does f (−2 + h) equal

1

−2 + h
or

1

−2
+ 1

h
? Compute the difference quotient at a = −2

with h = 0.5.

solution Let f (x) = 1
x

. Then

f (−2 + h) = 1

−2 + h
.

With a = −2 and h = 0.5, the difference quotient is

f (a + h) − f (a)

h
= f (−1.5) − f (−2)

0.5
=

1
−1.5 − 1

−2

0.5
= −1

3
.

26. Let f (x) = √
x. Does f (5 + h) equal

√
5 + h or

√
5 + √

h? Compute the difference quotient at a = 5
with h = 1.

solution Let f (x) = √
x. Then f (5 + h) = √

5 + h. With a = 5 and h = 1, the difference quotient is

f (a + h) − f (a)

h
= f (5 + 1) − f (5)

1
=

√
6 − √

5

1
= √

6 − √
5.

27. Let f (x) = 1/
√

x. Compute f ′(5) by showing that

f (5 + h) − f (5)

h
= − 1√

5
√

5 + h(
√

5 + h + √
5)

solution Let f (x) = 1/
√

x. Then

f (5 + h) − f (5)

h
=

1√
5+h

− 1√
5

h
=

√
5 − √

5 + h

h
√

5
√

5 + h

=
√

5 − √
5 + h

h
√

5
√

5 + h

(√
5 + √

5 + h√
5 + √

5 + h

)

= 5 − (5 + h)

h
√

5
√

5 + h(
√

5 + h + √
5)

= − 1√
5
√

5 + h(
√

5 + h + √
5)

.

Thus,

f ′(5) = lim
h→0

f (5 + h) − f (5)

h
= lim

h→0
− 1√

5
√

5 + h(
√

5 + h + √
5)

= − 1√
5

√
5(

√
5 + √

5)
= − 1

10
√

5
.
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28. Find an equation of the tangent line to the graph of f (x) = 1/
√

x at x = 9.

solution Let f (x) = 1/
√

x. Then

f (9 + h) − f (9)

h
=

1√
9+h

− 1
3

h
= 3 − √

9 + h

3h
√

9 + h

= 3 − √
9 + h

3h
√

9 + h

(
3 + √

9 + h

3 + √
9 + h

)

= 9 − (9 + h)

3h
√

9 + h(
√

9 + h + 3)
= − 1

3
√

9 + h(
√

9 + h + 3)
.

Thus,

f ′(9) = lim
h→0

f (9 + h) − f (9)

h
= lim

h→0
− 1

3
√

9 + h(
√

9 + h + 3)

= − 1

9(3 + 3)
= − 1

54
.

Because f (9) = 1
3 , it follows that an equation of the tangent line to the graph of f (x) = 1/

√
x at x = 9 is

y = f ′(9)(x − 9) + f (9) = − 1

54
(x − 9) + 1

3
.

In Exercises 29–46, use the limit definition to compute f ′(a) and find an equation of the tangent line.

29. f (x) = 2x2 + 10x, a = 3

solution Let f (x) = 3x2 + 2x. Then

f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

3(2 + h)2 + 2(2 + h) − 16

h

= lim
h→0

12 + 12h + 3h2 + 4 + 2h − 16

h
= lim

h→0
(14 + 3h) = 14.

At a = 2, the tangent line is

y = f ′(2)(x − 2) + f (2) = 14(x − 2) + 16 = 14x − 12.

30. f (x) = 4 − x2, a = −1

solution Let f (x) = 4 − x2. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

4 − (−1 + h)2 − 3

h

= lim
h→0

4 − (1 − 2h + h2) − 3

h

= lim
h→0

(2 − h) = 2.

At a = −1, the tangent line is

y = f ′(−1)(x + 1) + f (−1) = 2(x + 1) + 3 = 2x + 5.

31. f (t) = t − 2t2, a = 3

solution Let f (t) = t − 2t2. Then

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0

(3 + h) − 2(3 + h)2 − (−15)

h

= lim
h→0

3 + h − 18 − 12h − 2h2 + 15

h

= lim
h→0

(−11 − 2h) = −11.



204 C H A P T E R 3 DIFFERENTIATION

At a = 3, the tangent line is

y = f ′(3)(t − 3) + f (3) = −11(t − 3) − 15 = −11t + 18.

32. f (x) = 8x3, a = 1

solution Let f (x) = 8x3. Then

f ′(1) = lim
h→0

f (1 + h) − f (1)

h
= lim

h→0

8(1 + h)3 − 8

h

= lim
h→0

8 + 24h + 24h2 + 8h3 − 8

h

= lim
h→0

(24 + 24h + 8h2) = 24.

At a = 1, the tangent line is

y = f ′(1)(x − 1) + f (1) = 24(x − 1) + 8 = 24x − 16.

33. f (x) = x3 + x, a = 0

solution Let f (x) = x3 + x. Then

f ′(0) = lim
h→0

f (h) − f (0)

h
= lim

h→0

h3 + h − 0

h

= lim
h→0

(h2 + 1) = 1.

At a = 0, the tangent line is

y = f ′(0)(x − 0) + f (0) = x.

34. f (t) = 2t3 + 4t , a = 4

solution Let f (t) = 2t3 + 4t . Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

2(4 + h)3 + 4(4 + h) − 144

h

= lim
h→0

128 + 96h + 24h2 + 2h3 + 16 + 4h − 144

h

= lim
h→0

(100 + 24h + 2h2) = 100.

At a = 4, the tangent line is

y = f ′(4)(t − 4) + f (4) = 100(t − 4) + 144 = 100t − 256.

35. f (x) = x−1, a = 8

solution Let f (x) = x−1. Then

f ′(8) = lim
h→0

f (8 + h) − f (8)

h
= lim

h→0

1
8+h

−
(

1
8

)
h

= lim
h→0

8−8−h
8(8+h)

h
= lim

h→0

−h

(64 + 8h)h
= − 1

64

The tangent at a = 8 is

y = f ′(8)(x − 8) + f (8) = − 1

64
(x − 8) + 1

8
= − 1

64
x + 1

4
.

36. f (x) = x + x−1, a = 4

solution Let f (x) = x + x−1. Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

4 + h + 1
4+h

− 4 − 1
4

h
= lim

h→0

h + 4−4−h
4(4+h)

h
= lim

h→0

(
1 − 1

16 + 4h

)
= 15

16
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The tangent at a = 4 is

y = f ′(4)(x − 4) + f (4) = 15

16
(x − 4) + 17

4
= 15

16
x + 1

2
.

37. f (x) = 1

x + 3
, a = −2

solution Let f (x) = 1
x+3 . Then

f ′(−2) = lim
h→0

f (−2 + h) − f (−2)

h
= lim

h→0

1
−2+h+3 − 1

h
= lim

h→0

1
1+h

− 1

h
= lim

h→0

−h

h(1 + h)
= lim

h→0

−1

1 + h
= −1.

The tangent line at a = −2 is

y = f ′(−2)(x + 2) + f (−2) = −1(x + 2) + 1 = −x − 1.

38. f (t) = 2

1 − t
, a = −1

solution Let f (t) = 2
1−t

. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

2
1−(−1+h)

− 1

h
= lim

h→0

2 − (2 − h)

h(2 − h)
= lim

h→0

1

2 − h
= 1

2
.

At a = −1, the tangent line is

y = f ′(−1)(x + 1) + f (−1) = 1

2
(x + 1) + 1 = 1

2
x + 3

2
.

39. f (x) = √
x + 4, a = 1

solution Let f (x) = √
x + 4. Then

f ′(1) = lim
h→0

f (1 + h) − f (1)

h
= lim

h→0

√
h + 5 − √

5

h
= lim

h→0

√
h + 5 − √

5

h
·
√

h + 5 + √
5√

h + 5 + √
5

= lim
h→0

h

h(
√

h + 5 + √
5)

= lim
h→0

1√
h + 5 + √

5
= 1

2
√

5
.

The tangent line at a = 1 is

y = f ′(1)(x − 1) + f (1) = 1

2
√

5
(x − 1) + √

5 = 1

2
√

5
x + 9

2
√

5
.

40. f (t) = √
3t + 5, a = −1

solution Let f (t) = √
3t + 5. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

√
3h + 2 − √

2

h
= lim

h→0

√
3h + 2 − √

2

h
·
√

3h + 2 + √
2√

3h + 2 + √
2

= lim
h→0

3h

h(
√

3h + 2 + √
2)

= lim
h→0

3√
3h + 2 + √

2
= 3

2
√

2
.

The tangent line at a = −1 is

y = f ′(−1)(t + 1) + f (−1) = 3

2
√

2
(t + 1) + √

2 = 3

2
√

2
t + 7

2
√

2
.
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41. f (x) = 1√
x

, a = 4

solution Let f (x) = 1√
x

. Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

1√
4+h

− 1
2

h
= lim

h→0

2−√
4+h

2
√

4+h
· 2+√

4+h

2+√
4+h

h
= lim

h→0

4−4−h

4
√

4+h+2(4+h)

h

= lim
h→0

−1

4
√

4 + h + 2(4 + h)
= − 1

16
.

At a = 4 the tangent line is

y = f ′(4)(x − 4) + f (4) = − 1

16
(x − 4) + 1

2
= − 1

16
x + 3

4
.

42. f (x) = 1√
2x + 1

, a = 4

solution Let f (x) = 1√
2x + 1

. Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

1√
2h+9

− 1
3

h
= lim

h→0

3−√
2h+9

3
√

2h+9
· 3+√

2h+9
3+√

2h+9

h
= lim

h→0

9−2h−9
9
√

2h+9+3(2h+9)

h

= lim
h→0

−2

9
√

2h + 9 + 3(2h + 9)
= − 1

27
.

At a = 4 the tangent line is

y = f ′(4)(x − 4) + f (4) = − 1

27
(x − 4) + 1

3
= − 1

27
x + 13

27
.

43. f (t) = √
t2 + 1, a = 3

solution Let f (t) = √
t2 + 1. Then

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0

√
10 + 6h + h2 − √

10

h

= lim
h→0

√
10 + 6h + h2 − √

10

h
·
√

10 + 6h + h2 + √
10√

10 + 6h + h2 + √
10

= lim
h→0

6h + h2

h(
√

10 + 6h + h2 + √
10)

= lim
h→0

6 + h√
10 + 6h + h2 + √

10
= 3√

10
.

The tangent line at a = 3 is

y = f ′(3)(t − 3) + f (3) = 3√
10

(t − 3) + √
10 = 3√

10
t + 1√

10
.

44. f (x) = x−2, a = −1

solution Let f (x) = 1
x2 . Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

1
(−1+h)2 − 1

h
= lim

h→0

h(2−h)

(−1+h)2

h
= lim

h→0

2 − h

(−1 + h)2
= 2.

The tangent line at a = −1 is

y = f ′(−1)(x + 1) + f (−1) = 2(x + 1) + 1 = 2x + 3.
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45. f (x) = 1

x2 + 1
, a = 0

solution Let f (x) = 1

x2 + 1
. Then

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

1
(0+h)2+1

− 1

h
= lim

h→0

−h2

h2+1

h
= lim

h→0

−h

h2 + 1
= 0.

The tangent line at a = 0 is

y = f (0) + f ′(0)(x − 0) = 1 + 0(x − 1) = 1.

46. f (t) = t−3, a = 1

solution Let f (t) = 1

t3
. Then

f ′(1) = lim
h→0

f (1 + h) − f (h)

h
= lim

h→0

1
(1+h)3 − 1

h
= lim

h→0

−h
(
3+3h+h2

)
(1+h)3

h
= lim

h→0

−(3 + 3h + h2)

(1 + h)3
= −3.

The tangent line at a = 1 is

y = f ′(1)(t − 1) + f (1) = −3(t − 1) + 1 = −3t + 4.

47. Figure 14 displays data collected by the biologist Julian Huxley (1887–1975) on the average antler weight
W of male red deer as a function of age t . Estimate the derivative at t = 4. For which values of t is the slope
of the tangent line equal to zero? For which values is it negative?

2 40 6 8 10 12 14
t

Age (years)

Antler weight W(kg)

0
1

2
3
4
5

6
7
8

FIGURE 14

solution Let W(t) denote the antler weight as a function of age. The “tangent line" sketched in the figure
below passes through the points (1, 1) and (6, 5.5). Therefore

W ′(4) ≈ 5.5 − 1

6 − 1
= 0.9 kg/year.

If the slope of the tangent is zero, the tangent line is horizontal. This appears to happen at roughly t = 10 and
at t = 11.6. The slope of the tangent line is negative when the height of the graph decreases as we move to
the right. For the graph in Figure 14, this occurs for 10 < t < 11.6.

2 40 6 8 10 12 14
0
1
2
3
4
5
6
7
8

y

x
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48. Figure 15(A) shows the graph of f (x) = √
x. The close-up in Figure 15(B) shows that the graph is nearly

a straight line near x = 16. Estimate the slope of this line and take it as an estimate for f ′(16). Then compute
f ′(16) and compare with your estimate.

3.9

4.1

(B) Zoom view near (16, 4)

x

y

1

2

5

4

3

2 4 6 8 10 12 14 16 18
x

y

(A) Graph of y = x

16.1

15.9

FIGURE 15

solution From the close-up in Figure 15(B), the line appears to pass through the points (15.92, 3.99) and
(16.08, 4.01). Thus,

f ′(16) ≈ 4.01 − 3.99

16.08 − 15.92
= 0.02

0.16
= 0.125.

With f (x) = √
x,

f ′(16) = lim
h→0

√
16 + h − 4

h
·
√

16 + h + 4√
16 + h + 4

= lim
h→0

16 + h − 16

h(
√

16 + h + 4)
= lim

h→0

1√
16 + h + 4

= 1

8
= 0.125,

which is consistent with the approximation obtained from the close-up graph.

49. Let f (x) = 4

1 + 2x
.

(a) Plot f over [−2, 2]. Then zoom in near x = 0 until the graph appears straight, and estimate the slope
f ′(0).
(b) Use (a) to find an approximate equation to the tangent line at x = 0. Plot this line and y = f (x) on the
same set of axes.

solution

(a) The figure below at the left shows the graph of f (x) = 4
1+2x over [−2, 2]. The figure below at the right

is a close-up near x = 0. From the close-up, we see that the graph is nearly straight and passes through the
points (−0.22, 2.15) and (0.22, 1.85). We therefore estimate

f ′(0) ≈ 1.85 − 2.15

0.22 − (−0.22)
= −0.3

0.44
= −0.68

y

x
−2 −1 1 2

y

x
−0.2 −0.1 0.1 0.2

0.5 1.8

2.0
2.2

2.4

1.0
1.5

2.0

3.0
2.5

(b) Using the estimate for f ′(0) obtained in part (a), the approximate equation of the tangent line is

y = f ′(0)(x − 0) + f (0) = −0.68x + 2.

The figure below shows the graph of f (x) and the approximate tangent line.

y

x
−2 −1 1 2

0.5
1.0
1.5

2.0

3.0
2.5
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50. Let f (x) = cot x. Estimate f ′(π
2

)
graphically by zooming in on a plot of f near x = π

2 .

solution The figure below shows a close-up of the graph of f (x) = cot x near x = π
2 ≈ 1.5708. From the

close-up, we see that the graph is nearly straight and passes through the points (1.53, 0.04) and (1.61, −0.04).
We therefore estimate

f ′ (π

2

)
≈ −0.04 − 0.04

1.61 − 1.53
= −0.08

0.08
= −1

y

x

−0.05

−1.00

0.05

1.00

1.54 1.56

1.58 1.06

51. Determine the intervals along the x-axis on which the derivative in Figure 16 is positive.

1.0 1.5 2.0 2.5 3.0 3.5 4.00.5

1.0

0.5

1.5

2.0

2.5

3.0

3.5

4.0

x

y

FIGURE 16

solution The derivative (that is, the slope of the tangent line) is positive when the height of the graph
increases as we move to the right. From Figure 16, this appears to be true for 1 < x < 2.5 and for x > 3.5.

52. Sketch the graph of f (x) = sin x on [0, π ] and guess the value of f ′(π
2

)
. Then calculate the difference

quotient at x = π
2 for two small positive and negative values of h. Are these calculations consistent with your

guess?

solution Here is the graph of y = sin x on [0, π ].
y

x
0.5 1.0 1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0

At x = π
2 , we’re at the peak of the sine graph. The tangent line appears to be horizontal, so the slope is 0;

hence, f ′(π
2 ) appears to be 0.

h −.01 −.001 −.0001 .0001 .001 .01

sin(π
2 + h) − 1

h
.005 .0005 .00005 −.00005 −.0005 −.005

These numerical calculations are consistent with our guess.

In Exercises 53–58, each limit represents a derivative f ′(a). Find f (x) and a.

53. lim
h→0

(5 + h)3 − 125

h

solution The difference quotient
(5 + h)3 − 125

h
has the form

f (a + h) − f (a)

h
where f (x) = x3 and

a = 5.
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54. lim
x→5

x3 − 125

x − 5

solution The difference quotient
x3 − 125

x − 5
has the form

f (x) − f (a)

x − a
where f (x) = x3 and a = 5.

55. lim
h→0

sin
(

π
6 + h

) − 0.5

h

solution The difference quotient
sin(π

6 + h) − 0.5

h
has the form

f (a + h) − f (a)

h
where f (x) = sin x

and a = π
6 .

56. lim
x→ 1

4

x−1 − 4

x − 1
4

solution The difference quotient
1
x

− 4

x − 1
4

has the form
f (x) − f (a)

x − a
where f (x) = 1

x
and a = 1

4 .

57. lim
h→0

52+h − 25

h

solution The difference quotient
5(2+h) − 25

h
has the form

f (a + h) − f (a)

h
where f (x) = 5x and

a = 2.

58. lim
h→0

5h − 1

h

solution The difference quotient
5h − 1

h
has the form

f (a + h) − f (a)

h
where f (x) = 5x and a = 0.

59. Apply the method of Example 7 to f (x) = sin x to determine f ′ (π
4

)
accurately to four decimal places.

solution We know that

f ′(π/4) = lim
h→0

f (π/4 + h) − f (π/4)

h
= lim

h→0

sin(π/4 + h) − √
2/2

h
.

Creating a table of values with h close to zero:

h −.001 −.0001 −.00001 .00001 .0001 .001

sin(π
4 + h) − (

√
2/2)

h
.7074602 .7071421 .7071103 .7071033 .7070714 .7067531

Accurate up to four decimal places, f ′(π
4 ) ≈ .7071.

60. Apply the method of Example 7 to f (x) = cos x to determine f ′(π
5

)
accurately to four decimal

places. Use a graph of f to explain how the method works in this case.

solution We know that

f ′ (π

5

)
= lim

h→0

f (π/5 + h) − f (π/5)

h
= lim

h→0

cos(π
5 + h) − cos(π

5 )

h
.

We make a chart using values of h close to zero:

h −.001 −.0001 −.00001

cos(π
5 + h) − cos(π

5 )

h
−.587381 −.587745 −.587781

h .001 .0001 .00001

cos(π
5 + h) − cos(π

5 )

h
−.588190 −.587826 −.587789

f ′(π
5 ) ≈ −.5878.
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The figures shown below illustrate why this procedure works. From the figure on the left, we see that for
h < 0, the slope of the secant line is greater (less negative) than the slope of the tangent line. On the other
hand, from the figure on the right, we see that for h > 0, the slope of the secant line is less (more negative)
than the slope of the tangent line. Thus, the slope of the tangent line must fall between the slope of a secant
line with h > 0 and the slope of a secant line with h < 0.

Tangent line

y

x

h = −1

1
2

h = −
Tangent line

y

x

y = cos x

h = 0.4
h = 0.8

y = cos x

61. For each graph in Figure 17, determine whether f ′(1) is larger or smaller than the slope of the
secant line between x = 1 and x = 1 + h for h > 0. Explain.

1 1

(A) (B)

y

x

y

x

y = f (x)
y = f (x)

FIGURE 17

solution

• On curve (A),f ′(1) is larger than

f (1 + h) − f (1)

h
;

the curve is bending downwards, so that the secant line to the right is at a lower angle than the tangent
line. We say such a curve is concave down, and that its derivative is decreasing.

• On curve (B), f ′(1) is smaller than

f (1 + h) − f (1)

h
;

the curve is bending upwards, so that the secant line to the right is at a steeper angle than the tangent
line. We say such a curve is concave up, and that its derivative is increasing.

62. Refer to the graph of f (x) = 2x in Figure 18.
(a) Explain graphically why, for h > 0,

f (−h) − f (0)

−h
≤ f ′(0) ≤ f (h) − f (0)

h

(b) Use (a) to show that 0.69314 ≤ f ′(0) ≤ 0.69315.
(c) Similarly, compute f ′(x) to four decimal places for x = 1, 2, 3, 4.
(d) Now compute the ratios f ′(x)/f ′(0) for x = 1, 2, 3, 4. Can you guess an approximate formula for f ′(x)?

321−1

1

x

y

FIGURE 18 Graph of f (x) = 2x .
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solution
(a) In the graph, the inequality

f ′(0) ≤ f (h) − f (0)

h

holds for positive values of h, since the difference quotient

f (h) − f (0)

h

is an increasing function of h. (The slopes of the secant lines between (0, f (0)) and a nearby point increase
as the nearby point moves from left to right.) Hence the slopes of the secant lines between (0, f (0)) and a
nearby point to the right, (h, f (h)) (where h is positive) exceed f ′(0). Similarly, for h negative, since 0 is to
the right of h, the slope of the secant line between (0, f (0)) and a nearby point to the left, (h, f (h)) is less
than f ′(0). Therefore, the inequality

f ′(0) ≥ f (h) − f (0)

h

holds for negative values of h.

(b) For h = .00001, we have

f (h) − f (0)

h
= 2h − 1

h
≈ 0.69315,

while for h = −.00001, we have

f (h) − f (0)

h
≈ 0.69314.

In light of (a), 0.69314 ≤ f ′(0) ≤ 0.69315.

(c) We’ll use the same values of h = ±.00001 and compute difference quotients at x = 1, 2, 3, 4.

• Since 1.386290 ≤ f ′(1) ≤ 1.386299, we conclude that f ′(1) ≈ 1.3863 to four decimal places.
• Since 2.772579 ≤ f ′(2) ≤ 2.772598, we conclude that f ′(2) ≈ 2.7726 to four decimal places.
• Since 5.545158 ≤ f ′(3) ≤ 5.545197, we conclude that f ′(3) ≈ 5.5452 to four decimal places.
• With h = ±.000001, 11.090351 ≤ f ′(4) ≤ 11.090359, so we conclude that f ′(4) ≈ 11.0904 to four

decimal places.

(d)

x 1 2 3 4

f ′(x)/f ′(0) 2 4 8 16

Looking at this table, we guess that f ′(x)/f ′(0) = 2x . In other words, f ′(x) = 2xf ′(0).

63. Sketch the graph of f (x) = x5/2 on [0, 6].
(a) Use the sketch to justify the inequalities for h > 0:

f (4) − f (4 − h)

h
≤ f ′(4) ≤ f (4 + h) − f (4)

h

(b) Use (a) to compute f ′(4) to four decimal places.

(c) Use a graphing utility to plot y = f (x) and the tangent line at x = 4, utilizing your estimate for f ′(4).

solution A sketch of the graph of f (x) = x5/2 on [0, 6] is shown below in the answer to part (c).

(a) The slope of the secant line between points (4, f (4)) and (4 + h, f (4 + h)) is

f (4 + h) − f (4)

h
.

x5/2 is a smooth curve increasing at a faster rate as x → ∞. Therefore, if h > 0, then the slope of the secant
line is greater than the slope of the tangent line at f (4), which happens to be f ′(4). Likewise, if h < 0, the
slope of the secant line is less than the slope of the tangent line at f (4), which happens to be f ′(4).
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(b) We know that

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

(4 + h)5/2 − 32

h
.

Creating a table with values of h close to zero:

h −.0001 −.00001 .00001 .0001

(4 + h)5/2 − 32

h
19.999625 19.99999 20.0000 20.0000375

Thus, f ′(4) ≈ 20.0000.
(c) Using the estimate for f ′(4) obtained in part (b), the equation of the line tangent to f (x) = x5/2 at x = 4
is

y = f ′(4)(x − 4) + f (4) = 20(x − 4) + 32 = 20x − 48.

y

x
1 2 3 4 5 6−20

−40
−60

20
40
60
80

64. Verify that P = (
1, 1

2

)
lies on the graphs of both f (x) = 1/(1 + x2) and L(x) = 1

2 + m(x − 1)

for every slope m. Plot y = f (x) and y = L(x) on the same axes for several values of m until you find a
value of m for which y = L(x) appears tangent to the graph of f . What is your estimate for f ′(1)?

solution Let f (x) = 1

1 + x2
and L(x) = 1

2 + m(x − 1). Because

f (1) = 1

1 + 12
= 1

2
and L(1) = 1

2
+ m(1 − 1) = 1

2
,

it follows that P = (1, 1
2 ) lies on the graphs of both functions. A plot of f (x) and L(x) on the same axes for

several values of m is shown below. The graph of L(x) with m = − 1
2 appears to be tangent to the graph of

f (x) at x = 1. We therefore estimate f ′(1) = − 1
2 .

y

x
0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

m = −1

m = −1/4

m = −1/2

65. Use a plot of f (x) = xx to estimate the value c such that f ′(c) = 0. Find c to sufficient accuracy
so that ∣∣∣∣f (c + h) − f (c)

h

∣∣∣∣ ≤ 0.006 for h = ±0.001

solution Here is a graph of f (x) = xx over the interval [0, 1.5].

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x
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The graph shows one location with a horizontal tangent line. The figure below at the left shows the graph
of f (x) together with the horizontal lines y = 0.6, y = 0.7 and y = 0.8. The line y = 0.7 is very close to
being tangent to the graph of f (x). The figure below at the right refines this estimate by graphing f (x) and
y = 0.69 on the same set of axes. The point of tangency has an x-coordinate of roughly 0.37, so c ≈ 0.37.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x
0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x

We note that ∣∣∣∣f (0.37 + 0.001) − f (0.37)

0.001

∣∣∣∣ ≈ 0.00491 < 0.006

and ∣∣∣∣f (0.37 − 0.001) − f (0.37)

0.001

∣∣∣∣ ≈ 0.00304 < 0.006,

so we have determined c to the desired accuracy.

66. Plot f (x) = xx and y = 2x + a on the same set of axes for several values of a until the line
becomes tangent to the graph. Then estimate the value c such that f ′(c) = 2.

solution The figure below on the left shows the graphs of the function f (x) = xx together with the lines
y = 2x, y = 2x − 1, and y = 2x − 2; the figure on the right shows the graphs of f (x) = xx together with
the lines y = 2x − 1, y = 2x − 1.2, and y = 2x − 1.4. The graph of y = 2x − 1.2 appears to be tangent to
the graph of f (x) at x ≈ 1.4. We therefore estimate that f ′(1.4) = 2.

−1

1

0.5 1.0 1.5 2.0

2
3

y

x

−1

1

0.5 1.0 1.5

2

3

y

x

In Exercises 67–73, estimate derivatives using the symmetric difference quotient (SDQ), defined as the
average of the difference quotients at h and −h:

1

2

(
f (a + h) − f (a)

h
+ f (a − h) − f (a)

−h

)
= f (a + h) − f (a − h)

2h
1

The SDQ usually gives a better approximation to the derivative than the difference quotient.

67. The vapor pressure of water at temperature T (in kelvins) is the atmospheric pressure P at which no
net evaporation takes place. Use the following table to estimate P ′(T ) for T = 303, 313, 323, 333, 343 by
computing the SDQ given by Eq. (1) with h = 10.

T (K) 293 303 313 323 333 343 353

P (atm) 0.0278 0.0482 0.0808 0.1311 0.2067 0.3173 0.4754

solution
(a) Consider the graph of vapor pressure as a function of temperature. If we draw the tangent line at T = 300
and another at T = 350, it is clear that the latter has a steeper slope. Therefore, P ′(350) is larger than P ′(300).

(b) Using equation (1),

P ′(303) ≈ P(313) − P(293)

20
= 0.0808 − 0.0278

20
= 0.00265 atm/K;

P ′(313) ≈ P(323) − P(303)

20
= 0.1311 − 0.0482

20
= 0.004145 atm/K;
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P ′(323) ≈ P(333) − P(313)

20
= 0.2067 − 0.0808

20
= 0.006295 atm/K;

P ′(333) ≈ P(343) − P(323)

20
= 0.3173 − 0.1311

20
= 0.00931 atm/K;

P ′(343) ≈ P(353) − P(333)

20
= 0.4754 − 0.2067

20
= 0.013435 atm/K

68. Use the SDQ with h = 1 year to estimate P ′(T ) in the years 2005, 2007, 2009, 2011, where P(T ) is the
U.S. ethanol production (Figure 19). Express your answer in the correct units.
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FIGURE 19 U.S. ethanol production.

solution Using equation (1),

P ′(2005) ≈ P(2006) − P(2004)

2
= 4.89 − 3.40

2
= 0.745 billions of gallons/yr;

P ′(2007) ≈ P(2008) − P(2006)

2
= 9.31 − 4.89

2
= 2.21 billions of gallons/yr;

P ′(2009) ≈ P(2010) − P(2008)

2
= 13.30 − 9.31

2
= 1.995 billions of gallons/yr;

P ′(2011) ≈ P(2012) − P(2010)

2
= 13.30 − 13.30

2
= 0 billions of gallons/yr

In Exercises 69–70, traffic speed S along a certain road (in kilometers per hour) varies as a function of
traffic density q (number of cars per kilometer of road). Use the following data to answer the questions:

q (density) 60 70 80 90 100

S (speed) 72.5 67.5 63.5 60 56

69. Estimate S′(80).

solution Let S(q) be the function determining S given q. Using equation (1) with h = 10,

S′(80) ≈ S(90) − S(70)

20
= 60 − 67.5

20
= −0.375;

with h = 20,

S′(80) ≈ S(100) − S(60)

40
= 56 − 72.5

40
= −0.4125.

The mean of these two symmetric difference quotients is −0.39375 kph·km/car.
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70. Explain why V = qS, called traffic volume, is equal to the number of cars passing a point per
hour. Use the data to estimate V ′(80).

solution The traffic speed S has units of km/hour, and the traffic density has units of cars/km. Therefore,
the traffic volume V = Sq has units of cars/hour. A table giving the values of V follows.

q 60 70 80 90 100

V 4350 4725 5080 5400 5600

To estimate dV /dq, we take the mean of the symmetric difference quotients. With h = 10,

V ′(80) ≈ V (90) − V (70)

20
= 5400 − 4725

20
= 33.75;

with h = 20,

V ′(80) ≈ V (100) − V (60)

40
= 5600 − 4350

40
= 31.25;

The mean of the symmetric difference quotients is 32.5. Hence dV /dq ≈ 32.5 cars per hour when q = 80.

Exercises 71–73: The current (in amperes) at time t (in seconds) flowing in the circuit in Figure 20 is given
by Kirchhoff’s Law:

i(t) = Cv′(t) + R−1v(t)

where v(t) is the voltage (in volts, V ), C the capacitance (in farads, F ), and R the resistance (in ohms, �).

+

−
v

R

i

C

FIGURE 20

71. Calculate the current at t = 3 if

v(t) = 0.5t + 4 V

where C = 0.01 F and R = 100 �.

solution Since v(t) is a line with slope 0.5, v′(t) = 0.5 volts/s for all t . From the formula, i(3) =
Cv′(3) + (1/R)v(3) = 0.01(0.5) + (1/100)(5.5) = 0.005 + 0.055 = 0.06 amperes.

72. Use the following data to estimate v′(10) (by an SDQ). Then estimate i(10), assuming C = 0.03 and
R = 1000.

t 9.8 9.9 10 10.1 10.2

v(t) 256.52 257.32 258.11 258.9 259.69

solution Taking h = 0.1, we find

v′(10) ≈ v(10.1) − v(9.9)

0.2
= 258.9 − 257.32

0.2
= 7.9 volts/s.

Thus,

i(10) = 0.03(7.9) + 1

1000
(258.11) = 0.49511 amperes.

73. Assume that R = 200 � but C is unknown. Use the following data to estimate v′(4) (by an SDQ) and
deduce an approximate value for the capacitance C.
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t 3.8 3.9 4 4.1 4.2

v(t) 388.8 404.2 420 436.2 452.8

i(t) 32.34 33.22 34.1 34.98 35.86

solution Solving i(4) = Cv′(4) + (1/R)v(4) for C yields

C = i(4) − (1/R)v(4)

v′(4)
= 34.1 − 420

200

v′(4)
.

To compute C, we first approximate v′(4). Taking h = 0.1, we find

v′(4) ≈ v(4.1) − v(3.9)

0.2
= 436.2 − 404.2

0.2
= 160 volts/s.

Plugging this in to the equation above yields

C ≈ 34.1 − 2.1

160
= 0.2 farads.

Further Insights and Challenges
74. The SDQ usually approximates the derivative much more closely than does the ordinary difference
quotient. Let f (x) = 2x and a = 0. Compute the SDQ with h = 0.001 and the ordinary difference quotients
with h = ±0.001. Compare with the actual value, which is f ′(0) = ln 2.

solution Let f (x) = 2x and a = 0.

• The ordinary difference quotient for h = −.001 is .69290701 and for h = .001 is .69338746.
• The symmetric difference quotient for h = .001 is .69314724.
• Clearly the symmetric difference quotient gives a better estimate of the derivative f ′(0) ≈ .69314718.

75. Explain how the symmetric difference quotient defined by Eq. (1) can be interpreted as the slope of a
secant line.

solution The symmetric difference quotient

f (a + h) − f (a − h)

2h

is the slope of the secant line connecting the points (a − h, f (a − h)) and (a + h, f (a + h)) on the graph of
f ; the difference in the function values is divided by the difference in the x-values.

76. Which of the two functions in Figure 21 satisfies the inequality

f (a + h) − f (a − h)

2h
≤ f (a + h) − f (a)

h

for h > 0? Explain in terms of secant lines.

a
x

y

a
x

y

(A) (B)

FIGURE 21

solution Figure (A) satisfies the inequality

f (a + h) − f (a − h)

2h
≤ f (a + h) − f (a)

h

since in this graph the symmetric difference quotient has a larger negative slope than the ordinary right
difference quotient. [In figure (B), the symmetric difference quotient has a larger positive slope than the
ordinary right difference quotient and therefore does not satisfy the stated inequality.]
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77. Show that if f is a quadratic polynomial, then the SDQ at x = a (for any h 	= 0) is equal to
f ′(a). Explain the graphical meaning of this result.

solution Let f (x) = px2 + qx + r be a quadratic polynomial. We compute the SDQ at x = a.

f (a + h) − f (a − h)

2h
= p(a + h)2 + q(a + h) + r − (p(a − h)2 + q(a − h) + r)

2h

= pa2 + 2pah + ph2 + qa + qh + r − pa2 + 2pah − ph2 − qa + qh − r

2h

= 4pah + 2qh

2h
= 2h(2pa + q)

2h
= 2pa + q

Since this doesn’t depend on h, the limit, which is equal to f ′(a), is also 2pa + q. Graphically, this result
tells us that the secant line to a parabola passing through points chosen symmetrically about x = a is always
parallel to the tangent line at x = a.

78. Let f (x) = x−2. Compute f ′(1) by taking the limit of the SDQs (with a = 1) as h → 0.

solution Let f (x) = x−2. With a = 1, the symmetric difference quotient is

f (1 + h) − f (1 − h)

2h
=

1
(1+h)2 − 1

(1−h)2

2h
= (1 − h)2 − (1 + h)2

2h(1 − h)2(1 + h)2
= −4h

2h(1 − h)2(1 + h)2
= − 2

(1 − h)2(1 + h)2
.

Therefore,

f ′(1) = lim
h→0

− 2

(1 − h)2(1 + h)2
= −2.

3.2 The Derivative as a Function

Preliminary Questions
1. What is the slope of the tangent line through the point (2, f (2)) if f ′(x) = x3?

solution The slope of the tangent line through the point (2, f (2)) is given by f ′(2). Since f ′(x) = x3, it
follows that f ′(2) = 23 = 8.

2. Evaluate (f − g)′(1) and (3f + 2g)′(1), assuming that f ′(1) = 3 and g′(1) = 5.

solution (f − g)′(1) = f ′(1) − g′(1) = 3 − 5 = −2 and (3f + 2g)′(1) = 3f ′(1) + 2g′(1) =
3(3) + 2(5) = 19.

3. To which of the following does the Power Rule apply?
(a) f (x) = x2 (b) f (x) = 2e

(c) f (x) = xe (d) f (x) = ex

(e) f (x) = xx (f) f (x) = x−4/5

solution

(a) Yes. x2 is a power function, so the Power Rule can be applied.
(b) Yes. 2e is a constant function, so the Power Rule can be applied.
(c) Yes. xe is a power function, so the Power Rule can be applied.
(d) No. ex is an exponential function (the base is constant while the exponent is a variable), so the Power
Rule does not apply.
(e) No. xx is not a power function because both the base and the exponent are variable, so the Power Rule
does not apply.
(f) Yes. x−4/5 is a power function, so the Power Rule can be applied.

4. Choose (a) or (b). The derivative does not exist if the tangent line is: (a) horizontal (b) vertical.

solution The derivative does not exist when there is a vertical tangent. At a horizontal tangent, the
derivative is zero.

5. Which property distinguishes f (x) = ex from all other exponential functions g(x) = bx?

solution The line tangent to f (x) = ex at x = 0 has slope equal to 1.
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Exercises
In Exercises 1–6, compute f ′(x) using the limit definition.

1. f (x) = 3x − 7

solution Let f (x) = 3x − 7. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

3(x + h) − 7 − (3x − 7)

h
= lim

h→0

3h

h
= 3.

2. f (x) = x2 + 3x

solution Let f (x) = x2 + 3x. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

(x + h)2 + 3(x + h) − (x2 + 3x)

h

= lim
h→0

2xh + h2 + 3h

h
= lim

h→0
(2x + h + 3) = 2x + 3.

3. f (x) = x3

solution Let f (x) = x3. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

(x + h)3 − x3

h
= lim

h→0

x3 + 3x2h + 3xh2 + h3 − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= lim

h→0
(3x2 + 3xh + h2) = 3x2.

4. f (x) = 1 − x−1

solution Let f (x) = 1 − x−1. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

1 − 1
x+h

−
(

1 − 1
x

)
h

= lim
h→0

(x+h)−x
x(x+h)

h
= lim

h→0

1

x(x + h)
= 1

x2
.

5. f (x) = x − √
x

solution Let f (x) = x − √
x. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

x + h − √
x + h − (x − √

x)

h
= 1 − lim

h→0

√
x + h − √

x

h
·
(√

x + h + √
x√

x + h + √
x

)

= 1 − lim
h→0

(x + h) − x

h(
√

x + h + √
x)

= 1 − lim
h→0

1√
x + h + √

x
= 1 − 1

2
√

x
.

6. f (x) = x−1/2

solution Let f (x) = x−1/2. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

1√
x+h

− 1√
x

h
= lim

h→0

√
x − √

x + h

h
√

x + h
√

x

Multiplying the numerator and denominator of the expression by
√

x + √
x + h, we obtain:

f ′(x) = lim
h→0

√
x − √

x + h

h
√

x + h
√

x

√
x + √

x + h√
x + √

x + h
= lim

h→0

x − (x + h)

h
√

x + h
√

x(
√

x + √
x + h)

= lim
h→0

−1√
x + h

√
x(

√
x + √

x + h)
= −1√

x
√

x(2
√

x)
= −1

2x
√

x
.
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In Exercises 7–14, use the Power Rule to compute the derivative.

7.
d

dx
x4

∣∣∣∣
x=−2

solution
d

dx

(
x4

)
= 4x3 so

d

dx
x4

∣∣∣∣
x=−2

= 4(−2)3 = −32.

8.
d

dt
t−3

∣∣∣∣
t=4

solution
d

dt

(
t−3

)
= −3t−4 so

d

dt
t−3

∣∣∣∣
t=4

= −3(4)−4 = − 3

256
.

9.
d

dt
t2/3

∣∣∣∣
t=8

solution
d

dt

(
t2/3

)
= 2

3
t−1/3 so

d

dt
t2/3

∣∣∣∣
t=8

= 2

3
(8)−1/3 = 1

3
.

10.
d

dt
t−2/5

∣∣∣∣
t=1

solution
d

dt

(
t−2/5

)
= −2

5
t−7/5 so

d

dt
t−2/5

∣∣∣∣
t=1

= −2

5
(1)−7/5 = −2

5
.

11.
d

dx
x0.35

solution
d

dx

(
x0.35

)
= 0.35(x0.35−1) = 0.35x−0.65.

12.
d

dx
x14/3

solution
d

dx

(
x14/3

)
= 14

3

(
x(14/3)−1

)
= 14

3
x11/3.

13.
d

dt
t
√

17

solution
d

dt

(
t
√

17) = √
17t

√
17−1

14.
d

dt
t−π2

solution
d

dt
(t−π2

) = −π2t−π2−1

In Exercises 15–18, compute f ′(x) and find an equation of the tangent line to the graph at x = a.

15. f (x) = x4, a = 2

solution Let f (x) = x4. Then, by the Power Rule, f ′(x) = 4x3. The equation of the tangent line to the
graph of f (x) at x = 2 is

y = f ′(2)(x − 2) + f (2) = 32(x − 2) + 16 = 32x − 48.

16. f (x) = x−2, a = 5

solution Let f (x) = x−2. Using the Power Rule, f ′(x) = −2x−3. The equation of the tangent line to
the graph of f (x) at x = 5 is

y = f ′(5)(x − 5) + f (5) = − 2

125
(x − 5) + 1

25
= − 2

125
x + 3

25
.

17. f (x) = 5x − 32
√

x, a = 4

solution Let f (x) = 5x − 32x1/2. Then f ′(x) = 5 − 16x−1/2. In particular, f ′(4) = −3. The tangent
line at x = 4 is

y = f ′(4)(x − 4) + f (4) = −3(x − 4) − 44 = −3x − 32.
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18. f (x) = 3
√

x, a = 8

solution Let f (x) = 3
√

x = x1/3. Then f ′(x) = 1
3 (x1/3−1) = 1

3x−2/3. In particular, f ′(8) = 1
3

(
1
4

)
=

1
12 . f (8) = 2, so the tangent line at x = 8 is

y = f ′(8)(x − 8) + f (8) = 1

12
(x − 8) + 2 = 1

12
x + 4

3
.

19. Calculate:

(a)
d

dx
12ex (b)

d

dt
(25t − 8et ) (c)

d

dt
et−3

Hint for (c): Write et−3 as e−3et .

solution

(a)
d

dx
9ex = 9

d

dx
ex = 9ex .

(b)
d

dt
(3t − 4et ) = 3

d

dt
t − 4

d

dt
et = 3 − 4et .

(c)
d

dt
et−3 = e−3 d

dt
et = e−3 · et = et−3.

20. Find an equation of the tangent line to y = 24ex at x = 2.

solution Let f (x) = 24ex . Then f (2) = 24e2, f ′(x) = 24ex , and f ′(2) = 24e2. The equation of the
tangent line is

y = f ′(2)(x − 2) + f (2) = 24e2(x − 2) + 24e2.

In Exercises 21–32, calculate the derivative.

21. f (x) = 2x3 − 3x2 + 5

solution
d

dx

(
2x3 − 3x2 + 5

)
= 6x2 − 6x.

22. f (x) = 2x3 − 3x2 + 2x

solution
d

dx

(
2x3 − 3x2 + 2x

)
= 6x2 − 6x + 2.

23. f (x) = 4x5/3 − 3x−2 − 12

solution
d

dx

(
4x5/3 − 3x−2 − 12

)
= 20

3
x2/3 + 6x−3.

24. f (x) = x5/4 + 4x−3/2 + 11x

solution
d

dx

(
x5/4 + 4x−3/2 + 11x

)
= 5

4
x1/4 − 6x−5/2 + 11.

25. g(z) = 7z−5/14 + z−5 + 9

solution
d

dz

(
7z−5/14 + z−5 + 9

)
= −5

2
z−19/14 − 5z−6.

26. h(t) = 6
√

t + 1√
t

solution
d

dt

(
6
√

t + 1√
t

)
= d

dt

(
6t1/2 + t−1/2

)
= 3t−1/2 − 1

2
t−3/2.

27. f (s) = 4
√

s + 3
√

s

solution f (s) = 4
√

s + 3
√

s = s1/4 + s1/3. In this form, we can apply the Sum and Power Rules.

d

ds

(
s1/4 + s1/3

)
= 1

4
(s(1/4)−1) + 1

3
(s(1/3)−1) = 1

4
s−3/4 + 1

3
s−2/3.
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28. W(y) = 6y4 + 7y2/3

solution
d

dy

(
6y4 + 7y2/3

)
= 24y3 + 14

3
y−1/3.

29. g(x) = e2

solution Because e2 is a constant,
d

dx
e2 = 0.

30. f (x) = 3ex − x3

solution
d

dx

(
3ex − x3

)
= 3ex − 3x2.

31. h(t) = 5et−3

solution
d

dt
5et−3 = 5e−3 d

dt
et = 5e−3et = 5et−3.

32. f (x) = 9 − 12x1/3 + 8ex

solution
d

dx

(
9 − 12x1/3 + 8ex

)
= −4x−2/3 + 8ex .

In Exercises 33–36, calculate the derivative by expanding or simplifying the function.

33. P(s) = (4s − 3)2

solution P(s) = (4s − 3)2 = 16s2 − 24s + 9. Thus,

dP

ds
= 32s − 24.

34. Q(r) = (1 − 2r)(3r + 5)

solution Q(r) = (1 − 2r)(3r + 5) = −6r2 − 7r + 5. Thus,

dQ

dr
= −12r − 7.

35. g(x) = x2 + 4x1/2

x2

solution g(x) = x2 + 4x1/2

x2
= 1 + 4x−3/2. Thus,

dg

dx
= −6x−5/2.

36. s(t) = 1 − 2t

t1/2

solution s(t) = 1 − 2t

t1/2
= t−1/2 − 2t1/2. Thus,

ds

dt
= −1

2
t−3/2 − t−1/2.

In Exercises 37–42, calculate the derivative indicated.

37.
dT

dC

∣∣∣
C=8

, T = 3C2/3

solution With T (C) = 3C2/3, we have
dT

dC
= 2C−1/3. Therefore,

dT

dC

∣∣∣∣
C=8

= 2(8)−1/3 = 1.

38.
dP

dV

∣∣∣
V =−2

, P = 7

V

solution With P = 7V −1, we have
dP

dV
= −7V −2. Therefore,

dP

dV

∣∣∣∣
V =−2

= −7(−2)−2 = −7

4
.
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39.
ds

dz

∣∣∣
z=2

, s = 4z − 16z2

solution With s = 4z − 16z2, we have
ds

dz
= 4 − 32z. Therefore,

ds

dz

∣∣∣∣
z=2

= 4 − 32(2) = −60.

40.
dR

dW

∣∣∣∣
W=1

, R = Wπ

solution Let R(W) = Wπ . Then dR/dW = πWπ−1. Therefore,

dR

dW

∣∣∣∣
W=1

= π(1)π−1 = π.

41.
dr

dt

∣∣∣∣
t=4

, r = t − et

solution With r = t − et , we have
dr

dt
= 1 − et . Therefore,

dr

dt

∣∣∣∣
t=4

= 1 − e4.

42.
dp

dh

∣∣∣∣
h=4

, p = 7eh−2

solution With p = 7eh−2, we have
dp

dh
= 7eh−2. Therefore,

dp

dh

∣∣∣∣
h=4

= 7e4−2 = 7e2.

43. Match the functions in graphs (A)–(D) with their derivatives (I)–(III) in Figure 13. Note that two of the
functions have the same derivative. Explain why.

y

x

x

(A)

y

(I)

x

y

(II)

x

y

(III)

y

x

(B)

y

x

(C)

y

x

(D)

FIGURE 13

solution

• Consider the graph in (A). On the left side of the graph, the slope of the tangent line is positive but on
the right side the slope of the tangent line is negative. Thus the derivative should transition from positive
to negative with increasing x. This matches the graph in (III).

• Consider the graph in (B). This is a linear function, so its slope is constant. Thus the derivative is constant,
which matches the graph in (I).

• Consider the graph in (C). Moving from left to right, the slope of the tangent line transitions from positive
to negative then back to positive. The derivative should therefore be negative in the middle and positive
to either side. This matches the graph in (II).
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• Consider the graph in (D). On the left side of the graph, the slope of the tangent line is positive but on
the right side the slope of the tangent line is negative. Thus the derivative should transition from positive
to negative with increasing x. This matches the graph in (III).

Note that the functions whose graphs are shown in (A) and (D) have the same derivative. This happens
because the graph in (D) is just a vertical translation of the graph in (A), which means the two functions differ
by a constant. The derivative of a constant is zero, so the two functions end up with the same derivative.

44. Of the two functions f and g in Figure 14, which is the derivative of the other? Justify your
answer.

f (x)

g(x)

1−1

2

x

y

FIGURE 14

solution g(x) is the derivative of f (x). For f (x) the slope is negative for negative values of x until x = 0,
where there is a horizontal tangent, and then the slope is positive for positive values of x. Notice that g(x) is
negative for negative values of x, goes through the origin at x = 0, and then is positive for positive values of
x.

45. Assign the labels y = f (x), y = g(x), and y = h(x) to the graphs in Figure 15 in such a way that
f ′(x) = g(x) and g′(x) = h(x).

y

x

y

x

y

x

(A) (B) (C)

FIGURE 15

solution Consider the graph in (A). Moving from left to right, the slope of the tangent line is positive
over the first quarter of the graph, negative in the middle half and positive again over the final quarter. The
derivative of this function must therefore be negative in the middle and positive on either side. This matches
the graph in (C).

Now focus on the graph in (C). The slope of the tangent line is negative over the left half and positive on
the right half. The derivative of this function therefore needs to be negative on the left and positive on the
right. This description matches the graph in (B).

We should therefore label the graph in (A) as f (x), the graph in (B) as h(x), and the graph in (C) as g(x).
Then f ′(x) = g(x) and g′(x) = h(x).

46. According to the peak oil theory, first proposed in 1956 by geophysicist M. Hubbert, the total amount of
crude oil Q(t) produced worldwide up to time t has a graph like that in Figure 16.
(a) Sketch the derivative Q′(t) for 1900 ≤ t ≤ 2150. What does Q′(t) represent?
(b) In which year (approximately) does Q′(t) take on its maximum value?
(c) What is L = lim

t→∞ Q(t)? And what is its interpretation?

(d) What is the value of lim
t→∞ Q′(t)?

Q (trillions of barrels)

t (year)

1900 21501950 2000 2050 2100

0.5

1.0

2.0

2.3

1.5

FIGURE 16 Total oil production up to time t .
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solution
(a) One possible derivative sketch is shown below. Because the graph of Q(t) is roughly horizontal around
t = 1900, the graph of Q′(t) begins near zero. Until roughly t = 2000, the graph of Q(t) increases more
and more rapidly, so the graph of Q′(t) increases. Thereafter, the graph of Q(t) increases more and more
gradually, so the graph of Q′(t) decreases. Around t = 2150, the graph of Q(t) is again roughly horizontal,
so the graph of Q′(t) returns to zero. Note that Q′(t) represents the rate of change in total worldwide oil
production; that is, the number of barrels produced per year.

1900 1950 2000 2050 2100 2150
x

(b) The graph of Q(t) appears to be increasing most rapidly around the year 2000, so Q′(t) takes on its
maximum value around the year 2000.

(c) From Figure 16

L = lim
t→∞ Q(t) = 2.3 trillion barrels of oil.

This value represents the total number of barrels of oil that can be produced by the planet.

(d) Because the graph of Q(t) appears to approach a horizontal line as t → ∞, it appears that

lim
t→∞ Q′(t) = 0.

47. Use the table of values of f to determine which of (A) or (B) in Figure 17 is the graph of f ′.
Explain.

x 0 0.5 1 1.5 2 2.5 3 3.5 4

f (x) 10 55 98 139 177 210 237 257 268

x

y

x

y

(A) (B)

FIGURE 17 Which is the graph of f ′?

solution The increment between successive x values in the table is a constant 0.5 but the increment
between successive f (x) values decreases from 45 to 43 to 41 to 38 and so on. Thus the difference quotients
decrease with increasing x, suggesting that f ′(x) decreases as a function of x. Because the graph in (B)
depicts a decreasing function, (B) might be the graph of the derivative of f (x).

48. Let R be a variable and r a constant. Compute the derivatives:

(a)
d

dR
R (b)

d

dR
r (c)

d

dR
r2R3

solution

(a)
d

dR
R = 1, since R is a linear function of R with slope 1.

(b)
d

dR
r = 0, since r is a constant.

(c) We apply the Linearity and Power Rules:

d

dR
r2R3 = r2 d

dR
R3 = r2(3(R2)

) = 3r2R2.
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49. Compute the derivatives, where c is a constant.

(a)
d

dt
ct3 (b)

d

dz
(5z + 4cz2) (c)

d

dy
(9c2y3 − 24c)

solution

(a)
d

dt
ct3 = 3ct2.

(b)
d

dz
(5z + 4cz2) = 5 + 8cz.

(c)
d

dy
(9c2y3 − 24c) = 27c2y2.

50. Find the points on the graph of f (x) = 12x − x3 where the tangent line is horizontal.

solution Let f (x) = 12x − x3. Solve f ′(x) = 12 − 2x2 = 0 to obtain x = ±√
6. Thus, the graph of

f (x) = 12x − x3 has a horizontal tangent line at two points: (
√

6, 6
√

6) and (−√
6, −6

√
6).

51. Find the points on the graph of y = x2 + 3x − 7 at which the slope of the tangent line is equal to 4.

solution Let y = x2 + 3x − 7. Solving dy/dx = 2x + 3 = 4 yields x = 1
2 .

52. Find the values of x where y = x3 and y = x2 + 5x have parallel tangent lines.

solution Let f (x) = x3 and g(x) = x2 + 5x. The graphs have parallel tangent lines when f ′(x) = g′(x).
Hence, we solve f ′(x) = 3x2 = 2x + 5 = g′(x) to obtain x = 5

3 and x = −1.

53. Determine a and b such that p(x) = x2 + ax + b satisfies p(1) = 0 and p′(1) = 4.

solution Let p(x) = x2 + ax + b satisfy p(1) = 0 and p′(1) = 4. Now, p′(x) = 2x + a. Therefore
0 = p(1) = 1 + a + b and 4 = p′(1) = 2 + a; i.e., a = 2 and b = −3.

54. Find all values of x such that the tangent line to y = 4x2 + 11x + 2 is steeper than the tangent line to
y = x3.

solution Let f (x) = 4x2 + 11x + 2 and let g(x) = x3. We need all x such that f ′(x) > g′(x).

f ′(x) > g′(x)

8x + 11 > 3x2

0 > 3x2 − 8x − 11

0 > (3x − 11)(x + 1).

The product (3x − 11)(x + 1) = 0 when x = −1 and when x = 11
3 . We therefore examine the intervals

x < −1, −1 < x < 11
3 and x > 11

3 . For x < −1 and for x > 11
3 , (3x − 11)(x + 1) > 0, whereas for

−1 < x < 11
3 , (3x − 11)(x + 1) < 0. The solution set is therefore −1 < x < 11

3 .

55. Let f (x) = x3 − 3x + 1. Show that f ′(x) ≥ −3 for all x and that, for every m > −3, there are precisely
two points where f ′(x) = m. Indicate the position of these points and the corresponding tangent lines for
one value of m in a sketch of the graph of f .

solution Let P = (a, b) be a point on the graph of f (x) = x3 − 3x + 1.

• The derivative satisfies f ′(x) = 3x2 − 3 ≥ −3 since 3x2 is nonnegative.
• Suppose the slope m of the tangent line is greater than −3. Then f ′(a) = 3a2 − 3 = m, whence

a2 = m + 3

3
> 0 and thus a = ±

√
m + 3

3
.

• The two parallel tangent lines with slope 2 are shown with the graph of f (x) here.

−2
−1

−2
2

4

1

2
x

y
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56. Show that the tangent lines to y = 1
3x3 − x2 at x = a and at x = b are parallel if a = b or a + b = 2.

solution Let P = (a, f (a)) and Q = (b, f (b)) be points on the graph of y = f (x) = 1
3x3 − x2. Equate

the slopes of the tangent lines at the points P and Q: a2 − 2a = b2 − 2b. Thus a2 − 2a − b2 + 2b = 0. Now,

a2 − 2a − b2 + 2b = (a − b)(a + b) − 2(a − b) = (a − 2 + b)(a − b);
therefore, either a = b (i.e., P and Q are the same point) or a + b = 2.

57. Compute the derivative of f (x) = x3/2 using the limit definition. Hint: Show that

f (x + h) − f (x)

h
= (x + h)3 − x3

h

(
1√

(x + h)3 + √
x3

)

solution Once we have the difference of square roots, we multiply by the conjugate to solve the problem.

f ′(x) = lim
h→0

(x + h)3/2 − x3/2

h
= lim

h→0

√
(x + h)3 − √

x3

h

(√
(x + h)3 + √

x3√
(x + h)3 + √

x3

)

= lim
h→0

(x + h)3 − x3

h

(
1√

(x + h)3 + √
x3

)
.

The first factor of the expression in the last line is clearly the limit definition of the derivative of x3, which is
3x2. The second factor can be evaluated, so

d

dx
x3/2 = 3x2 1

2
√

x3
= 3

2
x1/2.

58. Use the limit definition of m(b) to approximate m(4). Then estimate the slope of the tangent line to
y = 4x at x = 0 and x = 2.

solution Recall

m(4) = lim
h→0

(
4h − 1

h

)
.

Using a table of values, we find

h
4h − 1

h

.01 1.39595

.001 1.38726

.0001 1.38639

.00001 1.38630

Thus m(4) ≈ 1.386. Knowing that y′(x) = m(4) · 4x , it follows that y′(0) ≈ 1.386 and y′(2) ≈ 1.386 · 16 =
22.176.

59. Let f (x) = xex . Use the limit definition to compute f ′(0), and find the equation of the tangent line at
x = 0.

solution Let f (x) = xex . Then f (0) = 0, and

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

heh − 0

h
= lim

h→0
eh = 1.

The equation of the tangent line is

y = f ′(0)(x − 0) + f (0) = 1(x − 0) + 0 = x.

60. The average speed (in meters per second) of a gas molecule is

vavg =
√

8RT

πM

where T is the temperature (in kelvins), M is the molar mass (in kilograms per mole), and R = 8.31. Calculate
dvavg/dT at T = 300 K for oxygen, which has a molar mass of 0.032 kg/mol.
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solution Using the form vav = (8RT/(πM))1/2 = √
8R/(πM)T 1/2, where M and R are constant, we

use the Power Rule to compute the derivative dvav/dT .

d

dT

√
8R/(πM)T 1/2 = √

8R/(πM)
d

dT
T 1/2 = √

8R/(πM)
1

2
(T (1/2)−1).

In particular, if T = 300 K,

d

dT
vav = √

8(8.31)/(π(0.032))
1

2
(300)−1/2 = 0.74234 m/(s · K).

61. Biologists have observed that the pulse rate P (in beats per minute) in animals is related to body mass (in
kilograms) by the approximate formula P = 200m−1/4. This is one of many allometric scaling laws prevalent
in biology. Is P an increasing or decreasing function of m? Find an equation of the tangent line at the points
on the graph in Figure 18 that represent goat (m = 33) and man (m = 68).

Mass (kg)
500400300200100

Cattle

200

100

Pulse (beats/min)

Guinea pig

Goat

Man

FIGURE 18

solution We are given that

P = 200m−1/4 = 200

m1/4
.

As m increases, the denominator of the last expression increases, so the value of P decreases. Thus, P is a
decreasing function of m.

For each m = c, the equation of the tangent line to the graph of P at m is

y = P ′(c)(m − c) + P(c).

For a goat (m = 33 kg), P(33) = 83.445 beats per minute (bpm) and

dP

dm
= −50(33)−5/4 ≈ −0.63216 bpm/kg.

Hence, y = −0.63216(m − 33) + 83.445.
For a man (m = 68 kg), we have P(68) = 69.647 bpm and

dP

dm
= −50(68)−5/4 ≈ −0.25606 bpm/kg.

Hence, the tangent line has formula y = −0.25606(m − 68) + 69.647.

62. Some studies suggest that kidney mass K in mammals (in kilograms) is related to body mass m (in
kilograms) by the approximate formula K = 0.007m0.85. Calculate dK/dm at m = 68. Then calculate the
derivative with respect to m of the relative kidney-to-mass ratio K/m at m = 68.

solution

dK

dm
= 0.007(0.85)m−0.15 = 0.00595m−0.15;

hence,

dK

dm

∣∣∣∣
m=68

= 0.00595(68)−0.15 = 0.00315966.

Because

K

m
= 0.007

m0.85

m
= 0.007m−0.15,
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we find

d

dm

(
K

m

)
= 0.007

d

dm
m−0.15 = −0.00105m−1.15,

and

d

dm

(
K

m

)∣∣∣∣
m=68

= −8.19981 × 10−6 kg−1.

63. The Clausius–Clapeyron Law relates the vapor pressure of water P (in atmospheres) to the temperature
T (in kelvins):

dP

dT
= k

P

T 2

where k is a constant. Estimate dP/dT for T = 303, 313, 323, 333, 343 using the data and the approximation

dP

dT
≈ P(T + 10) − P(T − 10)

20

T (K) 293 303 313 323 333 343 353

P (atm) 0.0278 0.0482 0.0808 0.1311 0.2067 0.3173 0.4754

Do your estimates seem to confirm the Clausius–Clapeyron Law? What is the approximate value of k?

solution Using the indicated approximation to the first derivative, we calculate

P ′(303) ≈ P(313) − P(293)

20
= 0.0808 − 0.0278

20
= 0.00265 atm/K;

P ′(313) ≈ P(323) − P(303)

20
= 0.1311 − 0.0482

20
= 0.004145 atm/K;

P ′(323) ≈ P(333) − P(313)

20
= 0.2067 − 0.0808

20
= 0.006295 atm/K;

P ′(333) ≈ P(343) − P(323)

20
= 0.3173 − 0.1311

20
= 0.00931 atm/K;

P ′(343) ≈ P(353) − P(333)

20
= 0.4754 − 0.2067

20
= 0.013435 atm/K

If the Clausius–Clapeyron law is valid, then
T 2

P

dP

dT
should remain constant as T varies. Using the data

for vapor pressure and temperature and the approximate derivative values calculated above, we find

T (K) 303 313 323 333 343

T 2

P

dP

dT
5047.59 5025.76 5009.54 4994.57 4981.45

These values are roughly constant, suggesting that the Clausius–Clapeyron law is valid, and that k ≈ 5000.

64. Let L be the tangent line to the hyperbola xy = 1 at x = a, where a > 0. Show that the area of the
triangle bounded by L and the coordinate axes does not depend on a.

solution Let f (x) = x−1. The tangent line to f at x = a is y = f ′(a)(x − a) + f (a) = − 1
a2 (x − a) + 1

a
.

The y-intercept of this line (where x = 0) is 2
a

. Its x-intercept (where y = 0) is 2a. Hence the area of the

triangle bounded by the tangent line and the coordinate axes is A = 1
2bh = 1

2 (2a)
(

2
a

)
= 2, which is

independent of a.

y

x

)P = (0, 2
a

y = 1
x

)R = (a, 1
a

Q = (2a, 0)
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65. In the setting of Exercise 64, show that the point of tangency is the midpoint of the segment of L lying
in the first quadrant.

solution In the previous exercise, we saw that the tangent line to the hyperbola xy = 1 or y = 1
x

at x = a

has y-intercept P = (0, 2
a
) and x-intercept Q = (2a, 0). The midpoint of the line segment connecting P and

Q is thus

(
0 + 2a

2
,

2
a

+ 0

2

)
=

(
a,

1

a

)
,

which is the point of tangency.

66. Match functions (A)–(C) with their derivatives (I)–(III) in Figure 19.

(A) (I)

(B) (II)

(C) (III)

x

x

x

yy

x

y

x

y

y

x

y

FIGURE 19

solution Note that the graph in (A) has three locations with a horizontal tangent line. The derivative must
therefore cross the x-axis in three locations, which matches (III).

The graph in (B) has only one location with a horizontal tangent line, so its derivative should cross the
x-axis only once. Thus, (I) is the graph corresponding to the derivative of (B).

Finally, the graph in (B) has two locations with a horizontal tangent line, so its derivative should cross the
x-axis twice. Thus, (II) is the graph corresponding to the derivative of (C).

67. Make a rough sketch of the graph of the derivative of the function in Figure 20(A).

solution The graph has a tangent line with negative slope approximately on the interval (1, 3.6), and has
a tangent line with a positive slope elsewhere. This implies that the derivative must be negative on the interval
(1, 3.6) and positive elsewhere. The graph may therefore look like this:

y

x
1 2 3 4
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68. Graph the derivative of the function in Figure 20(B), omitting points where the derivative is not defined.

(A) (B)

y = x2

434321 20 1−1

3

2

x

y

x

y

1

2

FIGURE 20

solution On (−1, 0), the graph is a line with slope −3, so the derivative is equal to −3. The derivative on
(0, 2) is x. Finally, on (2, 4) the function is a line with slope −1, so the derivative is equal to −1. Combining
this information leads to the graph:

4321
x

y

1

−1

−2

−3

−1

69. Sketch the graph of f (x) = x |x|. Then show that f ′(0) exists.

solution For x < 0, f (x) = −x2, and f ′(x) = −2x. For x > 0, f (x) = x2, and f ′(x) = 2x. At x = 0,
we find

lim
h→0+

f (0 + h) − f (0)

h
= lim

h→0+
h2

h
= 0

and

lim
h→0−

f (0 + h) − f (0)

h
= lim

h→0−
−h2

h
= 0.

Because the two one-sided limits exist and are equal, it follows that f ′(0) exists and is equal to zero. Here is
the graph of f (x) = x|x|.

y

x
1 2−1−2

2

4

−4

−2

70. Determine the values of x at which the function in Figure 21 is: (a) discontinuous and (b) nondifferentiable.

4321
x

y

FIGURE 21



232 C H A P T E R 3 DIFFERENTIATION

solution The function is discontinuous at those points where it is undefined or there is a break in the
graph. On the interval [0, 4], there is only one such point, at x = 1.

The function is nondifferentiable at those points where it is discontinuous or where it has a corner or cusp.
In addition to the point x = 1 we already know about, the function is nondifferentiable at x = 2 and x = 3.

In Exercises 71–76, find the points c (if any) such that f ′(c) does not exist.

71. f (x) = |x − 1|
solution

y

x
1

0.5

1.0

1.5

2.0

2 3−1

Here is the graph of f (x) = |x − 1|. Its derivative does not exist at x = 1. At that value of x there is a sharp
corner.

72. f (x) = 
x�
solution

4321
x

y

1

2

3

−1−2

−2

−1

Here is the graph of f (x) = 
x�. This is the integer step function graph. Its derivative does not exist at all x

values that are integers. At those values of x the graph is discontinuous.

73. f (x) = x2/3

solution Here is the graph of f (x) = x2/3. Its derivative does not exist at x = 0. At that value of x, there
is a sharp corner or “cusp”.

y

x
1

1.0

1.5

2−1−2

74. f (x) = x3/2

solution The function is differentiable on its entire domain, {x : x ≥ 0}. The formula is d
dx

x3/2 = 3
2x1/2.

75. f (x) = |x2 − 1|
solution Here is the graph of f (x) = ∣∣x2 − 1

∣∣. Its derivative does not exist at x = −1 or at x = 1. At
these values of x, the graph has sharp corners.

y

x
1

2

1

3

2−1−2
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76. f (x) = |x − 1|2
solution

321
x

y

1

3

−1

This is the graph of f (x) = |x − 1|2. Its derivative exists everywhere.

In Exercises 77–82, zoom in on a plot of f at the point (a, f (a)) and state whether or not f appears
to be differentiable at x = a. If it is nondifferentiable, state whether the tangent line appears to be vertical
or does not exist.

77. f (x) = (x − 1)|x|, a = 0

solution The graph of f (x) = (x − 1)|x| for x near 0 is shown below. Because the graph has a sharp
corner at x = 0, it appears that f is not differentiable at x = 0. Moreover, the tangent line does not exist at
this point.

y

x
0.1 0.2−0.1−0.2

−0.1

−0.2

−0.3

78. f (x) = (x − 3)5/3, a = 3

solution The graph of f (x) = (x − 3)5/3 for x near 3 is shown below. From this graph, it appears that f

is differentiable at x = 3, with a horizontal tangent line.

3.00

2.95

3.05
x

79. f (x) = (x − 3)1/3, a = 3

solution The graph of f (x) = (x − 3)1/3 for x near 3 is shown below. From this graph, it appears that f

is not differentiable at x = 3. Moreover, the tangent line appears to be vertical.

3.05 3.10
x

2.95 3.002.90

80. f (x) = sin(x1/3), a = 0

solution The graph of f (x) = sin(x1/3) for x near 0 is shown below. From this graph, it appears that f

is not differentiable at x = 0. Moreover, the tangent line appears to be vertical.

y

x
0.05−0.05

0.2

0.4

−0.4

−0.2
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81. f (x) = | sin x|, a = 0

solution The graph of f (x) = | sin x| for x near 0 is shown below. Because the graph has a sharp corner
at x = 0, it appears that f is not differentiable at x = 0. Moreover, the tangent line does not exist at this point.

y

x
0.05

0.08

0.04

0.10

0.10−0.05−0.10

82. f (x) = |x − sin x|, a = 0

solution The graph of f (x) = |x − sin x| for x near 0 is shown below. From this graph, it appears that
f is differentiable at x = 0, with a horizontal tangent line.

y

x
0.05−0.05

0.00005

0.00010

0.00015

83. Find the coordinates of the point P in Figure 22 at which the tangent line passes through (5, 0).

9

y

P
f (x) = 9 − x2

−3 3 4 5
x

FIGURE 22

solution Let f (x) = 9 − x2, and suppose P has coordinates (a, 9 − a2). Because f ′(x) = −2x, the
slope of the line tangent to the graph of f (x) at P is −2a, and the equation of the tangent line is

y = f ′(a)(x − a) + f (a) = −2a(x − a) + 9 − a2 = −2ax + 9 + a2.

In order for this line to pass through the point (5, 0), we must have

0 = −10a + 9 + a2 = (a − 9)(a − 1).

Thus, a = 1 or a = 9. We exclude a = 9 because from Figure 22 we are looking for an x-coordinate between
0 and 5. Thus, the point P has coordinates (1, 8).

84. Plot the derivative f ′ of f (x) = 2x3 − 10x−1 for x > 0 (set the bounds of the viewing box
appropriately) and observe that f ′(x) > 0. What does the positivity of f ′(x) tell us about the graph of f

itself? Plot f and confirm this conclusion.

solution Let f (x) = 2x3 − 10x−1. Then f ′(x) = 6x2 + 10x−2. The graph of f ′(x) is shown in the
figure below at the left and it is clear that f ′(x) > 0 for all x > 0. The positivity of f ′(x) tells us that the
graph of f (x) is increasing for x > 0. This is confirmed in the figure below at the right, which shows the
graph of f (x).
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8642
x

y

100

200

300

400

8642
x

y

200

−200

400

600

800

Exercises 85–88 refer to Figure 23. Length QR is called the subtangent at P , and length RT is called the
subnormal.

85. Calculate the subtangent of

f (x) = x2 + 3x at x = 2

solution Let f (x) = x2 + 3x. Then f ′(x) = 2x + 3, and the equation of the tangent line at x = 2 is

y = f ′(2)(x − 2) + f (2) = 7(x − 2) + 10 = 7x − 4.

This line intersects the x-axis at x = 4
7 . Thus Q has coordinates ( 4

7 , 0), R has coordinates (2, 0) and the
subtangent is

2 − 4

7
= 10

7
.

86. Show that the subtangent of f (x) = ex is everywhere equal to 1.

solution Let f (x) = ex . Then f ′(x) = ex , and the equation of the tangent line at x = a is

y = f ′(a)(x − a) + f (a) = ea(x − a) + ea.

This line intersects the x-axis at x = a − 1. Thus, Q has coordinates (a − 1, 0), R has coordinates (a, 0) and
the subtangent is

a − (a − 1) = 1.

87. Prove in general that the subnormal at P is |f ′(x)f (x)|.
solution The slope of the tangent line at P is f ′(x). The slope of the line normal to the graph at P is then
−1/f ′(x), and the normal line intersects the x-axis at the point T with coordinates (x + f (x)f ′(x), 0). The
point R has coordinates (x, 0), so the subnormal is

|x + f (x)f ′(x) − x| = |f (x)f ′(x)|.

88. Show that PQ has length |f (x)|√1 + f ′(x)−2.

x

y

P = (x, f (x))

TR

y = f (x)

Q

Tangent line

FIGURE 23

solution The coordinates of the point P are (x, f (x)), the coordinates of the point R are (x, 0) and the
coordinates of the point Q are (

x − f (x)

f ′(x)
, 0

)
.
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Thus, PR = |f (x)|, QR =
∣∣∣ f (x)
f ′(x)

∣∣∣, and by the Pythagorean Theorem

PQ =
√(

f (x)

f ′(x)

)2

+ (f (x))2 = |f (x)|
√

1 + f ′(x)−2.

89. Prove the following theorem of Apollonius of Perga (the Greek mathematician born in 262 bce who gave
the parabola, ellipse, and hyperbola their names): The subtangent of the parabola y = x2 at x = a is equal to
a/2.

solution Let f (x) = x2. The tangent line to f at x = a is

y = f ′(a)(x − a) + f (a) = 2a(x − a) + a2 = 2ax − a2.

The x-intercept of this line (where y = 0) is a
2 as claimed.

y

y = x2

(a, a2)

x

(–, 0)a
2

90. Show that the subtangent to y = x3 at x = a is equal to 1
3a.

solution Let f (x) = x3. Then f ′(x) = 3x2, and the equation of the tangent line t x = a is

y = f ′(a)(x − a) + f (a) = 3a2(x − a) + a3 = 3a2x − 2a3.

This line intersects the x-axis at x = 2a/3. Thus, Q has coordinates (2a/3, 0), R has coordinates (a, 0) and
the subtangent is

a − 2

3
a = 1

3
a.

91. Formulate and prove a generalization of Exercise 90 for y = xn.

solution The generalized statement is: The subtangent to y = xn at x = a is equal to 1
n
a.

Proof: Let f (x) = xn. Then f ′(x) = nxn−1, and the equation of the tangent line t x = a is

y = f ′(a)(x − a) + f (a) = nan−1(x − a) + an = nan−1x − (n − 1)an.

This line intersects the x-axis at x = (n − 1)a/n. Thus, Q has coordinates ((n − 1)a/n, 0), R has coordinates
(a, 0) and the subtangent is

a − n − 1

n
a = 1

n
a.

Further Insights and Challenges
92. Two small arches have the shape of parabolas. The first is given by f (x) = 1 − x2 for −1 ≤ x ≤ 1 and
the second by g(x) = 4 − (x − 4)2 for 2 ≤ x ≤ 6. A board is placed on top of these arches so it rests on both
(Figure 24). What is the slope of the board? Hint: Find the tangent line to y = f (x) that intersects y = g(x)

in exactly one point.

FIGURE 24
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solution At the points where the board makes contact with the arches the slope of the board must be equal
to the slope of the arches (and hence they are equal to each other). Suppose (t, f (t)) is the point where the
board touches the left hand arch. The tangent line here (the line the board defines) is given by

y = f ′(t)(x − t) + f (t).

This line must hit the other arch in exactly one point. In other words, if we plug in y = g(x) to get

g(x) = f ′(t)(x − t) + f (t)

there can only be one solution for x in terms of t . Computing f ′ and plugging in we get

4 − (x2 − 8x + 16) = −2tx + 2t2 + 1 − t2

which simplifies to

x2 − 2tx − 8x + t2 + 13 = 0.

This is a quadratic equation ax2 + bx + c = 0 with a = 1, b = (−2t − 8) and c = t2 + 13. By the quadratic
formula we know there is a unique solution for x iff b2 − 4ac = 0. In our case this means

(2t + 8)2 = 4(t2 + 13).

Solving this gives t = −3/8 and plugging into f ′ shows the slope of the board must be 3/4.

93. A vase is formed by rotating y = x2 around the y-axis. If we drop in a marble, it will either touch the
bottom point of the vase or be suspended above the bottom by touching the sides (Figure 25). How small
must the marble be to touch the bottom?

FIGURE 25

solution Suppose a circle is tangent to the parabola y = x2 at the point (t, t2). The slope of the parabola
at this point is 2t , so the slope of the radius of the circle at this point is − 1

2t
(since it is perpendicular to the

tangent line of the circle). Thus the center of the circle must be where the line given by y = − 1
2t

(x − t) + t2

crosses the y-axis. We can find the y-coordinate by setting x = 0: we get y = 1
2 + t2. Thus, the radius extends

from (0, 1
2 + t2) to (t, t2) and

r =
√(

1

2
+ t2 − t2

)2

+ t2 =
√

1

4
+ t2.

This radius is greater than 1
2 whenever t > 0; so, if a marble has radius > 1/2 it sits on the edge of the vase,

but if it has radius ≤ 1/2 it rolls all the way to the bottom.

94. Let f be a differentiable function, and set the function g(x) = f (x + c), where c is a constant.
Use the limit definition to show that g′(x) = f ′(x + c). Explain this result graphically, recalling that the
graph of g is obtained by shifting the graph of f c units to the left (if c > 0) or right (if c < 0).

solution

• Let g(x) = f (x + c). Using the limit definition,

g′(x) = lim
h→0

g(x + h) − g(x)

h
= lim

h→0

f ((x + h) + c) − f (x + c)

h

= lim
h→0

f ((x + c) + h) − f (x + c)

h
= f ′(x + c).
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• The graph of g(x) is obtained by shifting f (x) to the left by c units. This implies that g′(x) is equal to
f ′(x) shifted to the left by c units, which happens to be f ′(x + c). Therefore, g′(x) = f ′(x + c).

95. Negative Exponents Let n be a whole number. Use the Power Rule for xn to calculate the derivative
of f (x) = x−n by showing that

f (x + h) − f (x)

h
= −1

xn(x + h)n

(x + h)n − xn

h

solution Let f (x) = x−n where n is a positive integer.

• The difference quotient for f is

f (x + h) − f (x)

h
= (x + h)−n − x−n

h
=

1
(x+h)n

− 1
xn

h
=

xn−(x+h)n

xn(x+h)n

h

= −1

xn(x + h)n

(x + h)n − xn

h
.

• Therefore,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

−1

xn(x + h)n

(x + h)n − xn

h

= lim
h→0

−1

xn(x + h)n
lim
h→0

(x + h)n − xn

h
= −x−2n d

dx

(
xn

)
.

• From above, we continue: f ′(x) = −x−2n d

dx

(
xn

) = −x−2n · nxn−1 = −nx−n−1. Since n is a positive

integer, k = −n is a negative integer and we have
d

dx

(
xk

)
= d

dx

(
x−n

) = −nx−n−1 = kxk−1; i.e.

d

dx

(
xk

)
= kxk−1 for negative integers k.

96. Verify the Power Rule for the exponent 1/n, where n is a positive integer, using the following trick:
Rewrite the difference quotient for y = x1/n at x = b in terms of

u = (b + h)1/n and a = b1/n

solution Substituting x = (b + h)1/n and a = b1/n into the left-hand side of equation (5) yields

xn − an

x − a
= (b + h) − b

(b + h)1/n − b1/n
= h

(b + h)1/n − b1/n

whereas substituting these same expressions into the right-hand side of equation (5) produces

xn − an

x − a
= (b + h)

n−1
n + (b + h)

n−2
n b1/n + (b + h)

n−3
n b2/n + · · · + b

n−1
n ;

hence,

(b + h)1/n − b1/n

h
= 1

(b + h)
n−1
n + (b + h)

n−2
n b1/n + (b + h)

n−3
n b2/n + · · · + b

n−1
n

.

If we take f (x) = x1/n, then, using the previous expression,

f ′(b) = lim
h→0

(b + h)1/n − b1/n

h
= 1

nb
n−1
n

= 1

n
b

1
n
−1.

Replacing b by x, we have f ′(x) = 1
n
x

1
n
−1.

97. Infinitely Rapid Oscillations Define

f (x) =

⎧⎪⎨
⎪⎩

x sin
1

x
x 	= 0

0 x = 0

Show that f is continuous at x = 0 but f ′(0) does not exist (see Figure 12).
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solution Let f (x) =
{

x sin
(

1
x

)
if x 	= 0

0 if x = 0
. As x → 0,

|f (x) − f (0)| =
∣∣∣∣x sin

(
1

x

)
− 0

∣∣∣∣ = |x|
∣∣∣∣sin

(
1

x

)∣∣∣∣ → 0

since the values of the sine lie between −1 and 1. Hence, by the Squeeze Theorem, lim
x→0

f (x) = f (0) and

thus f is continuous at x = 0.
As x → 0, the difference quotient at x = 0,

f (x) − f (0)

x − 0
=

x sin
(

1
x

)
− 0

x − 0
= sin

(
1

x

)

does not converge to a limit since it oscillates infinitely through every value between −1 and 1. Accordingly,
f ′(0) does not exist.

98. For which value of λ does the equation ex = λx have a unique solution? For which values of λ does it
have at least one solution? For intuition, plot y = ex and the line y = λx.

solution First, note that when λ = 0, the equation ex = 0 · x = 0 has no real solution. For λ 	= 0, we
observe that solutions to the equation ex = λx correspond to points of intersection between the graphs of
y = ex and y = λx. When λ < 0, the two graphs intersect at only one location (see the graph below at the
left). On the other hand, when λ > 0, the graphs may have zero, one or two points of intersection (see the
graph below at the right). Note that the graphs have one point of intersection when y = λx is the tangent line
to y = ex . Thus, not only do we require ex = λx, but also ex = λ. It then follows that the point of intersection
satisfies λ = λx, so x = 1. This then gives λ = e.

Therefore the equation ex = λx:
(a) has at least one solution when λ < 0 and when λ ≥ e;
(b) has a unique solution when λ < 0 and when λ = e.

6

4

2

−2

−1−2 1 2
x

y

15

10

5

−5

−1 21 3
x

y

3.3 Product and Quotient Rules

Preliminary Questions
1. Are the following statements true or false? If false, state the correct version.

(a) fg denotes the function whose value at x is f (g(x)).
(b) f/g denotes the function whose value at x is f (x)/g(x).
(c) The derivative of the product is the product of the derivatives.

(d)
d

dx
(fg)

∣∣∣∣
x=4

= f (4)g′(4) − g(4)f ′(4)

(e)
d

dx
(fg)

∣∣∣∣
x=0

= f ′(0)g(0) + f (0)g′(0)

solution
(a) False. The notation fg denotes the function whose value at x is f (x)g(x).
(b) True.
(c) False. The derivative of a product fg is f ′(x)g(x) + f (x)g′(x).

(d) False.
d

dx
(fg)

∣∣∣∣
x=4

= f ′(4)g(4) + f (4)g′(4).

(e) True.
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2. Find (f/g)′(1) if f (1) = f ′(1) = g(1) = 2 and g′(1) = 4.

solution
d

dx
(f/g)

∣∣
x=1 = [g(1)f ′(1) − f (1)g′(1)]/g(1)2 = [2(2) − 2(4)]/22 = −1.

3. Find g(1) if f (1) = 0, f ′(1) = 2, and (fg)′(1) = 10.

solution (fg)′(1) = f (1)g′(1) + f ′(1)g(1), so 10 = 0 · g′(1) + 2g(1) and g(1) = 5.

Exercises
In Exercises 1–6, use the Product Rule to calculate the derivative.

1. f (x) = x3(2x2 + 1)

solution Let f (x) = x3(2x2 + 1). Then

f ′(x) = x3 d

dx
(2x2 + 1) + (2x2 + 1)

d

dx
x3 = x3(4x) + (2x2 + 1)(3x2) = 10x4 + 3x2.

2. f (x) = (3x − 5)(2x2 − 3)

solution Let f (x) = (3x − 5)(2x2 − 3). Then

f ′(x) = (3x − 5)
d

dx
(2x2 − 3) + (2x2 − 3)

d

dx
(3x − 5) = (3x − 5)(4x) + (2x2 − 3)(3) = 18x2 − 20x − 9.

3. f (x) = x2ex

solution Let f (x) = x2ex . Then

f ′(x) = x2 d

dx
ex + ex d

dx
x2 = x2ex + ex(2x) = ex(x2 + 2x).

4. f (x) = (2x − 9)(4ex + 1)

solution Let f (x) = (2x − 9)(4ex + 1). Then

f ′(x) = (2x − 9)
d

dx
(4ex + 1) + (4ex + 1)

d

dx
(2x − 9) = (2x − 9)(4ex) + (4ex + 1)(2) = 8xex − 28ex + 2.

5.
dh

ds

∣∣∣∣
s=4

, h(s) = (s−1/2 + 2s)(7 − s−1)

solution Let h(s) = (s−1/2 + 2s)(7 − s−1). Then

dh

ds
= (s−1/2 + 2s)

d

dx
(7 − s−1) + (7 − s−1)

d

ds

(
s−1/2 + 2s

)

= (s−1/2 + 2s)(s−2) + (7 − s−1)

(
−1

2
s−3/2 + 2

)
= −7

2
s−3/2 + 3

2
s−5/2 + 14.

Therefore,

dh

ds

∣∣∣∣
s=4

= −7

2
(4)−3/2 + 3

2
(4)−5/2 + 14 = 871

64
.

6.
dy

dt

∣∣∣∣
t=2

, y = (t − 8t−1)(et + t2)

solution Let y(t) = (t − 8t−1)(et + t2). Then

dy

dt
= (t − 8t−1)

d

dt
(et + t2) + (et + t2)

d

dt
(t − 8t−1)

= (t − 8t−1)(et + 2t) + (et + t2)(1 + 8t−2).

Therefore,

dy

dt

∣∣∣∣
t=2

= (2 − 4)(e2 + 4) + (e2 + 4)(1 + 2) = e2 + 4.
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In Exercises 7–12, use the Quotient Rule to calculate the derivative.

7. f (x) = x

x − 2
solution Let f (x) = x

x−2 . Then

f ′(x) = (x − 2) d
dx

x − x d
dx

(x − 2)

(x − 2)2
= (x − 2) − x

(x − 2)2
= −2

(x − 2)2
.

8. f (x) = x + 4

x2 + x + 1

solution Let f (x) = x+4
x2+x+1

. Then

f ′(x) = (x2 + x + 1) d
dx

(x + 4) − (x + 4) d
dx

(x2 + x + 1)

(x2 + x + 1)2

= (x2 + x + 1) − (x + 4)(2x + 1)

(x2 + x + 1)2
= −x2 − 8x − 3

(x2 + x + 1)2
.

9.
dg

dt

∣∣∣∣
t=−2

, g(t) = t2 + 1

t2 − 1

solution Let g(t) = t2 + 1

t2 − 1
. Then

dg

dt
= (t2 − 1) d

dt
(t2 + 1) − (t2 + 1) d

dt
(t2 − 1)

(t2 − 1)2
= (t2 − 1)(2t) − (t2 + 1)(2t)

(t2 − 1)2
= − 4t

(t2 − 1)2
.

Therefore,

dg

dt

∣∣∣∣
t=−2

= − 4(−2)

((−2)2 − 1)2
= 8

9
.

10.
dw

dz

∣∣∣∣
z=9

, w = z2

√
z + z

solution Let w(z) = z2

√
z + z

. Then

dw

dz
= (

√
z + z) d

dz
z2 − z2 d

dz
(
√

z + z)

(
√

z + z)2
= 2z(

√
z + z) − z2((1/2)z−1/2 + 1)

(
√

z + z)2
= (3/2)z3/2 + z2

(
√

z + z)2
.

Therefore,

dw

dz

∣∣∣∣
z=9

= (3/2)(9)3/2 + 92

(
√

9 + 9)2
= 27

32
.

11. g(x) = 1

1 + ex

solution Let g(x) = 1

1 + ex
. Then

dg

dx
= (1 + ex) d

dx
1 − 1 d

dx
(1 + ex)

(1 + ex)2
= (1 + ex)(0) − ex

(1 + ex)2
= − ex

(1 + ex)2
.

12. f (x) = ex

x2 + 1

solution Let f (x) = ex

x2 + 1
. Then

df

dx
= (x2 + 1) d

dx
ex − ex d

dx
(x2 + 1)

(x2 + 1)2
= (x2 + 1)ex − ex(2x)

(x2 + 1)2
= ex(x − 1)2

(x2 + 1)2
.
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In Exercises 13–16, calculate the derivative in two ways. First use the Product or Quotient Rule; then rewrite
the function algebraically and apply the Power Rule directly.

13. f (t) = (2t + 1)(t2 − 2)

solution Let f (t) = (2t + 1)(t2 − 2). Then, using the Product Rule,

f ′(t) = (2t + 1)(2t) + (t2 − 2)(2) = 6t2 + 2t − 4.

Multiplying out first, we find f (t) = 2t3 + t2 − 4t − 2. Therefore, f ′(t) = 6t2 + 2t − 4.

14. f (x) = x2(3 + x−1)

solution Let f (x) = x2(3 + x−1). Then, using the product rule, and then power and sum rules,

f ′(x) = x2(−x−2) + (3 + x−1)(2x) = 6x + 1.

Multiplying out first, we find f (x) = 3x2 + x. Then f ′(x) = 6x + 1.

15. h(t) = t2 − 1

t − 1

solution Let h(t) = t2−1
t−1 . Using the quotient rule,

f ′(t) = (t − 1)(2t) − (t2 − 1)(1)

(t − 1)2
= t2 − 2t + 1

(t − 1)2
= 1

for t 	= 1. Simplifying first, we find for t 	= 1,

h(t) = (t − 1)(t + 1)

(t − 1)
= t + 1.

Hence h′(t) = 1 for t 	= 1.

16. g(x) = x3 + 2x2 + 3x−1

x

solution Let g(x) = x3+2x2+3x−1

x
. Using the quotient rule and the sum and power rules, and simplifying

g′(x) = x(3x2 + 4x − 3x−2) − (x3 + 2x2 + 3x−1)1

x2
= 1

x2

(
2x3 + 2x2 − 6x−1

)
= 2x + 2 − 6x−3.

Simplifying first yields g(x) = x2 + 2x + 3x−2, from which we calculate g′(x) = 2x + 2 − 6x−3.

In Exercises 17–38, calculate the derivative.

17. f (x) = (x3 + 5)(x3 + x + 1)

solution Let f (x) = (x3 + 5)(x3 + x + 1). Then

f ′(x) = (x3 + 5)(3x2 + 1) + (x3 + x + 1)(3x2) = 6x5 + 4x3 + 18x2 + 5.

18. f (x) = (4ex − x2)(x3 + 1)

solution Let f (x) = (4ex − x2)(x3 + 1). Then

f ′(x) = (4ex − x2)(3x2) + (x3 + 1)(4ex − 2x) = ex(4x3 + 12x2 + 4) − 5x4 − 2x.

19.
dy

dx

∣∣∣∣
x=3

, y = 1

x + 10

solution Let y = 1
x+10 . Using the quotient rule:

dy

dx
= (x + 10)(0) − 1(1)

(x + 10)2
= − 1

(x + 10)2
.

Therefore,

dy

dx

∣∣∣∣
x=3

= − 1

(3 + 10)2
= − 1

169
.
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20.
dz

dx

∣∣∣∣
x=−2

, z = x

3x2 + 1

solution Let z = x

3x2+1
. Using the quotient rule:

dz

dx
= (3x2 + 1)(1) − x(6x)

(3x2 + 1)2
= 1 − 3x2

(3x2 + 1)2
.

Therefore,

dz

dx

∣∣∣∣
x=−2

= 1 − 3(−2)2

(3(−2)2 + 1)2
= − 11

169
.

21. f (x) = (
√

x + 1)(
√

x − 1)

solution Let f (x) = (
√

x + 1)(
√

x − 1). Multiplying through first yields f (x) = x − 1 for x ≥ 0.
Therefore, f ′(x) = 1 for x ≥ 0. If we carry out the product rule on f (x) = (x1/2 + 1)(x1/2 − 1), we get

f ′(x) = (x1/2 + 1)

(
1

2
(x−1/2)

)
+ (x1/2 − 1)

(
1

2
x−1/2

)
= 1

2
+ 1

2
x−1/2 + 1

2
− 1

2
x−1/2 = 1.

22. f (x) = 9x5/2 − 2

x

solution Let f (x) = 9x5/2−2
x

= 9x3/2 − 2x−1. Then f ′(x) = 27
2 x1/2 + 2x−2.

23.
dy

dx

∣∣∣∣
x=2

, y = x4 − 4

x2 − 5

solution Let y = x4 − 4

x2 − 5
. Then

dy

dx
=

(
x2 − 5

) (
4x3

) − (
x4 − 4

)
(2x)(

x2 − 5
)2

= 2x5 − 20x3 + 8x(
x2 − 5

)2
.

Therefore,

dy

dx

∣∣∣∣
x=2

= 2(2)5 − 20(2)3 + 8(2)

(22 − 5)2
= −80.

24. f (x) = x4 + ex

x + 1

solution Let f (x) = x4 + ex

x + 1
. Then

df

dx
= (x + 1)(4x3 + ex) − (x4 + ex)(1)

(x + 1)2
= (x + 1)(4x3 + ex) − x4 − ex

(x + 1)2
.

25.
dz

dx

∣∣∣∣
x=1

, z = 1

x3 + 1

solution Let z = 1
x3+1

. Using the quotient rule:

dz

dx
= (x3 + 1)(0) − 1(3x2)

(x3 + 1)2
= − 3x2

(x3 + 1)2
.

Therefore,

dz

dx

∣∣∣∣
x=1

= − 3(1)2

(13 + 1)2
= −3

4
.

26. f (x) = 3x3 − x2 + 2√
x
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solution Let

f (x) = 3x3 − x2 + 2√
x

= 3x3 − x2 + 2

x1/2
.

Using the quotient rule, and then simplifying by taking out the greatest negative factor:

f ′(x) = (x1/2)(9x2 − 2x) − (3x3 − x2 + 2)( 1
2x−1/2)

x
= 1

x3/2

(
(9x3 − 2x2) − 1

2
(3x3 − x2 + 2)

)

= 1

x3/2

(
15

2
x3 − 3

2
x2 − 1

)
.

Alternately, since there is a single exponent of x in the denominator, we could also simplify f (x) first,
getting f (x) = 3x5/2 − x3/2 + 2x−1/2. Then f ′(x) = 15

2 x3/2 − 3
2x1/2 − x−3/2. The two answers are the

same.

27. h(t) = t

(t + 1)(t2 + 1)

solution Let h(t) = t

(t + 1)(t2 + 1)
= t

t3 + t2 + t + 1
. Then

h′(t) =
(
t3 + t2 + t + 1

)
(1) − t

(
3t2 + 2t + 1

)
(
t3 + t2 + t + 1

)2
= −2t3 − t2 + 1(

t3 + t2 + t + 1
)2

.

28. f (x) = x3/2
(
2x4 − 3x + x−1/2

)
solution Let f (x) = x3/2(2x4 − 3x + x−1/2). We multiply through the x3/2 to get f (x) = 2x11/2 −
3x5/2 + x. Then f ′(x) = 11x9/2 − 15

2 x3/2 + 1.

29. f (t) = 31/2 · 51/2

solution Let f (t) = √
3
√

5. Then f ′(t) = 0, since f (t) is a constant function!

30. h(x) = π2(x − 1)

solution Let h(x) = π2(x − 1). Then h′(x) = π2.

31. f (x) = (x + 3)(x − 1)(x − 5)

solution Let f (x) = (x + 3)(x − 1)(x − 5). Using the Product Rule inside the Product Rule with a first
factor of (x + 3) and a second factor of (x − 1)(x − 5), we find

f ′(x) = (x + 3) ((x − 1)(1) + (x − 5)(1)) + (x − 1)(x − 5)(1) = 3x2 − 6x − 13.

Alternatively,

f (x) = (x + 3)
(
x2 − 6x + 5

)
= x3 − 3x2 − 13x + 15.

Therefore, f ′(x) = 3x2 − 6x − 13.
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32. f (x) = ex(x2 + 1)(x + 4)

solution Let f (x) = ex(x2 + 1)(x + 4). Using the Product Rule inside the Product Rule with a first
factor of ex and a second factor of (x2 + 1)(x + 4), we find

f ′(x) = ex
(
(x2 + 1)(1) + (x + 4)(2x)

)
+ (x2 + 1)(x + 4)ex = (x3 + 7x2 + 9x + 5)ex.

33. f (x) = ex

x + 1

solution Let f (x) = ex

x + 1
. Then

f ′(x) = (x + 1)ex − ex(1)

(x + 1)2
= ex(x + 1 − 1)

(x + 1)2
= xex

(x + 1)2
.

34. g(x) = ex+1 + ex

e + 1

solution Let

g(x) = ex+1 + ex

e + 1
= ex(e + 1)

e + 1
= ex.

Then g′(x) = ex .

35. g(z) =
(

z2 − 4

z − 1

) (
z2 − 1

z + 2

)
Hint: Simplify first.

solution Let

g(z) =
(

z2 − 4

z − 1

) (
z2 − 1

z + 2

)
=

(
(z + 2)(z − 2)

z − 1

(z + 1)(z − 1)

z + 2

)
= (z − 2)(z + 1)

for z 	= −2 and z 	= 1. Then,

g′(z) = (z + 1)(1) + (z − 2)(1) = 2z − 1.

36.
d

dx

(
(ax + b)(abx2 + 1)

)
(a, b constants)

solution Let f (x) = (ax + b)(abx2 + 1). Then

f ′(x) = (ax + b)(2abx) + (abx2 + 1)(a) = 3a2bx2 + a + 2ab2x.

37.
d

dt

(
xt − 4

t2 − x

)
(x constant)

solution Let f (t) = xt−4
t2−x

. Using the quotient rule:

f ′(t) = (t2 − x)(x) − (xt − 4)(2t)

(t2 − x)2
= xt2 − x2 − 2xt2 + 8t

(t2 − x)2
= −xt2 + 8t − x2

(t2 − x)2
.

38.
d

dx

(
ax + b

cx + d

)
(a, b, c, d constants)

solution Let f (x) =
(

ax + b

cx + d

)
. Using the quotient rule:

f ′(x) = (cx + d)a − (ax + b)c

(cx + d)2
= (ad − bc)

(cx + d)2
.

In Exercises 39–42, calculate the derivative using the values:

f (4) f ′(4) g(4) g′(4)

10 −2 5 −1
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39. (fg)′(4) and (f/g)′(4)

solution Let h = fg and H = f/g. Then h′ = fg′ + gf ′ and H ′ = gf ′−fg′
g2 . Finally,

h′(4) = f (4)g′(4) + g(4)f ′(4) = (10)(−1) + (5)(−2) = −20,

and

H ′(4) = g(4)f ′(4) − f (4)g′(4)

(g(4))2
= (5)(−2) − (10)(−1)

(5)2
= 0.

40. F ′(4), where F(x) = x2f (x)

solution Let F(x) = x2f (x). Then F ′(x) = x2f ′(x) + 2xf (x), and

F ′(4) = 16f ′(4) + 8f (4) = (16)(−2) + (8)(10) = 48.

41. G′(4), where G(x) = (g(x))2

solution Let G(x) = g(x)2 = g(x)g(x). Then G′(x) = g(x)g′(x) + g(x)g′(x) = 2g(x)g′(x), and

G′(4) = 2g(4)g′(4) = 2(5)(−1) = −10.

42. H ′(4), where H(x) = x

g(x)f (x)

solution Let H(x) = x

g(x)f (x)
. Then

H ′(x) = g(x)f (x) · 1 − x(g(x)f ′(x) + f (x)g′(x))

(g(x)f (x))2
,

and

H ′(4) = (5)(10) − 4((5)(−2) + (10)(−1))

((5)(10))2
= 13

250
.

43. Calculate F ′(0), where

F(x) = x9 + x8 + 4x5 − 7x

x4 − 3x2 + 2x + 1

Hint: Do not calculate F ′(x). Instead, write F(x) = f (x)/g(x) and express F ′(0) directly in terms of
f (0), f ′(0), g(0), g′(0).

solution Taking the hint, let

f (x) = x9 + x8 + 4x5 − 7x

and let

g(x) = x4 − 3x2 + 2x + 1.

Then F(x) = f (x)
g(x)

. Now,

f ′(x) = 9x8 + 8x7 + 20x4 − 7 and g′(x) = 4x3 − 6x + 2.

Moreover, f (0) = 0, f ′(0) = −7, g(0) = 1, and g′(0) = 2.
Using the quotient rule:

F ′(0) = g(0)f ′(0) − f (0)g′(0)

(g(0))2
= −7 − 0

1
= −7.

44. Proceed as in Exercise 43 to calculate F ′(0), where

F(x) = (
1 + x + x4/3 + x5/3) 3x5 + 5x4 + 5x + 1

8x9 − 7x4 + 1
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solution Write F(x) = f (x)(g(x)/h(x)), where

f (x) = 1 + x + x4/3 + x5/3

g(x) = 3x5 + 5x4 + 5x + 1

and

h(x) = 8x9 − 7x4 + 1.

Now, f ′(x) = 1 + 4
3x

1
3 + 5

3x
2
3 , g′(x) = 15x4 + 20x3 + 5, and h′(x) = 72x8 − 28x3. Moreover, f (0) = 1,

f ′(0) = 1, g(0) = 1, g′(0) = 5, h(0) = 1, and h′(0) = 0. From the product and quotient rules,

F ′(0) = f (0)
h(0)g′(0) − g(0)h′(0)

h(0)2
+ f ′(0)(g(0)/h(0)) = 1

1(5) − 1(0)

1
+ 1(1/1) = 6.

45. Use the Product Rule to calculate
d

dx
e2x .

solution Note that e2x = ex · ex . Therefore

d

dx
e2x = d

dx
(ex · ex) = ex · ex + ex · ex = 2e2x.

46. Plot the derivative of f (x) = x/(x2 + 1) over [−4, 4]. Use the graph to determine the intervals
on which f ′(x) > 0 and f ′(x) < 0. Then plot f and describe how the sign of f ′(x) is reflected in the graph
of f .

solution Let f (x) = x

x2 + 1
. Then

f ′(x) = (x2 + 1)(1) − x(2x)

(x2 + 1)2
= 1 − x2

(x2 + 1)2
.

The derivative is shown in the figure below at the left. From this plot we see that f ′(x) > 0 for −1 < x < 1
and f ′(x) < 0 for |x| > 1. The original function is plotted in the figure below at the right. Observe that the
graph of f (x) is increasing whenever f ′(x) > 0 and that f (x) is decreasing whenever f ′(x) < 0.

y

x
2

0.2

0.4

0.6

0.8

1

41 3−2−4 −1−3

y

x
2

0.2

0.4

41 3−2
−0.2

−0.4

−4 −1−3

47. Plot f (x) = x/(x2 − 1) (in a suitably bounded viewing box). Use the plot to determine whether
f ′(x) is positive or negative on its domain {x : x 	= ±1}. Then compute f ′(x) and confirm your conclusion
algebraically.

solution Let f (x) = x

x2 − 1
. The graph of f (x) is shown below. From this plot, we see that f (x) is

decreasing on its domain {x : x 	= ±1}. Consequently, f ′(x) must be negative. Using the quotient rule, we
find

f ′(x) = (x2 − 1)(1) − x(2x)

(x2 − 1)2
= − x2 + 1

(x2 − 1)2
,

which is negative for all x 	= ±1.

4321
x

y

5

−5

−1−2−3−4
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48. Let P = V 2R/(R + r)2 as in Example 7. Calculate dP/dr, assuming that r is variable and R is constant.

solution Note that V is also constant. Let

f (r) = V 2R

(R + r)2
= V 2R

R2 + 2Rr + r2
.

Using the quotient rule:

f ′(r) = (R2 + 2Rr + r2)(0) − (V 2R)(2R + 2r)

(R + r)4
= −2V 2R(R + r)

(R + r)4
= − 2V 2R

(R + r)3
.

49. Find a > 0 such that the tangent line to the graph of

f (x) = x2e−x at x = a

passes through the origin (Figure 4).

y

x
a

f (x) = x2e−x

FIGURE 4

solution Let f (x) = x2e−x . Then f (a) = a2e−a ,

f ′(x) = −x2e−x + 2xe−x = e−x(2x − x2),

f ′(a) = (2a − a2)e−a , and the equation of the tangent line to f at x = a is

y = f ′(a)(x − a) + f (a) = (2a − a2)e−a(x − a) + a2e−a.

For this line to pass through the origin, we must have

0 = (2a − a2)e−a(−a) + a2e−a = e−a
(
a2 − 2a2 + a3

)
= a2e−a(a − 1).

Thus, a = 0 or a = 1. The only value a > 0 such that the tangent line to f (x) = x2e−x passes through the
origin is therefore a = 1.

50. Current I (amperes), voltage V (volts), and resistance R (ohms) in a circuit are related by Ohm’s Law,
I = V/R.

(a) Calculate
dI

dR

∣∣∣∣
R=6

if V is constant with value V = 24.

(b) Calculate
dV

dR

∣∣∣∣
R=6

if I is constant with value I = 4.

solution

(a) According to Ohm’s Law, I = V/R = V R−1. Thus, using the power rule,

dI

dR
= −V R−2.

With V = 24 volts, it follows that

dI

dR

∣∣∣∣
R=6

= −24(6)−2 = −2

3

amps

�
.

(b) Solving Ohm’s Law for V yields V = RI . Thus

dV

dR
= I and

dV

dR

∣∣∣∣
I=4

= 4 amps.
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51. The revenue per month earned by the Couture clothing chain at time t is R(t) = N(t)S(t), where N(t)

is the number of stores and S(t) is average revenue per store per month. Couture embarks on a two-part
campaign: (A) to build new stores at a rate of 5 stores per month, and (B) to use advertising to increase
average revenue per store at a rate of $10,000 per month. Assume that N(0) = 50 and S(0) = $150,000.
(a) Show that total revenue will increase at the rate

dR

dt
= 5S(t) + 10,000N(t)

Note that the two terms in the Product Rule correspond to the separate effects of increasing the number of
stores on the one hand, and the average revenue per store on the other.

(b) Calculate
dR

dt

∣∣∣∣
t=0

.

(c) If Couture can implement only one leg (A or B) of its expansion at t = 0, which choice will grow revenue
most rapidly?

solution
(a) Given R(t) = N(t)S(t), it follows that

dR

dt
= N(t)S′(t) + S(t)N ′(t).

We are told that N ′(t) = 5 stores per month and S′(t) = 10,000 dollars per month. Therefore,

dR

dt
= 5S(t) + 10,000N(t).

(b) Using part (a) and the given values of N(0) and S(0), we find

dR

dt

∣∣∣∣
t=0

= 5(150,000) + 10,000(50) = 1,250,000.

(c) From part (b), we see that of the two terms contributing to total revenue growth, the term 5S(0) is larger
than the term 10,000N(0). Thus, if only one leg of the campaign can be implemented, it should be part A:
increase the number of stores by 5 per month.

52. The tip speed ratio of a turbine (Figure 5) is the ratio R = T/W , where T is the speed of the tip of a
blade and W is the speed of the wind. (Engineers have found empirically that a turbine with n blades extracts
maximum power from the wind when R = 2π/n.) Calculate dR/dt (t in minutes) if W = 35 km/h and W

decreases at a rate of 4 km/h per minute, and the tip speed has constant value T = 150 km/h.

FIGURE 5 Turbines on a wind farm

solution Let R = T/W . Then

dR

dt
= WT ′ − T W ′

W 2
.

Using the values T = 150, T ′ = 0, W = 35 and W ′ = −4, we find

dR

dt
= (35)(0) − 150(−4)

352
= 24

49
.
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53. The curve y = 1/(x2 + 1) is called the witch of Agnesi (Figure 6) after the Italian mathematician Maria
Agnesi (1718–1799), who wrote one of the first books on calculus. This strange name is the result of a
mistranslation of the Italian word la versiera, meaning “that which turns.” Find equations of the tangent lines
at x = ±1.

321−2−3 −1

1

x

y

FIGURE 6 The witch of Agnesi.

solution Let f (x) = 1

x2 + 1
. Then f ′(x) = (x2 + 1)(0) − 1(2x)

(x2 + 1)2
= − 2x(

x2 + 1
)2

.

• At x = −1, the tangent line is

y = f ′(−1)(x + 1) + f (−1) = 1

2
(x + 1) + 1

2
= 1

2
x + 1.

• At x = 1, the tangent line is

y = f ′(1)(x − 1) + f (1) = −1

2
(x − 1) + 1

2
= −1

2
x + 1.

54. Let f (x) = g(x) = x. Show that (f/g)′ 	= f ′/g′.
solution (f/g) = (x/x) = 1, so (f/g)′ = 0. On the other hand, (f ′/g′) = (x′/x′) = (1/1) = 1. We see
that 0 	= 1.

55. Use the Product Rule to show that (f 2)′ = 2ff ′.

solution Let g = f 2 = ff . Then g′ =
(
f 2

)′ = (ff )′ = ff ′ + ff ′ = 2ff ′.

56. Show that (f 3)′ = 3f 2f ′.
solution Let g = f 3 = fff . Then

g′ =
(
f 3

)′ = [f (ff )]′ = f
(
ff ′ + ff ′) + ff (f ′) = 3f 2f ′.

Further Insights and Challenges
57. Let f , g, h be differentiable functions. Show that (fgh)′(x) is equal to

f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x)

Hint: Write fgh as f (gh).

solution Let p = fgh. Then

p′ = (fgh)′ = f
(
gh′ + hg′) + ghf ′ = f ′gh + fg′h + fgh′.

58. Prove the Quotient Rule using the limit definition of the derivative.

solution Let p = f

g
. Suppose that f and g are differentiable at x = a and that g(a) 	= 0. Then

p′(a) = lim
h→0

p(a + h) − p(a)

h
= lim

h→0

f (a + h)

g(a + h)
− f (a)

g(a)

h
= lim

h→0

f (a + h)g(a) − f (a)g(a + h)

g(a + h)g(a)

h

= lim
h→0

f (a + h)g(a) − f (a)g(a) + f (a)g(a) − f (a)g(a + h)

hg(a + h)g(a)

= lim
h→0

(
1

g(a + h)g(a)

(
g(a)

f (a + h) − f (a)

h
− f (a)

g(a + h) − g(a)

h

))
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=
(

lim
h→0

1

g(a + h)g(a)

) ((
g(a) lim

h→0

f (a + h) − f (a)

h

)
−

(
f (a) lim

h→0

g(a + h) − g(a)

h

))

= 1

(g(a))2

(
g(a)f ′(a) − f (a)g′(a)

) = g(a)f ′(a) − f (a)g′(a)

(g(a))2

In other words, p′ =
(

f

g

)′
= gf ′ − fg′

g2
.

59. Derivative of the Reciprocal Use the limit definition to prove

d

dx

(
1

f (x)

)
= − f ′(x)

f 2(x)
1

Hint: Show that the difference quotient for 1/f (x) is equal to

f (x) − f (x + h)

hf (x)f (x + h)

solution Let g(x) = 1
f (x)

. We then compute the derivative of g(x) using the difference quotient:

g′(x) = lim
h→0

g(x + h) − g(x)

h
= lim

h→0

1

h

(
1

f (x + h)
− 1

f (x)

)
= lim

h→0

1

h

(
f (x) − f (x + h)

f (x)f (x + h)

)

= − lim
h→0

(
f (x + h) − f (x)

h

) (
1

f (x)f (x + h)

)
.

We can apply the rule of products for limits. The first parenthetical expression is the difference quotient
definition of f ′(x). The second can be evaluated at h = 0 to give 1

(f (x))2 . Hence

g′(x) = d

dx

(
1

f (x)

)
= − f ′(x)

f 2(x)
.

60. Prove the Quotient Rule using Eq. (1) and the Product Rule.

solution Let h(x) = f (x)
g(x)

. We can write h(x) = f (x) 1
g(x)

. Applying Eq. (1),

h′(x) = f (x)

((
1

g(x)

)′)
+ f ′(x)

(
1

g(x)

)
= −f (x)

(
g′(x)

(g(x))2

)
+ f ′(x)

g(x)
= −f (x)g′(x) + f ′(x)g(x)

(g(x))2
.

61. Use the limit definition of the derivative to prove the following special case of the Product Rule:

d

dx
(xf (x)) = f (x) + xf ′(x)

solution First note that because f (x) is differentiable, it is also continuous. It follows that

lim
h→0

f (x + h) = f (x).

Now we tackle the derivative:

d

dx
(xf (x)) = lim

h→0

(x + h)f (x + h) − xf (x)

h
= lim

h→0

(
x

f (x + h) − f (x)

h
+ f (x + h)

)

= x lim
h→0

f (x + h) − f (x)

h
+ lim

h→0
f (x + h)

= xf ′(x) + f (x).

62. Carry out Maria Agnesi’s proof of the Quotient Rule from her book on calculus, published in 1748:
Assume that f , g, and h = f/g are differentiable. Compute the derivative of hg = f using the Product Rule,
and solve for h′.
solution Suppose that f , g, and h are differentiable functions with h = f/g.

• Then hg = f and via the product rule hg′ + gh′ = f ′.

• Solving for h′ yields h′ = f ′ − hg′

g
=

f ′ − f

g
g′

g
= gf ′ − fg′

g2
.
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63. The Power Rule Revisited If you are familiar with proof by induction, use induction to prove the
Power Rule for all whole numbers n. Show that the Power Rule holds for n = 1; then write xn as x · xn−1

and use the Product Rule.

solution Let k be a positive integer. If k = 1, then xk = x. Note that

d

dx

(
x1

)
= d

dx
(x) = 1 = 1x0.

Hence the Power Rule holds for k = 1. Assume it holds for k = n where n ≥ 2. Then for k = n + 1, we have

d

dx

(
xk

)
= d

dx

(
xn+1

)
= d

dx

(
x · xn

) = x
d

dx

(
xn

) + xn d

dx
(x)

= x · nxn−1 + xn · 1 = (n + 1)xn = kxk−1

Accordingly, the Power Rule holds for all positive integers by induction.

Exercises 64 and 65: A basic fact of algebra states that c is a root of a polynomial f if and only if f (x) =
(x − c)g(x) for some polynomial g. We say that c is a multiple root if f (x) = (x − c)2h(x), where h is a
polynomial.

64. Show that c is a multiple root of f if and only if c is a root of both f and f ′.
solution Assume first that f (c) = f ′(c) = 0 and let us show that c is a multiple root of f (x). We
have f (x) = (x − c)g(x) for some polynomial g(x) and so f ′(x) = (x − c)g′(x) + g(x). However,
f ′(c) = 0 + g(c) = 0, so c is also a root of g(x) and hence g(x) = (x − c)h(x) for some polynomial h(x).
We conclude that f (x) = (x − c)2h(x), which shows that c is a multiple root of f (x).

Conversely, assume that c is a multiple root. Then f (c) = 0 and f (x) = (x − c)2g(x) for some polynomial
g(x). Then f ′(x) = (x − c)2g′(x) + 2g(x)(x − c). Therefore, f ′(c) = (c − c)2g′(c) + 2g(c)(c − c) = 0.

65. Use Exercise 64 to determine whether c = −1 is a multiple root:
(a) x5 + 2x4 − 4x3 − 8x2 − x + 2
(b) x4 + x3 − 5x2 − 3x + 2

solution
(a) To show that −1 is a multiple root of

f (x) = x5 + 2x4 − 4x3 − 8x2 − x + 2,

it suffices to check that f (−1) = f ′(−1) = 0. We have f (−1) = −1 + 2 + 4 − 8 + 1 + 2 = 0 and

f ′(x) = 5x4 + 8x3 − 12x2 − 16x − 1

f ′(−1) = 5 − 8 − 12 + 16 − 1 = 0

(b) Let f (x) = x4 + x3 − 5x2 − 3x + 2. Then f ′(x) = 4x3 + 3x2 − 10x − 3. Because

f (−1) = 1 − 1 − 5 + 3 + 2 = 0

but

f ′(−1) = −4 + 3 + 10 − 3 = 6 	= 0,

it follows that x = −1 is a root of f , but not a multiple root.

66. Figure 7 is the graph of a polynomial with roots at A, B, and C. Which of these is a multiple root?
Explain your reasoning using Exercise 64.

x

y

B CA

FIGURE 7
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solution A on the figure is a multiple root. It is a multiple root because f (x) = 0 at A and because the
tangent line to the graph at A is horizontal, so that f ′(x) = 0 at A. For the same reasons, f also has a multiple
root at C.

67. According to Eq. (8) in Section 3.2, d
dx

bx = m(b) bx . Use the Product Rule to show that m(ab) =
m(a) + m(b).

solution

m(ab)(ab)x = d

dx
(ab)x = d

dx

(
axbx

) = ax d

dx
bx + bx d

dx
ax = m(b)axbx + m(a)axbx = (m(a) + m(b))(ab)x.

Thus, m(ab) = m(a) + m(b).

3.4 Rates of Change

Preliminary Questions
1. Which units might be used for each rate of change?

(a) Pressure (in atmospheres) in a water tank with respect to depth

(b) The rate of a chemical reaction (change in concentration with respect to time with concentration in moles
per liter)

solution
(a) The rate of change of pressure with respect to depth might be measured in atmospheres/meter.

(b) The reaction rate of a chemical reaction might be measured in moles/(liter·hour).

2. Two trains travel from New Orleans to Memphis in 4 h. The first train travels at a constant velocity of
90 mph, but the velocity of the second train varies. What was the second train’s average velocity during the
trip?

solution Since both trains travel the same distance in the same amount of time, they have the same average
velocity: 90 mph.

3. Estimate f (26), assuming that

f (25) = 43, f ′(25) = 0.75

solution f (x) ≈ f (25) + f ′(25)(x − 25), so f (26) ≈ 43 + 0.75(26 − 25) = 43.75.

4. The population P(t) of Freedonia in 2009 was P(2009) = 5 million.

(a) What is the meaning of P ′(2009)?

(b) Estimate P(2010) if P ′(2009) = 0.2.

solution
(a) Because P(t) measures the population of Freedonia as a function of time, the derivative P ′(2009)

measures the rate of change of the population of Freedonia in the year 2009.

(b) P(2010) ≈ P(2009) + P ′(2009). Thus, if P ′(2009) = 0.2, then P(2009) ≈ 5.2 million.

Exercises
In Exercises 1–8, find the rate of change.

1. Area of a square with respect to its side s when s = 5

solution Let the area be A = f (s) = s2. Then the rate of change of A with respect to s is d/ds(s2) = 2s.
When s = 5, the area changes at a rate of 10 square units per unit increase. (Draw a 5 × 5 square on graph
paper and trace the area added by increasing each side length by 1, excluding the corner, to see what this
means.)

2. Volume of a cube with respect to its side s when s = 5

solution Let the volume be V = f (s) = s3. Then the rate of change of V with respect to s is
d

ds
s3 = 3s2.

When s = 5, the volume changes at a rate of 3(52) = 75 cubic units per unit increase.
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3. Cube root 3
√

x with respect to x when x = 1, 8, 27

solution Let f (x) = 3
√

x. Writing f (x) = x1/3, we see the rate of change of f (x) with respect to x is
given by f ′(x) = 1

3x−2/3. The requested rates of change are given in the table that follows:

c ROC of f (x) with respect to x at x = c.

1 f ′(1) = 1
3 (1) = 1

3

8 f ′(8) = 1
3 (8−2/3) = 1

3

( 1
4

) = 1
12

27 f ′(27) = 1
3 (27−2/3) = 1

3

( 1
9

) = 1
27

4. The reciprocal 1/x with respect to x when x = 1, 2, 3

solution Let f (x) = x−1. The rate of change of f (x) with respect to x is given by f ′(x) = −x−2. The
requested rates of change are then −1 when x = 1, − 1

4 when x = 2 and − 1
9 when x = 3.

5. The diameter of a circle with respect to radius

solution The relationship between the diameter d of a circle and its radius r is d = 2r . The rate of change
of the diameter with respect to the radius is then d ′ = 2.

6. Surface area A of a sphere with respect to radius r (A = 4πr2)

solution Because A = 4πr2, the rate of change of the surface area of a sphere with respect to the radius
is A′ = 8πr .

7. Volume V of a cylinder with respect to radius if the height is equal to the radius

solution The volume of the cylinder is V = πr2h = πr3. Thus dV/dr = 3πr2.

8. Speed of sound v (in m/s) with respect to air temperature T (in kelvins), where v = 20
√

T

solution Because, v = 20
√

T = 20T 1/2, the rate of change of the speed of sound with respect to
temperature is v′ = 10T −1/2 = 10√

T
.

In Exercises 9–11, refer to Figure 10, the graph of distance s from the origin as a function of time for a car
trip.

9. Find the average velocity over each interval.

(a) [0, 0.5] (b) [0.5, 1] (c) [1, 1.5] (d) [1, 2]
solution
(a) The average velocity over the interval [0, 0.5] is

50 − 0

0.5 − 0
= 100 km/hour.

(b) The average velocity over the interval [0.5, 1] is

100 − 50

1 − 0.5
= 100 km/hour.

(c) The average velocity over the interval [1, 1.5] is

100 − 100

1.5 − 1
= 0 km/hour.

(d) The average velocity over the interval [1, 2] is

50 − 100

2 − 1
= −50 km/hour.

10. At what time is velocity at a maximum?

solution The velocity is maximum when the slope of the distance versus time curve is most positive. This
appears to happen when t = 0.5 hours.
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11. Match the descriptions (i)–(iii) with the intervals (a)–(c).

(i) Velocity increasing

(ii) Velocity decreasing

(iii) Velocity negative

(a) [0, 0.5]
(b) [2.5, 3]
(c) [1.5, 2]

t (h)
3.02.52.01.51.00.5

Distance (km)

150

100

50

FIGURE 10 Distance from the origin versus time for a car trip.

solution
(a) (i) : The distance curve is increasing, and is also bending upward, so that distance is increasing at an
increasing rate.

(b) (ii) : Over the interval [2.5, 3], the distance curve is flattening, showing that the car is slowing down; that
is, the velocity is decreasing.

(c) (iii) : The distance curve is decreasing, so the tangent line has negative slope; this means the velocity is
negative.

12. Use the data from Table 1 in Example 1 to calculate the average rate of change of Martian temperature
T with respect to time t over the interval from 8:36 am to 9:34 am.

solution The time interval from 8:36 am to 9:34 am has length 58 minutes, and the change in temperature
over this time interval is

�T = −42 − (−47.7) = 5.7◦C.

The average rate of change is then

�T

�t
= 5.7

58
≈ 0.0983◦C/min = 5.897◦C/hr.

13. Use Figure 3 from Example 1 to estimate the instantaneous rate of change of Martian temperature with
respect to time (in degrees Celsius per hour) at t = 4 am.

solution The segment of the temperature graph around t = 4 am appears to be a straight line passing
through roughly (1:36, −70) and (4:48, −75). The instantaneous rate of change of Martian temperature with
respect to time at t = 4 am is therefore approximately

dT

dt
= −75 − (−70)

3.2
= −1.5625◦C/hour.

14. The temperature (in degrees Celsius) of an object at time t (in minutes) is T (t) = 3
8 t2 − 15t + 180 for

0 ≤ t ≤ 20. At what rate is the object cooling at t = 10? (Give correct units.)

solution Given T (t) = 3
8 t2 − 15t + 180, it follows that

T ′(t) = 3

4
t − 15 and T ′(10) = 3

4
(10) − 15 = −7.5◦C/min.

At t = 10, the object is cooling at the rate of 7.5◦C/min.

15. The velocity (in centimeters per second) of blood molecules flowing through a capillary of radius 0.008 cm
is v = 6.4 × 10−8 − 0.001r2, where r is the distance from the molecule to the center of the capillary. Find
the rate of change of velocity with respect to r when r = 0.004 cm.

solution The rate of change of the velocity of the blood molecules is v′(r) = −0.002r . When r = 0.004
cm, this rate is −8 × 10−6 1/s.
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16. Figure 11 displays the voltage V across a capacitor as a function of time while the capacitor is being
charged. Estimate the rate of change of voltage at t = 20 s. Indicate the values in your calculation and include
proper units. Does voltage change more quickly or more slowly as time goes on? Explain in terms of tangent
lines.

10 20 30 40

4

3

2

1

5

V (V)

t (s)

FIGURE 11

solution The tangent line sketched in the figure below appears to pass through the points (10, 3) and
(30, 4). Thus, the rate of change of voltage at t = 20 seconds is approximately

4 − 3

30 − 10
= 0.05 V/s.

As we move to the right of the graph, the tangent lines to it grow shallower, indicating that the voltage changes
more slowly as time goes on.

4010 20 30

4

3

2

1

y

x

17. Use Figure 12 to estimate dT /dh at h = 30 and 70, where T is atmospheric temperature (in degrees
Celsius) and h is altitude (in kilometers). Where is dT /dh equal to zero?
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0
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10 50 100 150

FIGURE 12 Atmospheric temperature versus altitude.

solution At h = 30 km, the graph of atmospheric temperature appears to be linear passing through the
points (23, −50) and (40, 0). The slope of this segment of the graph is then

0 − (−50)

40 − 23
= 50

17
= 2.94;

so

dT

dh

∣∣∣∣
h=30

≈ 2.94◦C/km.

At h = 70 km, the graph of atmospheric temperature appears to be linear passing through the points (58, 0)

and (88, −100). The slope of this segment of the graph is then

−100 − 0

88 − 58
= −100

30
= −3.33;
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so

dT

dh

∣∣∣∣
h=70

≈ −3.33◦C/km.

dT
dh

= 0 at those points where the tangent line on the graph is horizontal. This appears to happen over the
interval [13, 23], and near the points h = 50 and h = 90.

18. The earth exerts a gravitational force of F(r) = (2.99 × 1016)/r2 newtons on an object with a mass of
75 kg located r meters from the center of the earth. Find the rate of change of force with respect to distance
r at the surface of the earth.

solution The rate of change of force is F ′(r) = −5.98 × 1016/r3. Therefore,

F ′(6.77 × 106) = −5.98 × 1016/(6.77 × 106)3 = −1.93 × 10−4 N/m.

19. Calculate the rate of change of escape velocity vesc = (2.82 × 107)r−1/2 m/s with respect to distance r

from the center of the earth.

solution The rate that escape velocity changes is v′
esc(r) = −1.41 × 107r−3/2.

20. The power delivered by a battery to an apparatus of resistanceR (in ohms) isP = 2.25R/(R + 0.5)2 watts (W).
Find the rate of change of power with respect to resistance for R = 3 � and R = 5 �.

solution

P ′(R) = (R + 0.5)22.25 − 2.25R(2R + 1)

(R + 0.5)4
.

Therefore, P ′(3) = −0.1312 W/� and P ′(5) = −0.0609 W/�.

21. The position of a particle moving in a straight line during a 5-s trip is s(t) = t2 − t + 10 cm. Find a time
t at which the instantaneous velocity is equal to the average velocity for the entire trip beginning at t = 0.

solution Let s(t) = t2 − t + 10, 0 ≤ t ≤ 5, with s in centimeters (cm) and t in seconds (s). The average
velocity over the t-interval [0, 5] is

s(5) − s(0)

5 − 0
= 30 − 10

5
= 4 cm/s.

The (instantaneous) velocity is v(t) = s′(t) = 2t − 1. Solving 2t − 1 = 4 yields t = 5
2 s, the time at which

the instantaneous velocity equals the calculated average velocity.

22. The height (in meters) of a helicopter at time t (in minutes) is s(t) = 600t − 3t3 for 0 ≤ t ≤ 12.
(a) Plot s and velocity v as functions of time.
(b) Find the velocity at t = 8 and t = 10.
(c) Find the maximum height of the helicopter.

solution

(a) With s(t) = 600t − 3t3, it follows that v(t) = 600 − 9t2. Plots of the position and the velocity are shown
below.
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(b) From part (a), we have v(t) = 600 − 9t2. Thus, v′(8) = 24 meters/minute and v′(10) = −300 me-
ters/minute.
(c) From the graph in part (a), we see that the helicopter achieves its maximum height when the velocity is
zero. Solving 600 − 9t2 = 0 for t yields

t =
√

600

9
= 10

3

√
6 minutes.

The maximum height of the helicopter is then

s

(
10

3

√
6

)
= 4000

3

√
6 ≈ 3266 meters.
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23. A particle moving along a line has position s(t) = t4 − 18t2 m at time t seconds. At which times does
the particle pass through the origin? At which times is the particle instantaneously motionless (i.e., it has zero
velocity)?

solution The particle passes through the origin when s(t) = t4 − 18t2 = t2(t2 − 18) = 0. This happens

when t = 0 seconds and when t = 3
√

2 ≈ 4.24 seconds. With s(t) = t4 − 18t2, it follows that v(t) =
s′(t) = 4t3 − 36t = 4t (t2 − 9). The particle is therefore instantaneously motionless when t = 0 seconds and
when t = 3 seconds.

24. Plot the position of the particle in Exercise 23. What is the farthest distance to the left of the origin
attained by the particle?

solution The plot of the position of the particle in Exercise 23 is shown below. Positive values of position
correspond to distance to the right of the origin and negative values correspond to distance to the left of the
origin. The most negative value of s(t) occurs at t = 3 and is equal to s(3) = 34 − 18(3)2 = −81. Thus, the
particle achieves a maximum distance to the left of the origin of 81 meters.
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25. A bullet is fired in the air vertically from ground level with an initial velocity 200 m/s. Find the bullet’s
maximum velocity and maximum height.

solution We employ Galileo’s formula, s(t) = s0 + v0t − 1
2gt2 = 200t − 4.9t2, where the time t

is in seconds (s) and the height s is in meters (m). The velocity is v(t) = 200 − 9.8t . The maximum
velocity of 200 m/s occurs at t = 0. This is the initial velocity. The bullet reaches its maximum height when
v(t) = 200 − 9.8t = 0; i.e., when t ≈ 20.41 s. At this point, the height is 2040.82 m.

26. Find the velocity of an air conditioner accidentally dropped from a height of 300 m at the moment it hits
the ground.

solution We employ Galileo’s formula, s(t) = s0 + v0t − 1
2gt2 = 300 − 4.9t2, where the time t is in

seconds (s) and the height s is in meters (m). When the air conditioner hits the ground its height is 0. Solve
s(t) = 300 − 4.9t2 = 0 to obtain t ≈ 7.8246 s. (We discard the negative time, which took place before
the air conditioner was dropped.) The velocity at impact is v(7.8246) = −9.8(7.8246) ≈ −76.68 m/s. This
signifies that the air conditioner is falling at 76.68 m/s.

27. A ball tossed in the air vertically from ground level returns to earth 4 s later. Find the initial velocity and
maximum height of the ball.

solution Galileo’s formula gives s(t) = s0 + v0t − 1
2gt2 = v0t − 4.9t2, where the time t is in seconds

(s) and the height s is in meters (m). When the ball hits the ground after 4 seconds its height is 0. Solve
0 = s(4) = 4v0 − 4.9(4)2 to obtain v0 = 19.6 m/s. The ball reaches its maximum height when s′(t) = 0,
that is, when 19.6 − 9.8t = 0, or t = 2 s. At this time, t = 2 s,

s(2) = 0 + 19.6(2) − 1

2
(9.8)(4) = 19.6 m.

28. Olivia is gazing out a window from the tenth floor of a building when a bucket (dropped by a window
washer) passes by. She notes that it hits the ground 1.5 s later. Determine the floor from which the bucket was
dropped if each floor is 5 m high and the window is in the middle of the tenth floor. Neglect air friction.

solution Suppose H is the unknown height from which the bucket fell starting at time t = 0. The height
of the bucket at time t is s(t) = H − 4.9t2. Let T be the time when the bucket hits the ground (thus s(T ) = 0).
Olivia saw the bucket at time T − 1.5. The window is located 9.5 floors or 47.5 m above ground. So we have
the equations

s(T − 1.5) = H − 4.9(T − 1.5)2 = 47.5 and s(T ) = H − 4.9T 2 = 0

Subtracting the second equation from the first, we obtain −4.9(−3T + 2.25) = 47.5, so T ≈ 4 s. The second
equation gives us H = 4.9T 2 = 4.9(4)2 ≈ 78.4 m. Since there are 5 m in a floor, the bucket was dropped
78.4/5 ≈ 15.7 floors above the ground. The bucket was dropped from the top of the 15th floor.
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29. Show that for an object falling according to Galileo’s formula, the average velocity over any time interval
[t1, t2] is equal to the average of the instantaneous velocities at t1 and t2.

solution The simplest way to proceed is to compute both values and show that they are equal. The average
velocity over [t1, t2] is

s(t2) − s(t1)

t2 − t1
= (s0 + v0t2 − 1

2gt2
2 ) − (s0 + v0t1 − 1

2gt2
1 )

t2 − t1
= v0(t2 − t1) + g

2 (t2
2 − t1

2)

t2 − t1

= v0(t2 − t1)

t2 − t1
− g

2
(t2 + t1) = v0 − g

2
(t2 + t1)

Whereas the average of the instantaneous velocities at the beginning and end of [t1, t2] is

s′(t1) + s′(t2)
2

= 1

2

(
(v0 − gt1) + (v0 − gt2)

)
= 1

2
(2v0) − g

2
(t2 + t1) = v0 − g

2
(t2 + t1).

The two quantities are the same.

30. An object falls under the influence of gravity near the earth’s surface. Which of the following
statements is true? Explain.
(a) Distance traveled increases by equal amounts in equal time intervals.
(b) Velocity increases by equal amounts in equal time intervals.
(c) The derivative of velocity increases with time.

solution For an object falling under the influence of gravity, Galileo’s formula gives s(t) = s0 + v0t −
1
2gt2.

(a) Since the height of the object varies quadratically with respect to time, it is not true that the object covers
equal distance in equal time intervals.
(b) The velocity is v(t) = s′(t) = v0 − gt . The velocity varies linearly with respect to time. Accordingly, the
velocity decreases (becomes more negative) by equal amounts in equal time intervals. Moreover, its speed
(the magnitude of velocity) increases by equal amounts in equal time intervals.
(c) Acceleration, the derivative of velocity with respect to time, is given by a(t) = v′(t) = −g. This is
a constant; it does not change with time. Hence it is not true that acceleration (the derivative of velocity)
increases with time.

31. By Faraday’s Law, if a conducting wire of length � meters moves at velocity v m/s perpendicular to a
magnetic field of strength B (in teslas), a voltage of size V = −B�v is induced in the wire. Assume that
B = 2 and � = 0.5.
(a) Calculate dV/dv.
(b) Find the rate of change of V with respect to time t if v(t) = 4t + 9.

solution
(a) Assuming that B = 2 and l = 0.5, V = −2(0.5)v = −v. Therefore,

dV

dv
= −1.

(b) If v = 4t + 9, then V = −2(0.5)(4t + 9) = −(4t + 9). Therefore, dV
dt

= −4.

32. The voltage V , current I , and resistance R in a circuit are related by Ohm’s Law: V = IR, where the units
are volts, amperes, and ohms. Assume that voltage is constant with V = 12 volts (V). Calculate (specifying
units):
(a) The average rate of change of I with respect to R for the interval from R = 8 to R = 8.1
(b) The rate of change of I with respect to R when R = 8
(c) The rate of change of R with respect to I when I = 1.5

solution Let V = IR or I = V/R = 12/R (since we are assuming V = 12 volts).
(a) The average rate of change is

�I

�R
= I (8.1) − I (8)

8.1 − 8
=

12
8.1 − 12

8

0.1
≈ −0.185 A/�.

(b) dI/dR = −12/R2 = −12/82 = −0.1875 A/�.
(c) With R = 12/I , we have dR/dI = −12/I 2 = −12/1.52 ≈ −5.33 �/A.



260 C H A P T E R 3 DIFFERENTIATION

33. Ethan finds that with h hours of tutoring, he is able to answer correctly S(h) percent of the
problems on a math exam. Which would you expect to be larger: S′(3) or S′(30)? Explain.

solution The derivative S′(h) measures the rate at which the percent of problems Ethan answers correctly
changes with respect to the number of hours of tutoring he receives.

One possible graph of S(h) is shown in the figure below on the left. This graph indicates that in the early
hours of working with the tutor, Ethan makes rapid progress in learning the material but eventually approaches
either the limit of his ability to learn the material or the maximum possible score on the exam. In this scenario,
S′(3) would be larger than S′(30).

An alternative graph of S(h) is shown below on the right. Here, in the early hours of working with the
tutor little progress is made (perhaps the tutor is assessing how much Ethan already knows, his learning style,
his personality, etc.). This is followed by a period of rapid improvement and finally a leveling off as Ethan
reaches his maximum score. In this scenario, S′(3) and S′(30) might be roughly equal.
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34. Suppose θ(t) measures the angle between a clock’s minute and hour hands. What is θ ′(t) at 3 o’clock?

solution The minute hand makes one full revolution every 60 minutes, so the minute hand moves at a
rate of

2π

60
= π

30
rad/min.

The hour hand makes one-twelfth of a revolution every 60 minutes, so the hour hand moves with a rate of

π

360
rad/min.

At 3 o’clock, the movement of the minute hand works to decrease the angle between the minute and hour
hands while the movement of the hour hand works to increase the angle. Therefore, at 3 o’clock,

θ ′(t) = π

360
− π

30
= −11π

360
rad/min.

35. To determine drug dosages, doctors estimate a person’s body surface area (BSA) (in meters squared) using
the formula BSA = √

hm/60, where h is the height in centimeters and m the mass in kilograms. Calculate
the rate of change of BSA with respect to mass for a person of constant height h = 180. What is this rate at
m = 70 and m = 80? Express your result in the correct units. Does BSA increase more rapidly with respect
to mass at lower or higher body mass?

solution Assuming constant height h = 180 cm, let f (m) = √
hm/60 =

√
5

10 m be the formula for body
surface area in terms of weight. The rate of change of BSA with respect to mass is

f ′(m) =
√

5

10

(
1

2
m−1/2

)
=

√
5

20
√

m
.

If m = 70 kg, this is

f ′(70) =
√

5

20
√

70
=

√
14

280
≈ 0.0133631

m2

kg
.

If m = 80 kg,

f ′(80) =
√

5

20
√

80
= 1

20
√

16
= 1

80

m2

kg
.

Because the rate of change of BSA depends on 1/
√

m, it is clear that BSA increases more rapidly at lower
body mass.
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36. The atmospheric CO2 level A(t) at Mauna Loa, Hawaii, at time t (in parts per million by volume) is
recorded by the Scripps Institution of Oceanography. Reading across, the annual values for the 4-year intervals
are

1960 1964 1968 1972 1976 1980 1984
0.54 0.28 1.03 1.69 1.02 1.73 1.36

1988 1992 1996 2000 2004 2008 2012
2.13 0.48 1.25 1.62 1.56 1.60 2.66

(a) Estimate A′(t) in 1962, 1970, 1978, 1986, 1994, 2002, and 2010.

(b) In which of the years from (a) did the approximation to A′(t) take on its largest and smallest values?

(c) In which of these years does the approximation suggest that the CO2 level was the most constant?

solution
(a) Using the data in the table, we estimate the values of A′(t) as

A′(1962) ≈ A(1964) − A(1960)

4
= 0.28 − 0.54

4
= −0.065 parts per million per year;

A′(1970) ≈ A(1972) − A(1968)

4
= 1.69 − 1.03

4
= 0.165 parts per million per year;

A′(1978) ≈ A(1980) − A(1976)

4
= 1.73 − 1.02

4
= 0.1775 parts per million per year;

A′(1986) ≈ A(1988) − A(1984)

4
= 2.13 − 1.36

4
= 0.1925 parts per million per year;

A′(1994) ≈ A(1996) − A(1992)

4
= 1.25 − 0.48

4
= 0.1925 parts per million per year;

A′(2002) ≈ A(2004) − A(2000)

4
= 1.56 − 1.62

4
= −0.015 parts per million per year;

A′(2010) ≈ A(2012) − A(2008)

4
= 2.66 − 1.60

4
= 0.265 parts per million per year.

(b) From part (a), the largest approximation is A′(2010), and the smallest approximation is A′(1962).

(c) The CO2 level was most constant in 2002 because the approximate rate of change in that year was nearest
to zero.

37. The tangent lines to the graph of f (x) = x2 grow steeper as x increases. At what rate do the slopes of
the tangent lines increase?

solution Let f (x) = x2. The slopes s of the tangent lines are given by s = f ′(x) = 2x. The rate at which
these slopes are increasing is ds/dx = 2.

38. Figure 13 shows the height y of a mass oscillating at the end of a spring, through one cycle of the
oscillation. Sketch the graph of velocity as a function of time.

t

y

FIGURE 13

solution The position graph appears to break into four equal-sized components. Over the first quarter of
the time interval, the position graph is rising but bending downward, eventually reaching a horizontal tangent.
Thus, over the first quarter of the time interval, the velocity is positive but decreasing, eventually reaching 0.
Continuing to examine the structure of the position graph produces the following graph of velocity:
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Velocity

y

Time

In Exercises 39–46, use Eq. (3) to estimate the unit change.

39. Estimate
√

2 − √
1 and

√
101 − √

100. Compare your estimates with the actual values.

solution Let f (x) = √
x = x1/2. Then f ′(x) = 1

2x−1/2. We are using the derivative to estimate the
average rate of change. That is,

√
x + h − √

x

h
≈ f ′(x),

so that
√

x + h − √
x ≈ hf ′(x).

Thus,
√

2 − √
1 ≈ 1f ′(1) = 1

2 (1) = 1
2 . The actual value, to six decimal places, is 0.414214. Also,

√
101 −√

100 ≈ 1f ′(100) = 1
2

(
1

10

)
= 0.05. The actual value, to six decimal places, is 0.0498756.

40. Estimate f (4) − f (3) if f ′(x) = 2−x . Then estimate f (4), assuming that f (3) = 12.

solution Using the estimate that

f (x + h) − f (x)

h
≈ f ′(x),

so that f (x + h) − f (x) ≈ f ′(x)h, with x = 3 and h = 1, we get

f (4) − f (3) ≈ 2−3(1) = 1

8
.

If f (3) = 12, then f (4) ≈ 12 1
8 = 97

8 .

41. Let F(s) = 1.1s + 0.05s2 be the stopping distance as in Example 3. Calculate F(65) and estimate the
increase in stopping distance if speed is increased from 65 to 66 mph. Compare your estimate with the actual
increase.

solution Let F(s) = 1.1s + 0.05s2 be as in Example 3. F ′(s) = 1.1 + 0.1s.

• Then F(65) = 282.75 ft and F ′(65) = 7.6 ft/mph.
• F ′(65) ≈ F(66) − F(65) is approximately equal to the change in stopping distance per 1 mph increase

in speed when traveling at 65 mph. Increasing speed from 65 to 66 therefore increases stopping distance
by approximately 7.6 ft.

• The actual increase in stopping distance when speed increases from 65 mph to 66 mph is F(66) −
F(65) = 290.4 − 282.75 = 7.65 feet, which differs by less than one percent from the estimate found
using the derivative.

42. According to Kleiber’s Law, the metabolic rate P (in kilocalories per day) and body mass m (in kilograms)
of an animal are related by a three-quarter-power law P = 73.3m3/4. Estimate the increase in metabolic rate
when body mass increases from 60 to 61 kg.

solution Let P(m) = 73.3m3/4 be the function relating body mass m to metabolic rate P . Then,

P ′(m) = 3

4
(73.3)m−1/4 = 54.975m−1/4

P(61) − P(60) ≈ P ′(60) = 54.975(60−1/4) = 19.7527.

As body mass is increased from 60 to 61 kg, metabolic rate is increased by approximately 19.7527 kcal/day.

43. The dollar cost of producing x bagels is given by the function C(x) = 300 + 0.25x − 0.5(x/1000)3.
Determine the cost of producing 2000 bagels and estimate the cost of the 2001st bagel. Compare your estimate
with the actual cost of the 2001st bagel.
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solution Expanding the power of 3 yields

C(x) = 300 + 0.25x − 5 × 10−10x3.

This allows us to get the derivative C′(x) = 0.25 − 1.5 × 10−9x2. The cost of producing 2000 bagels is

C(2000) = 300 + 0.25(2000) − 0.5(2000/1000)3 = 796

dollars. The cost of the 2001st bagel is, by definition, C(2001) − C(2000). By the derivative estimate,
C(2001) − C(2000) ≈ C′(2000)(1), so the cost of the 2001st bagel is approximately

C′(2000) = .25 − 1.5 × 10−9(20002) = $0.244.

C(2001) = 796.244, so the exact cost of the 2001st bagel is indistinguishable from the estimated cost. The
function is very nearly linear at this point.

44. Suppose the dollar cost of producing x video cameras is C(x) = 500x − 0.003x2 + 10−8x3.

(a) Estimate the marginal cost at production level x = 5000 and compare it with the actual cost C(5001) −
C(5000).

(b) Compare the marginal cost at x = 5000 with the average cost per camera, defined as C(x)/x.

solution Let C(x) = 500x − 0.003x2 + 10−8x3. Then

C′(x) = 500 − 0.006x + (3 × 10−8)x2.

(a) The cost difference is approximately C′(5000) = 470.75. The actual cost is C(5001) − C(5000) =
470.747, which is quite close to the marginal cost computed using the derivative.

(b) The average cost per camera is

C(5000)

5000
= 2426250

5000
= 485.25,

which is slightly higher than the marginal cost.

45. Demand for a commodity generally decreases as the price is raised. Suppose that the demand for oil (per
capita per year) is D(p) = 900/p barrels, where p is the dollar price per barrel. Find the demand when
p = $40. Estimate the decrease in demand if p rises to $41 and the increase if p declines to $39.

solution D(p) = 900p−1, so D′(p) = −900p−2. When the price is $40 a barrel, the per capita demand
is D(40) = 22.5 barrels per year. With an increase in price from $40 to $41 a barrel, the change in demand
D(41) − D(40) is approximately D′(40) = −900(40−2) = −0.5625 barrels a year. With a decrease in price
from $40 to $39 a barrel, the change in demand D(39) − D(40) is approximately −D′(40) = +0.5625. An
increase in oil prices of a dollar leads to a decrease in demand of 0.5625 barrels a year, and a decrease of a
dollar leads to an increase in demand of 0.5625 barrels a year.

46. The reproduction rate f of the fruit fly Drosophila melanogaster, grown in bottles in a laboratory,
decreases with the number p of flies in the bottle. A researcher has found the number of offspring per female
per day to be approximately f (p) = (34 − 0.612p)p−0.658.

(a) Calculate f (15) and f ′(15).

(b) Estimate the decrease in daily offspring per female when p is increased from 15 to 16. Is this estimate
larger or smaller than the actual value f (16) − f (15)?

(c) Plot f for 5 ≤ p ≤ 25 and verify that f (p) is a decreasing function of p. Do you expect f ′(p)

to be positive or negative? Plot f ′ and confirm your expectation.

solution Let

f (p) = (34 − 0.612p)p−0.658 = 34p−0.658 − 0.612p0.342.

Then

f ′(p) = −22.372p−1.658 − 0.209304p−0.658.

(a) f (15) = 34(15)−0.658 − 0.612(15)0.342 ≈ 4.17767 offspring per female per day and f ′(15) =
−22.372(15)−1.658 − 0.209304(15)−.658 ≈ −.28627 offspring per female per day per fly.
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(b) f (16) − f (15) ≈ f ′(15) ≈ −0.28627. The decrease in daily offspring per female is estimated at
0.28627. f (16) − f (15) = −0.272424. The actual decrease in daily offspring per female is 0.272424. The
actual decrease in daily offspring per female is less than the estimated decrease. This is because the graph of
the function bends towards the x axis.

(c) The function f (p) is plotted below at the left and is clearly a decreasing function of p; we therefore expect
that f ′(p) will be negative. The plot of the derivative shown below at the right confirms our expectation.
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47. According to Stevens’ Law in psychology, the perceived magnitude of a stimulus is proportional
(approximately) to a power of the actual intensity I of the stimulus. Experiments show that the perceived
brightness B of a light satisfies B = kI 2/3, where I is the light intensity, whereas the perceived heaviness H

of a weight W satisfies H = kW 3/2 (k is a constant that is different in the two cases). Compute dB/dI and
dH/dW and state whether they are increasing or decreasing functions. Then explain the following statements:

(a) A 1-unit increase in light intensity is felt more strongly when I is small than when I is large.

(b) Adding another pound to a load W is felt more strongly when W is large than when W is small.

solution

(a) dB/dI = 2k

3
I−1/3 = 2k

3I 1/3
.

As I increases, dB/dI shrinks, so that the rate of change of perceived intensity decreases as the actual
intensity increases. Increased light intensity has a diminished return in perceived intensity. A sketch of B

against I is shown: See that the height of the graph increases more slowly as you move to the right.

x

y

(b) dH/dW = 3k
2 W 1/2. As W increases, dH/dW increases as well, so that the rate of change of perceived

weight increases as weight increases. A sketch of H against W is shown: See that the graph becomes steeper
as you move to the right.

x

y

48. Let M(t) be the mass (in kilograms) of a plant as a function of time (in years). Recent studies by Niklas
and Enquist have suggested that a remarkably wide range of plants (from algae and grass to palm trees) obey
a three-quarter-power growth law—that is,

dM

dt
= CM3/4 for some constant C

(a) If a tree has a growth rate of 6 kg/year when M = 100 kg, what is its growth rate when M = 125 kg?

(b) If M = 0.5 kg, how much more mass must the plant acquire to double its growth rate?
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solution

(a) Suppose a tree has a growth rate dM/dt of 6 kg/yr when M = 100, then 6 = C(1003/4) = 10C
√

10, so

that C = 3
√

10
50 . When M = 125,

dM

dt
= C(1253/4) = 3

√
10

50
25(51/4) = 7.09306 kg/yr.

(b) The growth rate when M = 0.5 kg is dM/dt = C(0.53/4). To double the rate, we must find M so that
dM/dt = CM3/4 = 2C(0.53/4). We solve for M .

CM3/4 = 2C(0.53/4)

M3/4 = 2(0.53/4)

M = (2(0.53/4))4/3 = 1.25992.

The plant must acquire the difference 1.25992 − 0.5 = 0.75992 kg in order to double its growth rate.
Note that a doubling of growth rate requires more than a doubling of mass.

Further Insights and Challenges
Exercises 49–51: The Lorenz curve y = F(r) is used by economists to study income distribution in a given
country (see Figure 14). By definition, F(r) is the fraction of the total income that goes to the bottom rth part
of the population, where 0 ≤ r ≤ 1. For example, if F(0.4) = 0.245, then the bottom 40% of households
receive 24.5% of the total income. Note that F(0) = 0 and F(1) = 1.

49. Our goal is to find an interpretation for F ′(r). The average income for a group of households is
the total income going to the group divided by the number of households in the group. The national average
income is A = T/N , where N is the total number of households and T is the total income earned by the
entire population.
(a) Show that the average income among households in the bottom rth part is equal to (F (r)/r)A.
(b) Show more generally that the average income of households belonging to an interval [r, r + �r] is equal
to (

F(r + �r) − F(r)

�r

)
A

(c) Let 0 ≤ r ≤ 1. A household belongs to the 100rth percentile if its income is greater than or equal to the
income of 100r % of all households. Pass to the limit as �r → 0 in (b) to derive the following interpretation:
A household in the 100rth percentile has income F ′(r)A. In particular, a household in the 100rth percentile
receives more than the national average if F ′(r) > 1 and less if F ′(r) < 1.
(d) For the Lorenz curves L1 and L2 in Figure 14(B), what percentage of households have above-average
income?

solution
(a) The total income among households in the bottom rth part is F(r)T and there are rN households in this
part of the population. Thus, the average income among households in the bottom rth part is equal to

F(r)T

rN
= F(r)

r
· T

N
= F(r)

r
A.

(b) Consider the interval [r, r + �r]. The total income among households between the bottom rth part and
the bottom r + �r-th part is F(r + �r)T − F(r)T . Moreover, the number of households covered by this
interval is (r + �r)N − rN = �rN . Thus, the average income of households belonging to an interval
[r, r + �r] is equal to

F(r + �r)T − F(r)T

�rN
= F(r + �r) − F(r)

�r
· T

N
= F(r + �r) − F(r)

�r
A.

(c) Take the result from part (b) and let �r → 0. Because

lim
�r→0

F(r + �r) − F(r)

�r
= F ′(r),

we find that a household in the 100rth percentile has income F ′(r)A.
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(d) The point P in Figure 14(B) has an r-coordinate of 0.6, while the point Q has an r-coordinate of roughly
0.75. Thus, on curve L1, 40% of households have F ′(r) > 1 and therefore have above-average income. On
curve L2, roughly 25% of households have above-average income.

50. The following table provides values of F(r) for the United States in 2010. Assume that the national
average income was A = $66,000.

r 0 0.2 0.4 0.6 0.8 1
F(r) 0 0.033 0.118 0.264 0.480 1

(a) What was the average income in the lowest 40% of households?
(b) Show that the average income of the households belonging to the interval [0.4, 0.6] was $48,180.
(c) Estimate F ′(0.5). Estimate the income of households in the 50th percentile? Was it greater or less than
the national average?

solution
(a) The average income in the lowest 40% of households is F ′(0.4)A = 0.245(30,000) = 7350 euros.
(b) The average income of the households belonging to the interval [0.4, 0.6] is

F(0.6) − F(0.4)

0.2
A = 0.423 − 0.245

0.2
(30,000) = (0.89)(30,000) = 26700

euros.
(c) We estimate

F ′(0.5) ≈ F(0.6) − F(0.4)

0.2
= 0.423 − 0.245

0.2
= 0.89.

The income of households in the 50th percentile is then F ′(0.5)A = 0.89(30,000) = 26,700 euros, which is
less than the national average.

51. Use Exercise 49(c) to prove:
(a) F ′(r) is an increasing function of r .
(b) Income is distributed equally (all households have the same income) if and only if F(r) = r for 0 ≤ r ≤ 1.

0.2 0.4 0.6 0.8 1.0
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0.4

0.6

0.8

1.0

r

F(r)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

r

F(r)

L2

L1

P

(A) Lorenz curve for the United States
       in 2010

(B) Two Lorenz curves: The tangent
      lines at P and Q have slope 1.

Q

FIGURE 14

solution
(a) Recall from Exercise 49 (c) that F ′(r)A is the income of a household in the 100r-th percentile. Suppose
0 ≤ r1 < r2 ≤ 1. Because r2 > r1, a household in the 100r2-th percentile must have income at least as large
as a household in the 100r1-th percentile. Thus, F ′(r2)A ≥ F ′(r1)A, or F ′(r2) ≥ F ′(r1). This implies F ′(r)
is an increasing function of r .
(b) If F(r) = r for 0 ≤ r ≤ 1, then F ′(r) = 1 and households in all percentiles have income equal to
the national average; that is, income is distributed equally. Alternately, if income is distributed equally (all
households have the same income), then F ′(r) = 1 for 0 ≤ r ≤ 1. Thus, F must be a linear function
in r with slope 1. Moreover, the condition F(0) = 0 requires the F intercept of the line to be 0. Hence,
F(r) = 1 · r + 0 = r .

52. Studies of Internet usage show that Web site popularity is described quite well by Zipf’s Law,
according to which the nth most popular Web site receives roughly the fraction 1/n of all visits. Suppose that
on a particular day, the nth most popular site had approximately V (n) = 106/n visitors (for n ≤ 15,000).
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(a) Verify that the top 50 Web sites received nearly 45% of the visits. Hint: Let T (N) denote the sum of V (n)

for 1 ≤ n ≤ N . Use a computer algebra system to compute T (50) and T (15,000).

(b) Verify, by numerical experimentation, that when Eq. (3) is used to estimate V (n + 1) − V (n), the error
in the estimate decreases as n grows larger. Find (again, by experimentation) an N such that the error is at
most 10 for n ≥ N .

(c) Using Eq. (3), show that for n ≥ 100, the nth Web site received at most 100 more visitors than the
(n + 1)st Web site.

solution

(a) In Mathematica, using the command Sum[10 ˆ 6/n,{n,50}] yields 4.49921 × 106 and the command
Sum[10 ˆ 6/n,{n,15000}] yields 1.01931 × 107. We see that the first 50 sites get around 4.5 million hits,
which is nearly 45% of the 10.19 million hits of the first 15000 sites.

(b) We use V[n_] := 10 ˆ 6/n, and compute the error V (n + 1) − V (n) − V ′(n) for various values of n. The
table of values computed follows:

n 10 20 30 40 50

(V (n + 1) − V (n)) − V ′(n) 909.091 119.048 35.8423 15.2489 7.84314

The error decreases in every entry. Furthermore, for n > 50, the error appears to be less than 10.

(c) Since V (n) = 106n−1, V ′(n) = −106n−2. The marginal derivative estimate Eq. (3) tells us that

V (n) − V (n + 1) ≈ −V ′(n) = 106n−2.

If n ≥ 100, −V ′(n) ≤ 106(100)−2 = 106(10−4) = 100. Therefore V (n) − V (n + 1) < 100 for n ≥ 100.

In Exercises 53 and 54, the average cost per unit at production level x is defined as Cavg(x) = C(x)/x, where
C(x) is the cost of producing x units. Average cost is a measure of the efficiency of the production process.

53. Show that Cavg(x) is equal to the slope of the line through the origin and the point (x, C(x)) on the graph
of y = C(x). Using this interpretation, determine whether average cost or marginal cost is greater at points
A, B, C, D in Figure 15.

C

x

Production level

A
B C

D

FIGURE 15 Graph of y = C(x).

solution By definition, the slope of the line through the origin and (x, C(x)), that is, between (0, 0) and
(x, C(x)) is

C(x) − 0

x − 0
= C(x)

x
= Cav.

At point A, average cost is greater than marginal cost, as the line from the origin to A is steeper than
the curve at this point (we see this because the line, tracing from the origin, crosses the curve from below).
At point B, the average cost is still greater than the marginal cost. At the point C, the average cost and the
marginal cost are nearly the same, since the tangent line and the line from the origin are nearly the same. The
line from the origin to D crosses the cost curve from above, and so is less steep than the tangent line to the
curve at D; the average cost at this point is less than the marginal cost.

54. The cost in dollars of producing alarm clocks is given by C(x) = 50x3 − 750x2 + 3740x + 3750, where
x is in units of 1000.

(a) Calculate the average cost at x = 4, 6, 8, and 10.

(b) Use the graphical interpretation of average cost to find the production level x0 at which average cost is
lowest. What is the relation between average cost and marginal cost at x0 (see Figure 16)?
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10,000

15,000

5000

1 2 3 4 5 6 7 8 9 10
x

C ($)

FIGURE 16 Cost function C(x) = 50x3 − 750x2 + 3740x + 3750.

solution Let C(x) = 50x3 − 750x2 + 3740x + 3750.

(a) The slope of the line through the origin and the point (x, C(x)) is

C(x) − 0

x − 0
= C(x)

x
= Cav(x),

the average cost.

x 4 6 8 10

C(x) 9910 9990 11270 16150

Cav(x) 2477.5 1665 1408.75 1615

(b) The average cost is lowest at the point P0 where the angle between the x-axis and the line through the
origin and P0 is lowest. This is at the point (8, 11270), where the line through the origin and the graph of
C(x) meet in the figure above. You can see that the line is also tangent to the graph of C(x), so the average
cost and the marginal cost are equal at this point.

3.5 Higher Derivatives

Preliminary Questions
1. On September 4, 2003, the Wall Street Journal printed the headline “Stocks Go Higher, Though the Pace

of Their Gains Slows.” Rephrase this headline as a statement about the first and second derivatives of stock
prices and sketch a possible graph.

solution Because stocks are going higher, stock prices are increasing and the first derivative of stock prices
must therefore be positive. On the other hand, because the pace of gains is slowing, the second derivative of
stock prices must be negative.

Stock price

Time

2. True or false? The third derivative of position with respect to time is zero for an object falling to Earth
under the influence of gravity. Explain.

solution This statement is true. The acceleration of an object falling to earth under the influence of
gravity is constant; hence, the second derivative of position with respect to time is constant. Because the third
derivative is just the derivative of the second derivative and the derivative of a constant is zero, it follows that
the third derivative is zero.

3. Which type of polynomial satisfies f ′′′(x) = 0 for all x?

solution The third derivative of all quadratic polynomials (polynomials of the form ax2 + bx + c for
some constants a, b and c) is equal to 0 for all x.

4. What is the millionth derivative of f (x) = e x?

solution Every derivative of f (x) = ex is ex .
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Exercises
In Exercises 1–16, calculate y′′ and y′′′.

1. y = 14x2

solution Let y = 14x2. Then y′ = 28x, y′′ = 28, and y′′′ = 0.

2. y = 7 − 2x

solution Let y = 7 − 2x. Then y′ = −2, y′′ = 0, and y′′′ = 0.

3. y = x4 − 25x2 + 2x

solution Let y = x4 − 25x2 + 2x. Then y′ = 4x3 − 50x + 2, y′′ = 12x2 − 50, and y′′′ = 24x.

4. y = 4t3 − 9t2 + 7

solution Let y = 4t3 − 9t2 + 7. Then y′ = 12t2 − 18t , y′′ = 24t − 18, and y′′′ = 24.

5. y = 4

3
πr3

solution Let y = 4
3πr3. Then y′ = 4πr2, y′′ = 8πr , and y′′′ = 8π .

6. y = √
x

solution Let y = √
x = x1/2. Then y′ = 1

2x−1/2, y′′ = − 1
4x−3/2, and y′′′ = 3

8x−5/2.

7. y = 20t4/5 − 6t2/3

solution Let y = 20t4/5 − 6t2/3. Then y′ = 16t−1/5 − 4t−1/3, y′′ = − 16
5 t−6/5 + 4

3 t−4/3, and y′′′ =
96
25 t−11/15 − 16

9 t−7/3.

8. y = x−9/5

solution Let y = x−9/5. Then y′ = − 9
5x−14/5, y′′ = 126

25 x−19/5, and y′′′ = − 2394
125 x−24/5.

9. y = z − 4

z

solution Let y = z − 4z−1. Then y′ = 1 + 4z−2, y′′ = −8z−3, and y′′′ = 24z−4.

10. y = 5t−3 + 7t−8/3

solution Let y = 5t−3 + 7t−8/3. Then y′ = −15t−4 − 56
3 t−11/3, y′′ = 60t−5 + 616

9 t−14/3, and y′′′ =
−300t−6 − 8624

27 t−17/3.

11. y = θ2(2θ + 7)

solution Let y = θ2(2θ + 7) = 2θ3 + 7θ2. Then y′ = 6θ2 + 14θ , y′′ = 12θ + 14, and y′′′ = 12.

12. y = (x2 + x)(x3 + 1)

solution Since we don’t want to apply the product rule to an ever growing list of products, we multiply
through first. Let y = (x2 + x)(x3 + 1) = x5 + x4 + x2 + x. Then y′ = 5x4 + 4x3 + 2x + 1, y′′ =
20x3 + 12x2 + 2, and y′′′ = 60x2 + 24x.

13. y = x − 4

x

solution Let y = x−4
x

= 1 − 4x−1. Then y′ = 4x−2, y′′ = −8x−3, and y′′′ = 24x−4.

14. y = 1

1 − x

solution Let y = 1
1−x

. Applying the quotient rule:

y′ = (1 − x)(0) − 1(−1)

(1 − x)2
= 1

(1 − x)2
= 1

1 − 2x + x2

y′′ = (1 − 2x + x2)(0) − (1)(−2 + 2x)

(1 − 2x + x2)2
= 2 − 2x

(1 − x)4
= 2

(1 − x)3
= 2

1 − 3x + 3x2 − x3

y′′′ = (1 − 3x + 3x2 − x3)(0) − 2(−3 + 6x − 3x2)

(1 − 3x + 3x2 − x3)2
= 6(x2 − 2x + 1)

(1 − x)6
= 6

(1 − x)4
.
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15. y = x5e x

solution Let y = x5ex . Then

y′ = x5ex + 5x4ex = (x5 + 5x4)ex

y′′ = (x5 + 5x4)ex + (5x4 + 20x3)ex = (x5 + 10x4 + 20x3)ex

y′′′ = (x5 + 10x4 + 20x3)ex + (5x4 + 40x3 + 60x2)ex = (x5 + 15x4 + 60x3 + 60x2)ex.

16. y = e x

x

solution Let y = ex

x
= x−1ex . Then

y′ = x−1ex + ex(−x−2) = (x−1 − x−2)ex

y′′ = (x−1 − x−2)ex + ex(−x−2 + 2x−3) = (x−1 − 2x−2 + 2x−3)ex

y′′′ = (x−1 − 2x−2 + 2x−3)ex + ex(−x−2 + 4x−3 − 6x−4) = (x−1 − 3x−2 + 6x−3 − 6x−4)ex.

In Exercises 17–26, calculate the derivative indicated.

17. f (4)(1), f (x) = x4

solution Let f (x) = x4. Then f ′(x) = 4x3, f ′′(x) = 12x2, f ′′′(x) = 24x, and f (4)(x) = 24. Thus
f (4)(1) = 24.

18. g′′′(−1), g(t) = −4t−5

solution Let g(t) = −4t−5. Then g′(t) = 20t−6, g′′(t) = −120t−7, and g′′′(t) = 840t−8. Hence
g′′′(−1) = 840.

19.
d2y

dt2

∣∣∣∣
t=1

, y = 4t−3 + 3t2

solution Let y = 4t−3 + 3t2. Then dy
dt

= −12t−4 + 6t and d2y

dt2 = 48t−5 + 6. Hence

d2y

dt2

∣∣∣∣
t=1

= 48(1)−5 + 6 = 54.

20.
d4f

dt4

∣∣∣∣
t=1

, f (t) = 6t9 − 2t5

solution Let f (t) = 6t9 − 2t5. Then df
dt

= 54t8 − 10t4, d2f

dt2 = 432t7 − 40t3, d3f

dt3 = 3024t6 − 120t2,

and d4f

dt4 = 18144t5 − 240t . Therefore,

d4f

dt4

∣∣∣∣
t=1

= 17904.

21.
d4x

dt4

∣∣∣∣
t=16

, x = t−3/4

solution Let x(t) = t−3/4. Then dx
dt

= − 3
4 t−7/4, d2x

dt2 = 21
16 t−11/4, d3x

dt3 = − 231
64 t−15/4, and d4x

dt4 =
3465
256 t−19/4. Thus

d4x

dt4

∣∣∣∣
t=16

= 3465

256
16−19/4 = 3465

134217728
.

22. f ′′′(4), f (t) = 2t2 − t

solution Since f (t) = 2t2 − t , f ′(t) = 4t − 1, f ′′(t) = 4, and f ′′′(t) = 0 for all t . In particular,
f ′′′(4) = 0.

23. f ′′′(−3), f (x) = 4ex − x3
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solution Let f (x) = 4ex − x3. Then f ′(x) = 4ex − 3x2, f ′′(x) = 4ex − 6x, f ′′′(x) = 4ex − 6, and
f ′′′(−3) = 4e−3 − 6.

24. f ′′(1), f (t) = t

t + 1

solution Let f (t) = t

t + 1
. Then

f ′(t) = (t + 1)(1) − (t)(1)

(t + 1)2
= 1

(t + 1)2
= 1

t2 + 2t + 1

and

f ′′(t) = (t2 + 2t + 1)(0) − 1(2t + 2)

(t2 + 2t + 1)2
= −2(t + 1)

(t + 1)4
= − 2

(t + 1)3
.

Thus, f ′′(1) = −1

4
.

25. h′′(1), h(w) = √
wew

solution Let h(w) = √
wew = w1/2ew. Then

h′(w) = w1/2ew + ew

(
1

2
w−1/2

)
=

(
w1/2 + 1

2
w−1/2

)
ew

and

h′′(w) =
(

w1/2 + 1

2
w−1/2

)
ew + ew

(
1

2
w−1/2 − 1

4
w−3/2

)
=

(
w1/2 + w−1/2 − 1

4
w−3/2

)
ew.

Thus, h′′(1) = 7

4
e.

26. g′′(0), g(s) = es

s + 1

solution Let g(s) = es

s + 1
. Then

g′(s) = (s + 1)es − es(1)

(s + 1)2
= ses

s2 + 2s + 1

and

g′′(s) = (s2 + 2s + 1)(ses + es) − ses(2s + 2)

(s2 + 2s + 1)2
= (s2 + 1)es

(s + 1)3
.

Thus, g′′(0) = 1.

27. Calculate y(k)(0) for 0 ≤ k ≤ 5, where y = x4 + ax3 + bx2 + cx + d (with a, b, c, d the constants).

solution Applying the power, constant multiple, and sum rules at each stage, we get (note y(0) is y by
convention):

k y(k)

0 x4 + ax3 + bx2 + cx + d

1 4x3 + 3ax2 + 2bx + c

2 12x2 + 6ax + 2b

3 24x + 6a

4 24

5 0

from which we get y(0)(0) = d , y(1)(0) = c, y(2)(0) = 2b, y(3)(0) = 6a, y(4)(0) = 24, and y(5)(0) = 0.

28. Which of the following satisfy f (k)(x) = 0 for all k ≥ 6?
(a) f (x) = 7x4 + 4 + x−1 (b) f (x) = x3 − 2
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(c) f (x) = √
x (d) f (x) = 1 − x6

(e) f (x) = x9/5 (f) f (x) = 2x2 + 3x5

solution Equations (b) and (f) go to zero after the sixth derivative. We don’t have to take the derivatives
to see this.

• Look at (a). f ′(x) = 28x3 − x−2. Every time we take higher derivatives of f (x), the negative exponent
will keep decreasing, and will never become zero.

• In the case of (b), we see that every derivative decreases the degree (the highest exponent) of the
polynomial by one, so that f (4)(x) = 0.

• For (c), f ′(x) = d
dx

x1/2 = 1
2x−1/2. Every further derivative of f (x) is going to make the exponent

more negative, so that it will never go to zero.
• In the case of (d), like (b), the highest exponent will decrease with every derivative, but 6 derivatives

will leave the exponent zero, f (6)(x) will be −6!. This is easy to verify.
• (e) is like (c). Since the exponent is not a whole number, successive derivatives will make the exponent

“pass over” zero, and go to negative infinity.
• In the case of (f), f (5)(x) is constant, so that f (6)(x) = 0 for all x.

29. Use the result in Example 3 to find
d6

dx6
x−1.

solution The equation in Example 3 indicates that

d6

dx6
x−1 = (−1)66!x−6−1.

(−1)6 = 1 and 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720, so

d6

dx6
x−1 = 720x−7.

30. Calculate the first five derivatives of f (x) = √
x.

(a) Show that f (n)(x) is a multiple of x−n+1/2.
(b) Show that f (n)(x) alternates in sign as (−1)n−1 for n ≥ 1.

(c) Find a formula for f (n)(x) for n ≥ 2. Hint: Verify that the coefficient is ±1 · 3 · 5 · · · 2n − 3

2n
.

solution We use the Power Rule:

df

dx
= 1

2 x−1/2 d4f

dx4
= − 5

2 ( 3
2 )( 1

2 )( 1
2 ) x−7/2

d2f

dx2
= − 1

2 ( 1
2 ) x−3/2 d5f

dx5 = 7
2 ( 5

2 )( 3
2 )( 1

2 )( 1
2 ) x−9/2

d3f

dx3
= 3

2 ( 1
2 )( 1

2 ) x−5/2 d6f

dx6
= − 9

2 ( 7
2 )( 5

2 )( 3
2 )( 1

2 )( 1
2 ) x−11/2

The pattern we see here is that the nth derivative is a multiple of ±x−n+ 1
2 . Which multiple? The coefficient

is the product of the odd numbers up to 2n − 3 divided by 2n. Therefore we can write a general formula for
the nth derivative as follows:

f (n)(x) = (−1)n−1 1 · 3 · 5 · · · (2n − 3)

2n
x−n+ 1

2

In Exercises 31–36, find a general formula for f (n)(x).

31. f (x) = x−2

solution f ′(x) = −2x−3, f ′′(x) = 6x−4, f ′′′(x) = −24x−5, f (4)(x) = 5 · 24x−6, . . . . From this we
can conclude that the nth derivative can be written as f (n)(x) = (−1)n(n + 1)!x−(n+2).

32. f (x) = (x + 2)−1

solution Let f (x) = (x + 2)−1 = 1
x+2 . Then f ′(x) = −1(x + 2)−2, f ′′(x) = 2(x + 2)−3,f ′′′(x) =

−6(x + 2)−4, f (4)(x) = 24(x + 2)−5, . . . From this we conclude that the nth derivative can be written as

f (n)(x) = (−1)nn!(x + 2)−(n+1).
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33. f (x) = x−1/2

solution f ′(x) = −1
2 x−3/2. We will avoid simplifying numerators and denominators to find the pattern:

f ′′(x) = −3

2

−1

2
x−5/2 = (−1)2 3 × 1

22
x−5/2

f ′′′(x) = −5

2

3 × 1

22
x−7/2 = (−1)3 5 × 3 × 1

23
x−7/2

...

f (n)(x) = (−1)n
(2n − 1) × (2n − 3) × . . . × 1

2n
x−(2n+1)/2.

34. f (x) = x−3/2

solution f ′(x) = −3
2 x−5/2. We will avoid simplifying numerators and denominators to find the pattern:

f ′′(x) = −5

2

−3

2
x−7/2 = (−1)2 5 × 3

22
x−7/2

f ′′′(x) = −7

2

5 × 3

22
x−9/2 = (−1)3 7 × 5 × 3

23
x−9/2

...

f (n)(x) = (−1)n
(2n + 1) × (2n − 1) × . . . × 3

2n
x−(2n+3)/2.

35. f (x) = xe−x

solution Let f (x) = xe−x . Then

f ′(x) = x(−e−x) + e−x = (1 − x)e−x = −(x − 1)e−x

f ′′(x) = (1 − x)(−e−x) − e−x = (x − 2)e−x

f ′′′(x) = (x − 2)(−e−x) + e−x = (3 − x)e−x = −(x − 3)e−x

From this we conclude that the nth derivative can be written as f (n)(x) = (−1)n(x − n)e−x .

36. f (x) = x2e x

solution Let f (x) = x2ex . Then

f ′(x) = x2ex + 2xex = (x2 + 2x)ex

f ′′(x) = (x2 + 2x)ex + ex(2x + 2) = (x2 + 4x + 2)ex

f ′′′(x) = (x2 + 4x + 2)ex + ex(2x + 4) = (x2 + 6x + 6)ex

f (4)(x) = (x2 + 6x + 6)ex + ex(2x + 6) = (x2 + 8x + 12)ex

From this we conclude that the nth derivative can be written as f (n)(x) = (x2 + 2nx + n(n − 1))ex .

37. (a) Find the acceleration at time t = 5 min of a helicopter whose height is s(t) = 300t − 4t3 m.

(b) Plot the acceleration s′′ for 0 ≤ t ≤ 6. How does this graph show that the helicopter is slowing down
during this time interval?

solution

(a) Let s(t) = 300t − 4t3, with t in minutes and s in meters. The velocity is v(t) = s′(t) = 300 − 12t2 and
acceleration is a(t) = s′′(t) = −24t . Thus a(5) = −120 m/min2.

(b) The acceleration of the helicopter for 0 ≤ t ≤ 6 is shown in the figure below. As the acceleration of the
helicopter is negative, the velocity of the helicopter must be decreasing. The velocity is positive for 0 ≤ t < 5,
so the helicopter is slowing down between 0 and 5 minutes; on the other hand, the velocity is negative for
5 < t ≤ 6, so the helicopter is speeding up between 5 and 6 minutes.
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38. Find an equation of the tangent to the graph of y = f ′(x) at x = 3, where f (x) = x4.

solution Let f (x) = x4 and g(x) = f ′(x) = 4x3. Then g′(x) = 12x2. The tangent line to g at x = 3 is
given by

y = g′(3)(x − 3) + g(3) = 108(x − 3) + 108 = 108x − 216.

39. Figure 5 shows f , f ′, and f ′′. Determine which is which.

(A) (B)

x

y

321
x

y

321
x

y

(C)

321

FIGURE 5

solution (a) f ′′ (b) f ′ (c) f .
The tangent line to (c) is horizontal at x = 1 and x = 3, where (b) has roots. The tangent line to (b) is

horizontal at x = 2 and x = 0, where (a) has roots.

40. The second derivative f ′′ is shown in Figure 6. Which of (A) or (B) is the graph of f and which is f ′?

x

y

x

y

x

y

(A) (B)f ´´(x)

FIGURE 6

solution f ′(x) = A and f (x) = B.

41. Figure 7 shows the graph of the position s of an object as a function of time t . Determine the intervals
on which the acceleration is positive.

Time

40302010

Position

FIGURE 7

solution Roughly from time 10 to time 20 and from time 30 to time 40. The acceleration is positive over
the same intervals over which the graph is bending upward.

42. Find a polynomial f (x) that satisfies the equation
xf ′′(x) + f (x) = x2.

solution Since xf ′′(x) + f (x) = x2, and x2 is a polynomial, it seems reasonable to assume that f (x) is
a polynomial of some degree, call it n. The degree of f ′′(x) is n − 2, so the degree of xf ′′(x) is n − 1, and the
degree of xf ′′(x) + f (x) is n. Hence, n = 2, since the degree of x2 is 2. Therefore,let f (x) = ax2 + bx + c.
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Then f ′(x) = 2ax + b and f ′′(x) = 2a. Substituting into the equation xf ′′(x) + f (x) = x2 yields
ax2 + (2a + b)x + c = x2, an identity in x. Equating coefficients, we have a = 1, 2a + b = 0, c = 0.
Therefore, b = −2 and f (x) = x2 − 2x.

43. Find all values of n such that y = xn satisfies

x2y′′ − 2xy′ = 4y

solution Let y = xn. Then y′ = nxn−1, y′′ = n(n − 1)xn−2, and

x2y′′ − 2xy′ = n(n − 1)xn − 2nxn.

In order for this last expression to be equal to 4y = 4xn, we must have

n(n − 1) − 2n = 4 or n2 − 3n − 4 = (n − 4)(n + 1) = 0.

Thus, y = xn satisfies the equation x2y′′ − 2xy′ = 4y for n = 4 and n = −1.

44. Which of the following descriptions could not apply to Figure 8? Explain.

(a) Graph of acceleration when velocity is constant
(b) Graph of velocity when acceleration is constant
(c) Graph of position when acceleration is zero

Time

Position

FIGURE 8

solution
(a) Does NOT apply to the figure because if v(t) = C where C is a constant, then a(t) = v′(t) = 0, which
is the horizontal line going through the origin.
(b) Can apply because the graph has a constant slope.
(c) Can apply because if we took this as a position graph, the velocity graph would be a horizontal line and
thus, acceleration would be zero.

45. According to one model that takes into account air resistance, the acceleration a(t) (in m/s2) of a skydiver
of mass m in free-fall satisfies

a(t) = −9.8 + k

m
v(t)2

where v(t) is velocity (negative since the object is falling) and k is a constant. Suppose that m = 75 kg and
k = 14 kg/m.

(a) What is the object’s velocity when a(t) = −4.9?
(b) What is the object’s velocity when a(t) = 0? This velocity is the object’s terminal velocity.

solution

solution Solving a(t) = −9.8 + k
m

v(t)2 for the velocity and taking into account that the velocity is
negative since the object is falling, we find

v(t) = −
√

m

k
(a(t) + 9.8) = −

√
75

14
(a(t) + 9.8).

(a) Substituting a(t) = −4.9 into the above formula for the velocity, we find

v(t) = −
√

75

14
(4.9) = −√

26.25 = −5.12 m/s.

(b) When a(t) = 0,

v(t) = −
√

75

14
(9.8) = −√

52.5 = −7.25 m/s.
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46. According to one model that attempts to account for air resistance, the distance s(t) (in meters)
traveled by a falling raindrop satisfies

d2s

dt2
= g − 0.0005

D

(
ds

dt

)2

where D is the raindrop diameter and g = 9.8 m/s2. Terminal velocity vterm is defined as the velocity at which
the drop has zero acceleration (one can show that velocity approaches vterm as time proceeds).

(a) Show that vterm = √
2000gD.

(b) Find vterm for drops of diameter 10−3 m and 10−4 m.

(c) In this model, do raindrops accelerate more rapidly at higher or lower velocities?

solution

(a) vterm is found by setting d2s

dt2 = 0, and solving for ds
dt

= v.

0 = g − 0.0005

D

(
ds

dt

)2

g = 0.0005

D

(
ds

dt

)2

ds

dt
=

√
g

D

0.0005
= √

2000gD = vterm.

(b) If D = 0.001 m,

vterm = √
2000g(0.001) = √

19.6 = 4.4272 m/s.

If D = 0.0001 m,

vterm = √
2000g(0.0001) = √

1.96 = 1.4 m/s.

(c) The greater the velocity, the more gets subtracted from g in the formula for acceleration. Therefore,
assuming velocity is less than vterm, greater velocities correspond to lower acceleration.

47. A servomotor controls the vertical movement of a drill bit that will drill a pattern of holes in sheet metal.
The maximum vertical speed of the drill bit is 4 in./s, and while drilling the hole, it must move no more than
2.6 in./s to avoid warping the metal. During a cycle, the bit begins and ends at rest, quickly approaches the
sheet metal, and quickly returns to its initial position after the hole is drilled. Sketch possible graphs of the
drill bit’s vertical velocity and acceleration. Label the point where the bit enters the sheet metal.

solution There will be multiple cycles, each of which will be more or less identical. Let v(t) be the
downward vertical velocity of the drill bit, and let a(t) be the vertical acceleration. From the narrative, we
see that v(t) can be no greater than 4 and no greater than 2.6 while drilling is taking place. During each cycle,
v(t) = 0 initially, v(t) goes to 4 quickly. When the bit hits the sheet metal, v(t) goes down to 2.6 quickly, at
which it stays until the sheet metal is drilled through. As the drill pulls out, it reaches maximum non-drilling
upward speed (v(t) = −4) quickly, and maintains this speed until it returns to rest. A possible plot follows:
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A graph of the acceleration is extracted from this graph:
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In Exercises 48 and 49, refer to the following. In a 1997 study, Boardman and Lave related the traffic speed
S on a two-lane road to traffic density Q (number of cars per mile of road) by the formula

S = 2882Q−1 − 0.052Q + 31.73

for 60 ≤ Q ≤ 400 (Figure 9).

Density Q
400300200100

Speed S (mph)

10
20
30
40
50
60
70

FIGURE 9 Speed as a function of traffic density.

48. Calculate dS/dQ and d2S/dQ2.

solution

dS/dQ = −2882Q−2 − 0.052

d2S/dQ2 = 5764Q−3.

49. (a) Explain intuitively why we should expect that dS/dQ < 0.

(b) Show that d2S/dQ2 > 0. Then use the fact that dS/dQ < 0 and d2S/dQ2 > 0 to justify the following
statement: A 1-unit increase in traffic density slows down traffic more when Q is small than when Q is large.

(c) Plot dS/dQ. Which property of this graph shows that d2S/dQ2 > 0?

solution
(a) Traffic speed must be reduced when the road gets more crowded so we expect dS/dQ to be negative.
This is indeed the case since dS/dQ = −0.052 − 2882/Q2 < 0.

(b) The decrease in speed due to a one-unit increase in density is approximately dS/dQ (a negative number).
Since d2S/dQ2 = 5764Q−3 > 0 is positive, this tells us that dS/dQ gets larger as Q increases—and a
negative number which gets larger is getting closer to zero. So the decrease in speed is smaller when Q is
larger, that is, a one-unit increase in traffic density has a smaller effect when Q is large.

(c) dS/dQ is plotted below. The fact that this graph is increasing shows that d2S/dQ2 > 0.

x

y

−0.2
−0.4
−0.6
−0.8
−1.0
−1.2

400300100 200

50. Use a computer algebra system to compute f (k)(x) for k = 1, 2, 3 for the following functions:

(a) f (x) = (1 + x3)5/3 (b) f (x) = 1 − x4

1 − 5x − 6x2
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solution

(a) Let f (x) = (1 + x3)5/3. Using a computer algebra system,

f ′(x) = 5x2(1 + x3)2/3;
f ′′(x) = 10x(1 + x3)2/3 + 10x4(1 + x3)−1/3; and

f ′′′(x) = 10(1 + x3)2/3 + 60x3(1 + x3)−1/3 − 10x6(1 + x3)−4/3.

(b) Let f (x) = 1 − x4

1 − 5x − 6x2
. Using a computer algebra system,

f ′(x) = 12x3 − 9x2 + 2x + 5

(6x − 1)2
;

f ′′(x) = 2(36x3 − 18x2 + 3x − 31)

(6x − 1)3
; and

f ′′′(x) = 1110

(6x − 1)4
.

51. Let f (x) = x + 2

x − 1
. Use a computer algebra system to compute the f (k)(x) for 1 ≤ k ≤ 4. Can

you find a general formula for f (k)(x)?

solution Let f (x) = x + 2

x − 1
. Using a computer algebra system,

f ′(x) = − 3

(x − 1)2
= (−1)1 3 · 1

(x − 1)1+1
;

f ′′(x) = 6

(x − 1)3
= (−1)2 3 · 2 · 1

(x − 1)2+1
;

f ′′′(x) = − 18

(x − 1)4
= (−1)3 3 · 3!

(x − 1)3+1
; and

f (4)(x) = 72

(x − 1)5 = (−1)4 3 · 4!
(x − 1)4+1

.

From the pattern observed above, we conjecture

f (k)(x) = (−1)k
3 · k!

(x − 1)k+1
.

Further Insights and Challenges
52. Find the 100th derivative of

p(x) = (x + x5 + x7)10(1 + x2)11(x3 + x5 + x7)

solution This is a polynomial of degree 70 + 22 + 7 = 99, so its 100th derivative is zero.

53. What is p(99)(x) for p(x) as in Exercise 52?

solution First note that for any integer n ≤ 98,

d99

dx99
xn = 0.

Now, if we expand p(x), we find

p(x) = x99 + terms of degree at most 98;
therefore,

d99

dx99
p(x) = d99

dx99
(x99 + terms of degree at most 98) = d99

dx99
x99
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Using logic similar to that used to compute the derivative in Example (3), we compute:

d99

dx99
(x99) = 99 × 98 × . . . 1,

so that d99

dx99 p(x) = 99!.
54. Use the Product Rule twice to find a formula for (fg)′′ in terms of f and g and their first and second
derivatives.

solution Let h = fg. Then h′ = f ′g + fg′ and

h′′ = f ′g′ + gf ′′ + fg′′ + g′f ′ = f ′′g + 2f ′g′ + fg′′.

55. Use the Product Rule to find a formula for (fg)′′′ and compare your result with the expansion of (a + b)3.
Then try to guess the general formula for (fg)(n).

solution Continuing from Exercise 54, we have

h′′′ = f ′′g′ + gf ′′′ + 2(f ′g′′ + g′f ′′) + fg′′′ + g′′f ′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′

The binomial theorem gives

(a + b)3 = a3 + 3a2b + 3ab2 + b3 = a3b0 + 3a2b1 + 3a1b2 + a0b3

and more generally

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk,

where the binomial coefficients are given by(
n

k

)
= k(k − 1) · · · (k − n + 1)

n! .

Accordingly, the general formula for (fg)(n) is given by

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k),

where p(k) is the kth derivative of p (or p itself when k = 0).

56. Compute

�f (x) = lim
h→0

f (x + h) + f (x − h) − 2f (x)

h2

for the following functions:

(a) f (x) = x (b) f (x) = x2 (c) f (x) = x3

Based on these examples, what do you think the limit �f represents?

solution For f (x) = x, we have

f (x + h) + f (x − h) − 2f (x) = (x + h) + (x − h) − 2x = 0.

Hence, �(x) = 0. For f (x) = x2,

f (x + h) + f (x − h) − 2f (x) = (x + h)2 + (x − h)2 − 2x2

= x2 + 2xh + h2 + x2 − 2xh + h2 − 2x2 = 2h2,

so �(x2) = 2. Working in a similar fashion, we find �(x3) = 6x. One can prove that for twice differentiable
functions, �f = f ′′. It is an interesting fact of more advanced mathematics that there are functions f for
which �f exists at all points, but the function is not differentiable.
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3.6 Trigonometric Functions

Preliminary Questions
1. Determine the sign (+ or −) that yields the correct formula for the following:

(a)
d

dx
(sin x + cos x) = ± sin x ± cos x

(b)
d

dx
sec x = ± sec x tan x

(c)
d

dx
cot x = ± csc2 x

solution The correct formulas are

(a)
d

dx
(sin x + cos x) = − sin x + cos x

(b)
d

dx
sec x = sec x tan x

(c)
d

dx
cot x = − csc2 x

2. Which of the following functions can be differentiated using the rules we have covered so far?
(a) y = 3 cos x cot x (b) y = cos(x2) (c) y = ex sin x

solution
(a) 3 cos x cot x is a product of functions whose derivatives are known. This function can therefore be
differentiated using the Product Rule.
(b) cos(x2) is a composition of the functions cos x and x2. We have not yet discussed how to differentiate
composite functions.
(c) ex sin x is a product of functions whose derivatives are known. This function can therefore be differentiated
using the Product Rule.

3. Compute d
dx

(sin2 x + cos2 x) without using the derivative formulas for sin x and cos x.

solution Recall that sin2 x + cos2 x = 1 for all x. Thus,

d

dx
(sin2 x + cos2 x) = d

dx
1 = 0.

4. How is the addition formula used in deriving the formula (sin x)′ = cos x?

solution The difference quotient for the function sin x involves the expression sin(x + h). The addition
formula for the sine function is used to expand this expression as sin(x + h) = sin x cos h + sin h cos x.

Exercises
In Exercises 1–4, find an equation of the tangent line at the point indicated.

1. y = sin x, x = π
4

solution Let f (x) = sin x. Then f ′(x) = cos x and the equation of the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
=

√
2

2

(
x − π

4

)
+

√
2

2
=

√
2

2
x +

√
2

2

(
1 − π

4

)
.

2. y = cos x, x = π
3

solution Let f (x) = cos x. Then f ′(x) = − sin x and the equation of the tangent line is

y = f ′ (π

3

) (
x − π

3

)
+ f

(π

3

)
= −

√
3

2

(
x − π

3

)
+ 1

2
= −

√
3

2
x + 1

2
+ π

√
3

6
.

3. y = tan x, x = π
4

solution Let f (x) = tan x. Then f ′(x) = sec2 x and the equation of the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
= 2

(
x − π

4

)
+ 1 = 2x + 1 − π

2
.
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4. y = sec x, x = π
6

solution Let f (x) = sec x. Then f ′(x) = sec x tan x and the equation of the tangent line is

y = f ′ (π

6

) (
x − π

6

)
+ f

(π

6

)
= 2

3

(
x − π

6

)
+ 2√

3
= 2

3
x + 2

√
3

3
+ π

9
.

In Exercises 5–24, compute the derivative.

5. f (x) = sin x cos x

solution Let f (x) = sin x cos x. Then

f ′(x) = sin x(− sin x) + cos x(cos x) = − sin2 x + cos2 x.

6. f (x) = x2 cos x

solution Let f (x) = x2 cos x. Then

f ′(x) = x2 (− sin x) + (cos x) (2x) = 2x cos x − x2 sin x.

7. f (x) = sin2 x

solution Let f (x) = sin2 x = sin x sin x. Then

f ′(x) = sin x(cos x) + sin x(cos x) = 2 sin x cos x.

8. f (x) = 9 sec x + 12 cot x

solution Let f (x) = 9 sec x + 12 cot x. Then f ′(x) = 9 sec x tan x − 12 csc2 x.

9. H(t) = sin t sec2 t

solution Let H(t) = sin t sec2 t . Then

H ′(t) = sin t
d

dt
(sec t · sec t) + sec2 t (cos t)

= sin t (sec t sec t tan t + sec t sec t tan t) + sec t

= 2 sin t sec2 t tan t + sec t.

10. h(t) = 9 csc t + t cot t

solution Let h(t) = 9 csc t + t cot t . Then

h′(t) = 9(− csc t cot t) + t (− csc2 t) + cot t = cot t − 9 csc t cot t − t csc2 t.

11. f (θ) = tan θ sec θ

solution Let f (θ) = tan θ sec θ . Then

f ′(θ) = tan θ sec θ tan θ + sec θ sec2 θ = sec θ tan2 θ + sec3 θ =
(

tan2 θ + sec2 θ
)

sec θ.

12. k(θ) = θ2 sin2 θ

solution Let k(θ) = θ2 sin2 θ . Then

k′(θ) = θ2 (2 sin θ cos θ) + 2θ sin2 θ = 2θ2 sin θ cos θ + 2θ sin2 θ.

Here we used the result from Exercise 7.

13. f (x) = (2x4 − 4x−1) sec x

solution Let f (x) = (2x4 − 4x−1) sec x. Then

f ′(x) = (2x4 − 4x−1) sec x tan x + sec x(8x3 + 4x−2) = (2x4 − 4x−1) sec x tan x + (8x3 + 4x−2) sec x.

14. f (z) = z tan z

solution Let f (z) = z tan z. Then f ′(z) = z(sec2 z) + tan z.
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15. y = sec θ

θ

solution Let y = sec θ

θ
. Then

y′ = θ sec θ tan θ − sec θ

θ2
.

16. G(z) = 1

tan z − cot z

solution Let G(z) = 1

tan z − cot z
. Then

G′(z) = (tan z − cot z)(0) − 1(sec2 z + csc2 z)

(tan z − cot z)2
= − sec2 z + csc2 z

(tan z − cot z)2
.

17. R(y) = 3 cos y − 4

sin y

solution Let R(y) = 3 cos y − 4

sin y
. Then

R′(y) = sin y(−3 sin y) − (3 cos y − 4)(cos y)

sin2 y
= 4 cos y − 3(sin2 y + cos2 y)

sin2 y
= 4 cos y − 3

sin2 y
.

18. f (x) = x

sin x + 2

solution Let f (x) = x

sin x + 2
. Then

f ′(x) = (sin x + 2) (1) − x cos x

(sin x + 2)2
= 2 + sin x − x cos x

(sin x + 2)2
.

19. f (x) = 1 + tan x

1 − tan x

solution Let f (x) = 1 + tan x

1 − tan x
. Then

f ′(x) = (1 − tan x) sec2 x − (1 + tan x)
(− sec2 x

)
(1 − tan x)2

= 2 sec2 x

(1 − tan x)2
.

20. f (θ) = θ tan θ sec θ

solution Let f (θ) = θ tan θ sec θ . Then

f ′(θ) = θ
d

dθ
(tan θ sec θ) + tan θ sec θ

= θ(tan θ sec θ tan θ + sec θ sec2 θ) + tan θ sec θ

= θ tan2 θ sec θ + θ sec3 θ + tan θ sec θ.

21. f (x) = ex sin x

solution Let f (x) = ex sin x. Then f ′(x) = ex cos x + sin xex = ex(cos x + sin x).

22. h(t) = et csc t

solution Let h(t) = et csc t . Then h′(t) = et (− csc t cot t) + csc tet = et csc t (1 − cot t).

23. f (θ) = eθ (5 sin θ − 4 tan θ)

solution Let f (θ) = eθ (5 sin θ − 4 tan θ). Then

f ′(θ) = eθ (5 cos θ − 4 sec2 θ) + eθ (5 sin θ − 4 tan θ)

= eθ (5 sin θ + 5 cos θ − 4 tan θ − 4 sec2 θ).
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24. f (x) = xex cos x

solution Let f (x) = xex cos x. Then

f ′(x) = x
d

dx
(ex cos x) + ex cos x = x(ex(− sin x) + cos xex) + ex cos x

= ex(x cos x − x sin x + cos x).

In Exercises 25–34, find an equation of the tangent line at the point specified.

25. y = x3 + cos x, x = 0

solution Let f (x) = x3 + cos x. Then f ′(x) = 3x2 − sin x and f ′(0) = 0. The tangent line at x = 0 is

y = f ′(0)(x − 0) + f (0) = 0(x) + 1 = 1.

26. y = tan θ , θ = π
6

solution Let f (θ) = tan θ . Then f ′(θ) = sec2 θ and f ′(π
6 ) = 4

3 . The tangent line at x = π
6 is

y = f ′ (π

6

) (
θ − π

6

)
+ f

(π

6

)
= 4

3

(
θ − π

6

)
+

√
3

3
= 4

3
θ +

√
3

3
− 2π

9
.

27. y = sin t

1 + cos t
, t = π

3

solution Let f (t) = sin t
1+cos t

. Then

f ′(t) = (1 + cos t)(cos t) − sin t (− sin t)

(1 + cos t)2
= 1 + cos t

(1 + cos t)2
= 1

1 + cos t
,

and

f ′ (π

3

)
= 1

1 + 1/2
= 2

3
.

The tangent line at x = π
3 is

y = f ′ (π

3

) (
x − π

3

)
+ f

(π

3

)
= 2

3

(
x − π

3

)
+

√
3

3
= 2

3
x +

√
3

3
− 2π

9
.

28. y = sin x + 3 cos x, x = 0

solution Let f (x) = sin x + 3 cos x. Then f ′(x) = cos x − 3 sin x and f ′(0) = 1. The tangent line at
x = 0 is

y = f ′(0)(x − 0) + f (0) = x + 3.

29. y = 2(sin θ + cos θ), θ = π
3

solution Let f (θ) = 2(sin θ + cos θ). Then f ′(θ) = 2(cos θ − sin θ) and f ′(π
3 ) = 1 − √

3. The tangent
line at x = π

3 is

y = f ′ (π

3

) (
x − π

3

)
+ f

(π

3

)
= (1 − √

3)
(
x − π

3

)
+ 1 + √

3.

30. y = csc x − cot x, x = π
4

solution Let f (x) = csc x − cot x. Then

f ′(x) = csc2 x − csc x cot x

and

f ′ (π

4

)
= 2 − √

2 · 1 = 2 − √
2.

Hence the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
=

(
2 − √

2
) (

x − π

4

)
+

(√
2 − 1

)
=

(
2 − √

2
)

x + √
2 − 1 + π

4

(√
2 − 2

)
.
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31. y = ex cos x, x = 0

solution Let f (x) = ex cos x. Then

f ′(x) = ex(− sin x) + ex cos x = ex(cos x − sin x),

and f ′(0) = e0(cos 0 − sin 0) = 1. Thus, the equation of the tangent line is

y = f ′(0)(x − 0) + f (0) = x + 1.

32. y = ex cos2 x, x = π
4

solution Let f (x) = ex cos2 x. Then

f ′(x) = ex d

dx
(cos x · cos x) + ex cos2 x = ex(cos x(− sin x) + cos x(− sin x)) + ex cos2 x

= ex(cos2 x − 2 sin x cos x),

and

f ′ (π

4

)
= eπ/4

(
1

2
− 1

)
= −1

2
eπ/4.

The tangent line at x = π
4 is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
= −1

2
eπ/4

(
x − π

4

)
+ 1

2
eπ/4.

33. y = et (1 − cos t), t = π
2

solution Let f (t) = et (1 − cos t). Then

f ′(t) = et sin t + et (1 − cos t) = et (1 + sin t − cos t),

and f ′(π
2 ) = 2eπ/2. The tangent line at x = π

2 is

y = f ′ (π

2

) (
t − π

2

)
+ f

(π

2

)
= 2eπ/2

(
t − π

2

)
+ eπ/2.

34. y = eθ sec θ , θ = π
4

solution Let f (θ) = eθ sec θ . Then

f ′(θ) = eθ sec θ tan θ + eθ sec θ = eθ sec θ(tan θ + 1),

and

f ′ (π

4

)
= eπ/4 sec

π

4

(
tan

π

4
+ 1

)
= 2

√
2eπ/4.

Thus, the equation of the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
= 2

√
2eπ/4

(
x − π

4

)
+ √

2eπ/4.

In Exercises 35–37, use Theorem 1 to verify the formula.

35.
d

dx
cot x = − csc2 x

solution cot x = cos x

sin x
. Using the quotient rule and the derivative formulas, we compute:

d

dx
cot x = d

dx

cos x

sin x
= sin x(− sin x) − cos x(cos x)

sin2 x
= −(sin2 x + cos2 x)

sin2 x
= −1

sin2 x
= − csc2 x.

36.
d

dx
sec x = sec x tan x

solution Since sec x = 1

cos x
, we can apply the quotient rule and the known derivatives to get:

d

dx
sec x = d

dx

1

cos x
= cos x(0) − 1(− sin x)

cos2 x
= sin x

cos2 x
= sin x

cos x

1

cos x
= tan x sec x.



S E C T I O N 3.6 Trigonometric Functions 285

37.
d

dx
csc x = − csc x cot x

solution Since csc x = 1

sin x
, we can apply the quotient rule and the two known derivatives to get:

d

dx
csc x = d

dx

1

sin x
= sin x(0) − 1(cos x)

sin2 x
= − cos x

sin2 x
= −cos x

sin x

1

sin x
= − cot x csc x.

38. Show that both y = sin x and y = cos x satisfy y′′ = −y.

solution Let y = sin x. Then y′ = cos x and y′′ = − sin x = −y. Similarly, if we let y = cos x, then
y′ = − sin x and y′′ = − cos x = −y.

In Exercises 39–42, calculate the higher derivative.

39. f ′′(θ), f (θ) = θ sin θ

solution Let f (θ) = θ sin θ . Then

f ′(θ) = θ cos θ + sin θ

f ′′(θ) = θ(− sin θ) + cos θ + cos θ = −θ sin θ + 2 cos θ.

40.
d2

dt2
cos2 t

solution

d

dt
cos2 t = d

dt
(cos t · cos t) = cos t (− sin t) + cos t (− sin t) = −2 sin t cos t

d2

dt2
cos2 t = d

dt
(−2 sin t cos t) = −2(sin t (− sin t) + cos t (cos t)) = −2(cos2 t − sin2 t).

41. y′′, y′′′, y = tan x

solution Let y = tan x. Then y′ = sec2 x and by the Chain Rule,

y′′ = = d

dx
sec2 x = 2(sec x)(sec x tan x) = 2 sec2 x tan x

y′′′ = 2 sec2 x(sec2 x) + (4 sec2 x tan x) tan x = 2 sec4 x + 4 sec2 x tan2 x

42. y′′, y′′′, y = et sin t

solution Let y = et sin t . Then

y′ = et cos t + et sin t = et (cos t + sin t)

y′′ = et (− sin t + cos t) + et (cos t + sin t) = 2et cos t

y′′′ = 2et (− sin t) + 2et cos t = 2et (cos t − sin t).

43. Calculate the first five derivatives of f (x) = cos x. Then determine f (8)(x) and f (37)(x).

solution Let f (x) = cos x.

• Then f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, f (4)(x) = cos x, and f (5)(x) = − sin x.
• Accordingly, the successive derivatives of f cycle among

{− sin x, − cos x, sin x, cos x}
in that order. Since 8 is a multiple of 4, we have f (8)(x) = cos x.

• Since 36 is a multiple of 4, we have f (36)(x) = cos x. Therefore, f (37)(x) = − sin x.

44. Find y(157), where y = sin x.

solution Let f (x) = sin x. Then the successive derivatives of f cycle among

{cos x, − sin x, − cos x, sin x}
in that order. Since 156 is a multiple of 4, we have f (156)(x) = sin x. Therefore, f (157)(x) = cos x.
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45. Find the values of x between 0 and 2π where the tangent line to the graph of y = sin x cos x is horizontal.

solution Let y = sin x cos x. Then

y′ = (sin x)(− sin x) + (cos x)(cos x) = cos2 x − sin2 x.

When y′ = 0, we have sin x = ± cos x. In the interval [0, 2π ], this occurs when x = π
4 , 3π

4 , 5π
4 , 7π

4 .

46. Plot the graph f (θ) = sec θ + csc θ over [0, 2π ] and determine the number of solutions to
f ′(θ) = 0 in this interval graphically. Then compute f ′(θ) and find the solutions.

solution The graph of f (θ) = sec θ + csc θ over [0, 2π ] is given below. From the graph, it appears that
there are two locations where the tangent line would be horizontal; that is, there appear to be two solutions to
f ′(θ) = 0. Now f ′(θ) = sec θ tan θ − csc θ cot θ . Setting sec θ tan θ − csc θ cot θ = 0 and then multiplying
by sin θ tan θ and rearranging terms yields tan3 θ = 1. Thus, on the interval [0, 2π ], there are two solution of
f ′(θ) = 0: θ = π

4 and θ = 5π
4 .

−5

5

1 2 3 4 5 6

y

x

47. Let g(t) = t − sin t .

(a) Plot the graph of g with a graphing utility for 0 ≤ t ≤ 4π .
(b) Show that the slope of the tangent line is nonnegative. Verify this on your graph.
(c) For which values of t in the given range is the tangent line horizontal?

solution Let g(t) = t − sin t .

(a) Here is a graph of g over the interval [0, 4π ].
y

x
2 4 6 8 10 12

2

4

6

8

10

12

(b) Since g′(t) = 1 − cos t ≥ 0 for all t , the slope of the tangent line to g is always nonnegative. We see that
the graph is never decreasing; therefore, the slope of the tangent is never negative.
(c) In the interval [0, 4π ], the tangent line is horizontal when t = 0, 2π, 4π .

48. Let f (x) = (sin x)/x for x 	= 0 and f (0) = 1.

(a) Plot f on [−3π, 3π ].
(b) Show that f ′(c) = 0 if c = tan c. Use the numerical root finder on a computer algebra system to find a
good approximation to the smallest positive value c0 such that f ′(c0) = 0.
(c) Verify that the horizontal line y = f (c0) is tangent to the graph of y = f (x) at x = c0 by plotting them
on the same set of axes.

solution
(a) Here is the graph of f (x) over [−3π, 3π ].

y

x
−10

−5 5

10

0.4

0.8

1
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(b) Let f (x) = sin x

x
. Then

f ′(x) = x cos x − sin x

x2
.

To have f ′(c) = 0, it follows that c cos c − sin c = 0, or

tan c = c.

Using a computer algebra system, we find that the smallest positive value c0 such that f ′(c0) = 0 is c0 =
4.493409.

(c) The horizontal line y = f (c0) = −0.217234 and the function y = f (x) are both plotted below. The
horizontal line is clearly tangent to the graph of f (x).

y

x
−10

−5 5

10

0.4

0.8

1

49. Show that no tangent line to the graph of f (x) = tan x has zero slope. What is the least slope of
a tangent line? Justify by sketching the graph of f ′(x) = (tan x)′.

solution Let f (x) = tan x. Then f ′(x) = sec2 x = 1
cos2 x

. Note that f ′(x) = 1
cos2 x

has numerator 1; the

equation f ′(x) = 0 therefore has no solution. Because the maximum value of cos2 x is 1, the minimum value
of f ′(x) = 1

cos2 x
is 1. Hence, the least slope for a tangent line to tan x is 1. Here is a graph of f ′.

2 4−2−4

y

x
2
4
6
8

10
12
14

50. The height at time t (in seconds) of a mass, oscillating at the end of a spring, is s(t) = 300 + 40 sin t cm.
Find the velocity and acceleration at t = π

3 s.

solution Let s(t) = 300 + 40 sin t be the height. Then the velocity is

v(t) = s′(t) = 40 cos t

and the acceleration is

a(t) = v′(t) = −40 sin t.

At t = π
3 , the velocity is v

(
π
3

) = 20 cm/sec and the acceleration is a
(

π
3

) = −20
√

3 cm/sec2.

51. The horizontal range R of a projectile launched from ground level at an angle θ and initial velocity v0
m/s is R = (v2

0/9.8) sin θ cos θ . Calculate dR/dθ . If θ = 7π/24, will the range increase or decrease if the
angle is increased slightly? Base your answer on the sign of the derivative.

solution Let R(θ) = (v2
0/9.8) sin θ cos θ .

dR

dθ
= R′(θ) = (v2

0/9.8)(− sin2 θ + cos2 θ).

If θ = 7π/24, π
4 < θ < π

2 , so | sin θ | > | cos θ |, and dR/dθ < 0 (numerically, dR/dθ = −.0264101v2
0). At

this point, increasing the angle will decrease the range.
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52. Show that if π
2 < θ < π , then the distance along the x-axis between θ and the point where the tangent

line intersects the x-axis is equal to |tan θ | (Figure 4).

π

2
π

y = sin x

θ
x

y

| tan θ|

FIGURE 4

solution Let f (x) = sin x. Since f ′(x) = cos x, this means that the tangent line at (θ, sin θ) is y =
cos θ(x − θ) + sin θ . When y = 0, x = θ − tan θ . The distance from x to θ is then

|θ − (θ − tan θ)| = | tan θ |.

Further Insights and Challenges
53. Use the limit definition of the derivative and the addition law for the cosine function to prove that
(cos x)′ = − sin x.

solution Let f (x) = cos x. Then

f ′(x) = lim
h→0

cos(x + h) − cos x

h
= lim

h→0

cos x cos h − sin x sin h − cos x

h

= lim
h→0

(
(− sin x)

sin h

h
+ (cos x)

cos h − 1

h

)
= (− sin x) · 1 + (cos x) · 0 = − sin x.

54. Use the addition formula for the tangent

tan(x + h) = tan x + tan h

1 + tan x tan h

to compute (tan x)′ directly as a limit of the difference quotients.You will also need to show that lim
h→0

tan h

h
= 1.

solution First note that

lim
h→0

tan h

h
= lim

h→0

sin h

h
· lim
h→0

1

cos h
= 1(1) = 1.

Now, using the addition formula for tangent,

tan(x + h) − tan x

h
=

tan x+tan h
1+tan x tan h

− tan x

h

= tan h(1 − tan2 x)

h(1 + tan x tan h)
= tan h

h
· sec2 x

1 + tan x tan h
.

Therefore,
d

dx
tan x = lim

h→0

tan h

h
· sec2 x

1 + tan x tan h

= lim
h→0

tan h

h
· lim
h→0

sec2 x

1 + tan x tan h

= 1(sec2 x) = sec2 x.

55. Verify the following identity and use it to give another proof of the formula (sin x)′ = cos x:

sin(x + h) − sin x = 2 cos
(
x + 1

2h
)

sin
(

1
2h

)
Hint: Use the addition formula to prove that sin(a + b) − sin(a − b) = 2 cos a sin b.
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solution Recall that

sin(a + b) = sin a cos b + cos a sin b

and

sin(a − b) = sin a cos b − cos a sin b.

Subtracting the second identity from the first yields

sin(a + b) − sin(a − b) = 2 cos a sin b.

If we now set a = x + h
2 and b = h

2 , then the previous equation becomes

sin(x + h) − sin x = 2 cos

(
x + h

2

)
sin

(
h

2

)
.

Finally, we use the limit definition of the derivative of sin x to obtain

d

dx
sin x = lim

h→0

sin(x + h) − sin x

h
= lim

h→0

2 cos
(
x + h

2

)
sin

(
h
2

)
h

= lim
h→0

cos

(
x + h

2

)
· lim
h→0

sin
(

h
2

)
(

h
2

) = cos x · 1 = cos x.

In other words,
d

dx
(sin x) = cos x.

56. Show that a nonzero polynomial function y = f (x) cannot satisfy the equation y′′ = −y. Use
this to prove that neither f (x) = sin x nor f (x) = cos x is a polynomial. Can you think of another way to
reach this conclusion by considering limits as x → ∞?

solution

• Let p be a nonzero polynomial of degree n and assume that p satisfies the differential equation y′′ + y =
0. Then p′′ + p = 0 for all x. There are exactly three cases.
(a) If n = 0, then p is a constant polynomial and thus p′′ = 0. Hence 0 = p′′ + p = p or p ≡ 0 (i.e.,
p is equal to 0 for all x or p is identically 0). This is a contradiction, since p is a nonzero polynomial.
(b) If n = 1, then p is a linear polynomial and thus p′′ = 0. Once again, we have 0 = p′′ + p = p or
p ≡ 0, a contradiction since p is a nonzero polynomial.
(c) If n ≥ 2, then p is at least a quadratic polynomial and thus p′′ is a polynomial of degree n − 2 ≥ 0.
Thus q = p′′ + p is a polynomial of degree n ≥ 2. By assumption, however, p′′ + p = 0. Thus q ≡ 0,
a polynomial of degree 0. This is a contradiction, since the degree of q is n ≥ 2.

CONCLUSION: In all cases, we have reached a contradiction. Therefore the assumption that p satisfies
the differential equation y′′ + y = 0 is false. Accordingly, a nonzero polynomial cannot satisfy the
stated differential equation.

• Let y = sin x. Then y′ = cos x and y′′ = − sin x. Therefore, y′′ = −y. Now, let y = cos x. Then
y′ = − sin x and y′′ = − cos x. Therefore, y′′ = −y. Because sin x and cos x are nonzero functions that
satisfy y′′ = −y, it follows that neither sin x nor cos x is a polynomial.

• Alternately, consider limits as x → ∞. For a constant polynomial, this limit would exist, whereas for
any polynomial of degree n ≥ 1, the limit would tend toward either ±∞. In contrast, neither

lim
x→∞ sin x nor lim

x→∞ cos x

exists because sin x and cos x continuously oscillate between −1 and +1. Because the limiting behavior
of sin x and cos x does not match the limiting behavior of a polynomial, neither sin x nor cos x can be a
polynomial.

57. Let f (x) = x sin x and g(x) = x cos x.
(a) Show that f ′(x) = g(x) + sin x and g′(x) = −f (x) + cos x.
(b) Verify that f ′′(x) = −f (x) + 2 cos x and g′′(x) = −g(x) − 2 sin x.
(c) By further experimentation, try to find formulas for all higher derivatives of f and g. Hint: The kth
derivative depends on whether k = 4n, 4n + 1, 4n + 2, or 4n + 3.
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solution Let f (x) = x sin x and g(x) = x cos x.

(a) We examine first derivatives: f ′(x) = x cos x + (sin x) · 1 = g(x) + sin x and g′(x) = (x)(− sin x) +
(cos x) · 1 = −f (x) + cos x; i.e., f ′(x) = g(x) + sin x and g′(x) = −f (x) + cos x.

(b) Now look at second derivatives: f ′′(x) = g′(x) + cos x = −f (x) + 2 cos x and g′′(x) = −f ′(x) −
sin x = −g(x) − 2 sin x; i.e., f ′′(x) = −f (x) + 2 cos x and g′′(x) = −g(x) − 2 sin x.

(c) • The third derivatives are f ′′′(x) = −f ′(x) − 2 sin x = −g(x) − 3 sin x and g′′′(x) = −g′(x) −
2 cos x = f (x) − 3 cos x; i.e., f ′′′(x) = −g(x) − 3 sin x and g′′′(x) = f (x) − 3 cos x.

• The fourth derivatives are f (4)(x) = −g′(x) − 3 cos x = f (x) − 4 cos x and g(4)(x) = f ′(x) +
3 sin x = g(x) + 4 sin x; i.e., f (4) = f (x) − 4 cos x and g(4)(x) = g(x) + 4 sin x.

• We can now see the pattern for the derivatives, which are summarized in the following table. Here
n = 0, 1, 2, . . .

k 4n 4n + 1 4n + 2 4n + 3

f (k)(x) f (x) − k cos x g(x) + k sin x −f (x) + k cos x −g(x) − k sin x

g(k)(x) g(x) + k sin x −f (x) + k cos x −g(x) − k sin x f (x) − k cos x

58. Figure 5 shows the geometry behind the derivative formula (sin θ)′ = cos θ . Segments BA and
BD are parallel to the x- and y-axes. Let � sin θ = sin(θ + h) − sin θ . Verify the following statements:

(a) � sin θ = BC

(b) 	 BDA = θ Hint: OA ⊥ AD.

(c) BD = (cos θ)AD

Now explain the following intuitive argument: If h is small, then BC ≈ BD and AD ≈ h, so � sin θ ≈
(cos θ)h and (sin θ)′ = cos θ .

1

h

θ

B

C

A

O

D

x

y

FIGURE 5

solution
(a) We note that sin(θ + h) is the y-coordinate of the point C and sin θ is the y-coordinate of the point A, and
therefore also of the point B. Now, � sin θ = sin(θ + h) − sin θ can be interpreted as the difference between
the y-coordinates of the points B and C; that is, � sin θ = BC.

(b) From the figure, we note that 	 OAB = θ , so 	 BAD = π − θ and 	 BDA = θ .

(c) Using part (b), it follows that

cos θ = BD

AD
or BD = (cos θ)AD.

For h “small,” BC ≈ BD and AD is roughly the length of the arc subtended from A to C; that is, AD ≈
1(h) = h. Thus, using (a) and (c),

� sin θ = BC ≈ BD = (cos θ)AD ≈ (cos θ)h.

In the limit as h → 0,

� sin θ

h
→ (sin θ)′,

so (sin θ)′ = cos θ .
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3.7 The Chain Rule

Preliminary Questions
1. Identify the outside and inside functions for each of these composite functions.

(a) y = √
4x + 9x2 (b) y = tan(x2 + 1)

(c) y = sec5 x (d) y = (1 + ex)4

solution

(a) The outer function is
√

x, and the inner function is 4x + 9x2.
(b) The outer function is tan x, and the inner function is x2 + 1.
(c) The outer function is x5, and the inner function is sec x.
(d) The outer function is x4, and the inner function is 1 + ex .

2. Which of the following can be differentiated easily without using the Chain Rule?

(a) y = tan(7x2 + 2) (b) y = x

x + 1
(c) y = √

x · sec x (d) y = √
x cos x

(e) y = xex (f) y = esin x

solution The function x
x+1 can be differentiated using the Quotient Rule, and the functions

√
x · sec x

and xex can be differentiated using the Product Rule. The functions tan(7x2 + 2),
√

x cos x and esin x require
the Chain Rule.

3. Which is the derivative of f (5x)?
(a) 5f ′(x) (b) 5f ′(5x) (c) f ′(5x)

solution The correct answer is (b): 5f ′(5x).

4. Suppose that f ′(4) = g(4) = g′(4) = 1. Do we have enough information to compute F ′(4), where
F(x) = f (g(x))? If not, what is missing?

solution If F(x) = f (g(x)), then F ′(x) = f ′(g(x))g′(x) and F ′(4) = f ′(g(4))g′(4). Thus, we do not
have enough information to compute F ′(4). We are missing the value of f ′(1).

Exercises
In Exercises 1–4, fill in a table of the following type:

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

1. f (u) = u3/2, g(x) = x4 + 1

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

(x4 + 1)3/2 3
2u1/2 3

2 (x4 + 1)1/2 4x3 6x3(x4 + 1)1/2

2. f (u) = u3, g(x) = 3x + 5

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

(3x + 5)3 3u2 3(3x + 5)2 3 9(3x + 5)2

3. f (u) = tan u, g(x) = x4

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

tan(x4) sec2 u sec2(x4) 4x3 4x3 sec2(x4)
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4. f (u) = u4 + u, g(x) = cos x

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

(cos x)4 + cos x 4u3 + 1 4(cos x)3 + 1 − sin x −4 sin x cos3 x − sin x

In Exercises 5 and 6, write the function as a composite f (g(x)) and compute the derivative using the Chain
Rule.

5. y = (x + sin x)4

solution Let f (x) = x4, g(x) = x + sin x, and y = f (g(x)) = (x + sin x)4. Then

dy

dx
= f ′(g(x))g′(x) = 4(x + sin x)3(1 + cos x).

6. y = cos(x3)

solution Let f (x) = cos x, g(x) = x3, and y = f (g(x)) = cos(x3). Then

dy

dx
= f ′(g(x))g′(x) = −3x2 sin(x3).

7. Calculate
d

dx
cos u for the following choices of u(x):

(a) u(x) = 9 − x2 (b) u(x) = x−1 (c) u(x) = tan x

solution

(a) cos(u(x)) = cos(9 − x2).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(9 − x2)(−2x) = 2x sin(9 − x2).

(b) cos(u(x)) = cos(x−1).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(x−1)

(
− 1

x2

)
= sin(x−1)

x2
.

(c) cos(u(x)) = cos(tan x).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(tan x)(sec2 x) = − sec2 x sin(tan x).

8. Calculate
d

dx
f (x2 + 1) for the following choices of f (u):

(a) f (u) = sin u (b) f (u) = 3u3/2 (c) f (u) = u2 − u

solution

(a) Let sin(u) = sin(x2 + 1). Then

d

dx
sin(x2 + 1) = cos(x2 + 1) · d

dx
(x2 + 1) = cos(x2 + 1)2x = 2x cos(x2 + 1).

(b) Let 3u3/2 = 3(x2 + 1)3/2. Then

d

dx
3(x2 + 1)3/2 = 3 · 3

2
(x2 + 1)1/2 d

dx
(x2 + 1) = 9

2
(x2 + 1)1/2(2x) = 9x(x2 + 1)1/2.

(c) Let u2 − u = (x2 + 1)2 − (x2 + 1). Then

d

dx

(
(x2 + 1)2 − (x2 + 1)

)
= [2(x2 + 1) − 1] d

dx
(x2 + 1) = [2(x2 + 1) − 1](2x) = 4x3 + 2x.

9. Compute
df

dx
if

df

du
= 2 and

du

dx
= 6.

solution Assuming f is a function of u, which is in turn a function of x,

df

dx
= df

du
· du

dx
= 2(6) = 12.
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10. Compute
df

dx

∣∣∣
x=2

if f (u) = u2, u(2) = −5, and u′(2) = −5.

solution Because f (u) = u2, it follows that f ′(u) = 2u. Therefore,

df

dx

∣∣∣∣
x=2

= f ′(u(2))u′(2) = 2u(2)u′(2) = 2(−5)(−5) = 50.

In Exercises 11–22, use the General Power Rule, Exponential Rule, or the Chain Rule to compute the derivative.

11. y = (x4 + 5)3

solution Using the General Power Rule,

d

dx
(x4 + 5)3 = 3(x4 + 5)2 d

dx
(x4 + 5) = 3(x4 + 5)2(4x3) = 12x3(x4 + 5)2.

12. y = (8x4 + 5)3

solution Using the General Power Rule,

d

dx
(8x4 + 5)3 = 3(8x4 + 5)2 d

dx
(8x4 + 5) = 3(8x4 + 5)2(32x3) = 96x3(8x4 + 5)2.

13. y = √
7x − 3

solution Using the General Power Rule

d

dx

√
7x − 3 = d

dx
(7x − 3)1/2 = 1

2
(7x − 3)−1/2(7) = 7

2
√

7x − 3
.

14. y = (4 − 2x − 3x2)5

solution Using the General Power Rule,

d

dx
(4 − 2x − 3x2)5 = 5(4 − 2x − 3x2)4 d

dx
(4 − 2x − 3x2) = 5(4 − 2x − 3x2)4(−2 − 6x)

= −10(1 + 3x)(4 − 2x − 3x2)4.

15. y = (x2 + 9x)−2

solution Using the General Power Rule,

d

dx
(x2 + 9x)−2 = −2(x2 + 9x)−3 d

dx
(x2 + 9x) = −2(x2 + 9x)−3(2x + 9).

16. y = (x3 + 3x + 9)−4/3

solution Using the General Power Rule,

d

dx
(x3 + 3x + 9)−4/3 = −4

3
(x3 + 3x + 9)−7/3 d

dx
(x3 + 3x + 9) = −4

3
(x3 + 3x + 9)−7/3(3x2 + 3)

= −4(x2 + 1)(x3 + 3x + 9)−7/3.

17. y = cos4 θ

solution Using the General Power Rule,

d

dθ
cos4 θ = 4 cos3 θ

d

dθ
cos θ = −4 cos3 θ sin θ.

18. y = cos(9θ + 41)

solution Using the Chain Rule

d

dθ
cos(9θ + 41) = −9 sin(9θ + 41).
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19. y = (2 cos θ + 5 sin θ)9

solution Using the General Power Rule,

d

dθ
(2 cos θ + 5 sin θ)9 = 9(2 cos θ + 5 sin θ)8 d

dθ
(2 cos θ + 5 sin θ) = 9(2 cos θ + 5 sin θ)8(5 cos θ − 2 sin θ).

20. y = √
9 + x + sin x

solution Using the General Power Rule,

d

dx

√
9 + x + sin x = 1

2
(9 + x + sin x)−1/2 d

dx
(9 + x + sin x) = 1 + cos x

2
√

9 + x + sin x
.

21. y = ex−12

solution Using the General Exponential Rule,

d

dx
ex−12 = (1)ex−12 = ex−12.

22. y = e8x+9

solution Using the General Exponential Rule,

d

dx
e8x+9 = 8e8x+9.

In Exercises 23–26, compute the derivative of f ◦ g.

23. f (u) = sin u, g(x) = 2x + 1

solution Let h(x) = f (g(x)) = sin(2x + 1). Then,

d

dx
f (g(x)) = f ′(g(x))g′(x) = cos(2x + 1) · 2 = 2 cos(2x + 1).

24. f (u) = 2u + 1, g(x) = sin x

solution Let h(x) = f (g(x)) = 2(sin x) + 1. Then h′(x) = 2 cos x. Alternately,

d

dx
f (g(x)) = f ′(g(x))g′(x) = 2 cos x.

25. f (u) = eu, g(x) = x + x−1

solution Let h(x) = f (g(x)) = ex+x−1
. Then

d

dx
f (g(x)) = f ′(g(x))g′(x) = ex+x−1

(
1 − x−2

)
.

26. f (u) = u

u − 1
, g(x) = csc x

solution Let h(x) = f (g(x)). Then, applying the quotient rule:

h′(x) = (csc x − 1)(− csc x cot x) − (csc x)(− csc x cot x)

(csc x − 1)2
= csc x cot x

(csc x − 1)2
.

Alternately,

d

dx
f (g(x)) = f ′(g(x))g′(x) = − 1

(csc x − 1)2
(− csc x cot x) = csc x cot x

(csc x − 1)2
,

where we have used the quotient rule to calculate f ′(u) = − 1
(u−1)2 .
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In Exercises 27 and 28, find the derivatives of f (g(x)) and g(f (x)).

27. f (u) = cos u, u = g(x) = x2 + 1

solution

d

dx
f (g(x)) = f ′(g(x))g′(x) = − sin(x2 + 1)(2x) = −2x sin(x2 + 1).

d

dx
g(f (x)) = g′(f (x))f ′(x) = 2(cos x)(− sin x) = −2 sin x cos x.

28. f (u) = u3, u = g(x) = 1

x + 1

solution The derivative of 1
x+1 is taken using the chain rule.

d

dx
f (g(x)) = f ′(g(x))g′(x) = 3

(
1

x + 1

)2 (
− 1

(x + 1)2

)
= − 3

(x + 1)4
.

d

dx
g(f (x)) = g′(f (x))f ′(x) = − 1

(x3 + 1)2
(3x2) = − 3x2

(x3 + 1)2
.

In Exercises 29–42, use the Chain Rule to find the derivative.

29. y = sin(x2)

solution Let y = sin
(
x2

)
. Then y′ = cos

(
x2

) · 2x = 2x cos
(
x2

)
.

30. y = sin2 x

solution Let y = sin2 x = (sin x)2. Then y′ = 2 sin x(cos x).

31. y = √
t2 + 9

solution Let y = √
t2 + 9 = (t2 + 9)1/2. Then

y′ = 1

2
(t2 + 9)−1/2(2t) = t√

t2 + 9
.

32. y = (t2 + 3t + 1)−5/2

solution Let y = (
t2 + 3t + 1

)−5/2
. Then

y′ = −5

2

(
t2 + 3t + 1

)−7/2
(2t + 3) = − 5 (2t + 3)

2
(
t2 + 3t + 1

)7/2
.

33. y = (x4 − x3 − 1)2/3

solution Let y = (
x4 − x3 − 1

)2/3
. Then

y′ = 2

3

(
x4 − x3 − 1

)−1/3 (
4x3 − 3x2

)
.

34. y = (
√

x + 1 − 1)3/2

solution Let y = (
(x + 1)1/2 − 1

)3/2
. Here, we note that calculating the derivative of the inside function,√

x + 1 − 1, requires the chain rule. After two applications of the chain rule, we have

y′ = 3

2

(
(x + 1)1/2 − 1

)1/2 ·
(

1

2
(x + 1)−1/2 · 1

)
= 3

√√
x + 1 − 1

4
√

x + 1
.

35. y =
(

x + 1

x − 1

)4

solution Let y =
(

x + 1

x − 1

)4

. Then

y′ = 4

(
x + 1

x − 1

)3

· (x − 1) · 1 − (x + 1) · 1

(x − 1)2
= −8 (x + 1)3

(x − 1)5 = 8(1 + x)3

(1 − x)5 .
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36. y = cos3(12θ)

solution After two applications of the chain rule,

y′ = 3 cos2(12θ)(− sin(12θ))(12) = −36 cos2(12θ) sin(12θ).

37. y = sec
1

x

solution Let f (x) = sec
(
x−1

)
. Then

f ′(x) = sec
(
x−1

)
tan

(
x−1

)
·
(
−x−2

)
= − sec (1/x) tan (1/x)

x2
.

38. y = tan(θ2 − 4θ)

solution Let y = tan(θ2 − 4θ). Then

y′ = sec2(θ2 − 4θ) · (2θ − 4) = (2θ − 4) sec2(θ2 − 4θ).

39. y = tan(θ + cos θ)

solution Let y = tan (θ + cos θ). Then

y′ = sec2 (θ + cos θ) · (1 − sin θ) = (1 − sin θ) sec2 (θ + cos θ) .

40. y = e2x2

solution Let y = e2x2
. Then

y′ = e2x2
(4x) = 4xe2x2

.

41. y = e2−9t2

solution Let y = e2−9t2
. Then

y′ = e2−9t2
(−18t) = −18te2−9t2

.

42. y = cos3(e4θ )

solution Let y = cos3(e4θ ). After two applications of the chain rule, we have

y′ = 3 cos2(e4θ )(− sin(e4θ ))(4e4θ ) = −12e4θ cos2(e4θ ) sin(e4θ ).

In Exercises 43–72, find the derivative using the appropriate rule or combination of rules.

43. y = tan(x2 + 4x)

solution Let y = tan(x2 + 4x). By the chain rule,

y′ = sec2(x2 + 4x) · (2x + 4) = (2x + 4) sec2(x2 + 4x).

44. y = sin(x2 + 4x)

solution Let y = sin(x2 + 4x). By the chain rule,

dy

dx
= (2x + 4) cos(x2 + 4x).

45. y = x cos(1 − 3x)

solution Let y = x cos (1 − 3x). Applying the product rule and then the chain rule,

y′ = x (− sin (1 − 3x)) · (−3) + cos (1 − 3x) · 1 = 3x sin (1 − 3x) + cos (1 − 3x) .

46. y = sin(x2) cos(x2)

solution We start by using a trig identity to rewrite

y = sin(x2) cos(x2) = 1

2
sin(2x2).
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Then, by the chain rule,

y′ = 1

2
cos(2x2) · 4x = 2x cos(2x2).

47. y = (4t + 9)1/2

solution Let y = (4t + 9)1/2. By the general power rule,

dy

dt
= 4

(
1

2

)
(4t + 9)−1/2 = 2(4t + 9)−1/2.

48. y = (z + 1)4(2z − 1)3

solution Let y = (z + 1)4(2z − 1)3. Applying the product rule and the general power rule,

dy

dz
= (z + 1)4(3(2z − 1)2)(2) + (2z − 1)3(4(z + 1)3)(1) = (z + 1)3(2z − 1)2(6(z + 1) + 4(2z − 1))

= (z + 1)3(2z − 1)2(14z + 2).

49. y = (x3 + cos x)−4

solution Let y = (x3 + cos x)−4. By the general power rule,

y′ = −4(x3 + cos x)−5(3x2 − sin x) = 4(sin x − 3x2)(x3 + cos x)−5.

50. y = sin(cos(sin x))

solution Let y = sin (cos (sin x)). Applying the chain rule twice,

y′ = cos (cos (sin x)) · (− sin (sin x)) · cos x = − cos x sin (sin x) cos (cos (sin x)) .

51. y = √
sin x cos x

solution We start by using a trig identity to rewrite

y = √
sin x cos x =

√
1

2
sin 2x = 1√

2
(sin 2x)1/2 .

Then, after two applications of the chain rule,

y′ = 1√
2

· 1

2
(sin 2x)−1/2 · cos 2x · 2 = cos 2x√

2 sin 2x
.

52. y = (9 − (5 − 2x4)7)3

solution Let y = (9 − (5 − 2x4)7)3. Applying the chain rule twice, we find

y′ = 3(9 − (5 − 2x4)7)2(−7(5 − 2x4)6)(−8x3) = 168x3(5 − 2x4)6(9 − (5 − 2x4)7)2.

53. y = (cos 6x + sin x2)1/2

solution Let y = (cos 6x + sin(x2))1/2. Applying the general power rule followed by two applications
of the chain rule,

y′ = 1

2

(
cos 6x + sin(x2)

)−1/2(− sin 6x · 6 + cos(x2) · 2x
) = x cos(x2) − 3 sin 6x√

cos 6x + sin(x2)
.

54. y = (x + 1)1/2

x + 2

solution Let y = (x+1)1/2

x+2 . Applying the quotient rule and the general power rule, we get

dy

dx
= (x + 2) 1

2 (x + 1)−1/2 − (x + 1)1/2

(x + 2)2
= 1

2
√

x + 1

(x + 2) − 2(x + 1)

(x + 2)2
= − 1

2
√

x + 1

x

(x + 2)2
.
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55. y = tan3 x + tan(x3)

solution Let y = tan3 x + tan(x3) = (tan x)3 + tan(x3). Applying the general power rule to the first
term and the chain rule to the second term,

y′ = 3(tan x)2 sec2 x + sec2(x3) · 3x2 = 3
(
x2 sec2(x3) + sec2 x tan2 x

)
.

56. y = √
4 − 3 cos x

solution Let y = (4 − 3 cos x)1/2. By the general power rule,

y′ = 1

2
(4 − 3 cos x)−1/2 · 3 sin x = 3 sin x

2
√

4 − 3 cos x
.

57. y =
√

z + 1

z − 1

solution Let y =
(

z + 1

z − 1

)1/2

. Applying the general power rule followed by the quotient rule,

dy

dz
= 1

2

(
z + 1

z − 1

)−1/2

· (z − 1) · 1 − (z + 1) · 1

(z − 1)2
= −1√

z + 1 (z − 1)3/2
.

58. y = (cos3 x + 3 cos x + 7)9

solution Let y = (
cos3 x + 3 cos x + 7

)9
. Applying the general power rule followed by the sum rule,

with the first term requiring the general power rule,

dy

dx
= 9

(
cos3 x + 3 cos x + 7

)8 (
3 cos2 x · (− sin x) − 3 sin x

)

= −27 sin x
(

cos3 x + 3 cos x + 7
)8 (

1 + cos2 x
)

.

59. y = cos(1 + x)

1 + cos x

solution Let

y = cos(1 + x)

1 + cos x
.

Then, applying the quotient rule and the chain rule,

dy

dx
= −(1 + cos x) sin(1 + x) + cos(1 + x) sin x

(1 + cos x)2
= cos(1 + x) sin x − cos x sin(1 + x) − sin(1 + x)

(1 + cos x)2

= sin(−1) − sin(1 + x)

(1 + cos x)2
.

The last line follows from the identity

sin(A − B) = sin A cos B − cos A sin B

with A = x and B = 1 + x.

60. y = sec(
√

t2 − 9)

solution Let y = sec
(√

t2 − 9
)

. Applying the chain rule followed by the general power rule,

dy

dt
= sec

(√
t2 − 9

)
tan

(√
t2 − 9

)
· 1

2

(
t2 − 9

)−1/2 · 2t =
t sec

(√
t2 − 9

)
tan

(√
t2 − 9

)
√

t2 − 9
.

61. y = cot7(x5)

solution Let y = cot7
(
x5

)
. Applying the general power rule followed by the chain rule,

dy

dx
= 7 cot6

(
x5

)
·
(
− csc2

(
x5

))
· 5x4 = −35x4 cot6

(
x5

)
csc2

(
x5

)
.
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62. y = cos(1/x)

1 + x2

solution Let y = cos(1/x)

1+x2 = cos(x−1)

1+x2 . Then, applying the quotient rule and the chain rule, we get:

dy

dx
= (1 + x2)(x−2 sin(x−1)) − cos(x−1)(2x)

(1 + x2)2
= sin(x−1) − 2x cos(x−1) + x−2 sin(x−1)

(1 + x2)2
.

63. y =
(

1 + cot5(x4 + 1)
)9

solution Let y = (
1 + cot5

(
x4 + 1

))9
. Applying the general power rule, the chain rule, and the general

power rule in succession,

dy

dx
= 9

(
1 + cot5

(
x4 + 1

))8 · 5 cot4
(
x4 + 1

)
·
(
− csc2

(
x4 + 1

))
· 4x3

= −180x3 cot4
(
x4 + 1

)
csc2

(
x4 + 1

) (
1 + cot5

(
x4 + 1

))8
.

64. y = 4e−x + 7e−2x

solution Let y = 4e−x + 7e−2x . Using the chain rule twice, once for each exponential function, we
obtain

dy

dx
= −4e−x − 14e−2x.

65. y = (2e3x + 3e−2x)4

solution Let y = (2e3x + 3e−2x)4. Applying the general power rule followed by two applications of the
chain rule, one for each exponential function, we find

dy

dx
= 4(2e3x + 3e−2x)3(6e3x − 6e−2x) = 24(2e3x + 3e−2x)3(e3x − e−2x).

66. y = cos(te−2t )

solution Let y = cos(te−2t ). Applying the chain rule and the product rule, we have

dy

dt
= − sin(te−2t )

(
−2te−2t + e−2t

)
= e−2t (2t − 1) sin(te−2t ).

67. y = e(x2+2x+3)2

solution Let y = e(x2+2x+3)2
. By the chain rule and the general power rule, we obtain

dy

dx
= e(x2+2x+3)2 · 2(x2 + 2x + 3)(2x + 2) = 4(x + 1)(x2 + 2x + 3)e(x2+2x+3)2

.

68. y = eex

solution Let y = eex
. Applying the chain rule, we have

dy

dx
= eex

ex.

69. y =
√

1 +
√

1 + √
x

solution Let y =
(

1 + (
1 + x1/2

)1/2
)1/2

. Applying the general power rule twice,

dy

dx
= 1

2

(
1 +

(
1 + x1/2

)1/2
)−1/2

· 1

2

(
1 + x1/2

)−1/2 · 1

2
x−1/2 = 1

8
√

x
√

1 + √
x

√
1 + √

1 + √
x

.
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70. y =
√√

x + 1 + 1

solution Let y = (
1 + (x + 1)1/2)1/2

. Applying the general power rule twice,

dy

dx
= 1

2

(
1 + (x + 1)1/2

)−1/2 · 1

2
(x + 1)−1/2 · 1 = 1

4
√

x + 1
√

1 + √
x + 1

.

71. y = (kx + b)−1/3; k and b any constants

solution Let y = (kx + b)−1/3, where b and k are constants. By the general power rule,

y′ = −1

3
(kx + b)−4/3 · k = −k

3
(kx + b)−4/3.

72. y = 1√
kt4 + b

; k, b constants, not both zero

solution Let y = (
kt4 + b

)−1/2
, where b and k are constants. By the chain rule,

y′ = −1

2

(
kt4 + b

)−3/2 · 4kt3 = − 2kt3(
kt4 + b

)3/2
.

In Exercises 73–76, compute the higher derivative.

73.
d2

dx2
sin(x2)

solution Let f (x) = sin
(
x2

)
. Then, by the chain rule, f ′(x) = 2x cos

(
x2

)
and, by the product rule and

the chain rule,

f ′′(x) = 2x
(
− sin

(
x2

)
· 2x

)
+ 2 cos

(
x2

)
= 2 cos

(
x2

)
− 4x2 sin

(
x2

)
.

74.
d2

dx2
(x2 + 9)5

solution Let f (x) = (x2 + 9)5. Then, by the general power rule,

f ′(x) = 5(x2 + 9)4 · 2x = 10x(x2 + 9)4

and, by the product rule and the general power rule,

f ′′(x) = 10x · 4(x2 + 9)3 · 2x + 10(x2 + 9)4 = 80x2(x2 + 9)3 + 10(x2 + 9)4.

75.
d3

dx3
(9 − x)8

solution Let f (x) = (9 − x)8. Then, by repeated use of the general power rule,

f ′(x) = 8(9 − x)7 · (−1) = −8(9 − x)7

f ′′(x) = −56(9 − x)6 · (−1) = 56(9 − x)6,

f ′′′(x) = 336(9 − x)5 · (−1) = −336(9 − x)5.

76.
d3

dx3
sin(2x)

solution Let f (x) = sin (2x). Then, by repeated use of the chain rule,

f ′(x) = 2 cos(2x)

f ′′(x) = −4 sin(2x)

f ′′′(x) = −8 cos(2x).
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77. The average molecular velocity v of a gas in a certain container is given by v(T ) = 29
√

T m/s, where
T is the temperature in kelvins. The temperature is related to the pressure (in atmospheres) by T = 200P .

Find
dv

dP

∣∣∣∣
P=1.5

.

solution First note that when P = 1.5 atmospheres, T = 200(1.5) = 300K. Thus,

dv

dP

∣∣∣∣
P=1.5

= dv

dT

∣∣∣∣
T =300

· dT

dP

∣∣∣∣
P=1.5

= 29

2
√

300
· 200 = 290

√
3

3

m

s · atmospheres
.

Alternately, substituting T = 200P into the equation for v gives v = 290
√

2P . Therefore,

dv

dP
= 290

√
2

2
√

P
= 290√

2P
,

so

dv

dP

∣∣∣∣
P=1.5

= 290√
3

= 290
√

3

3

m

s · atmospheres
.

78. The power P in a circuit is P = Ri2, where R is the resistance and i is the current. Find dP/dt at t = 1
3

if R = 1000 � and i varies according to i = sin(4πt) (time in seconds).

solution
d

dt

(
Ri2

)∣∣∣∣
t=2

= 2Ri
di

dt

∣∣∣∣
t=2

= 2(1000)4π sin(4πt) cos(4πt)|t=2 = 0.

79. An expanding sphere has radius r = 0.4t cm at time t (in seconds). Let V be the sphere’s volume. Find
dV /dt when (a) r = 3 and (b) t = 3.

solution Let r = 0.4t , where t is in seconds (s) and r is in centimeters (cm). With V = 4
3πr3, we have

dV

dr
= 4πr2.

Thus

dV

dt
= dV

dr

dr

dt
= 4πr2 · (0.4) = 1.6πr2.

(a) When r = 3,
dV

dt
= 1.6π(3)2 ≈ 45.24 cm3/s.

(b) When t = 3, we have r = 1.2. Hence
dV

dt
= 1.6π(1.2)2 ≈ 7.24 cm3/s.

80. A 2005 study by the Fisheries Research Services in Aberdeen, Scotland, suggests that the average
length of the species Clupea harengus (Atlantic herring) as a function of age t (in years) can be modeled by
L(t) = 32(1 − e−0.37t ) cm for 0 ≤ t ≤ 13. See Figure 1.
(a) How fast is the average length changing at age t = 6 years?
(b) At what age is the average length changing at a rate of 5 cm/year?

2 4 6 8 10 12

10

20

30
32

t (year)

L (cm)

FIGURE 1 Average length of the species Clupea harengus.

solution Let L(t) = 32(1 − e−0.37t ). Then

L′(t) = 32(0.37)e−0.37t = 11.84e−0.37t .

(a) At age t = 6,

L′(t) = 11.84e−0.37(6) = 11.84e−2.22 ≈ 1.29 cm/yr.
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(b) The length will be changing at a rate of 5 cm/yr when

11.84e−0.37t = 5.

Solving for t yields

t = − 1

0.37
ln

5

11.84
≈ 2.33 years.

81. A 1999 study by Starkey and Scarnecchia developed the following model for the average weight (in
kilograms) at age t (in years) of channel catfish in the Lower Yellowstone River (Figure 2):

W(t) = (3.46293 − 3.32173e−0.03456t )3.4026

Find the rate at which average weight is changing at age t = 10.

Lower Yellowstone River

5 10 15 20

1

2

3

4

5

6

7

8

t (year)

W (kg)

FIGURE 2 Average weight of channel catfish at age t .

solution Let W(t) = (3.46293 − 3.32173e−0.03456t )3.4026. Then

W ′(t) = 3.4026(3.46293 − 3.32173e−0.03456t )2.4026(3.32173)(0.03456)e−0.03456t

= 0.3906(3.46293 − 3.32173e−0.03456t )2.4026e−0.03456t .

At age t = 10,

W ′(10) = 0.3906(1.1118)2.4026(0.7078) ≈ 0.3566 kg/yr.

82. The functions in Exercises 80 and 81 are examples of the von Bertalanffy growth function

M(t) = (
a + (b − a)ekmt

)1/m
(m 	= 0)

introduced in the 1930s by Austrian-born biologist Karl Ludwig von Bertalanffy. Calculate M ′(0) in terms of
the constants a, b, k and m.

solution Let

M(t) = (
a + (b − a)ekmt

)1/m
(m 	= 0).

Then

M ′(t) = 1

m
(a + (b − a)ekmt )1/m−1km(b − a)ekmt = k(b − a)ekmt (a + (b − a)ekmt )1/m−1,

and

M ′(0) = k(b − a)e0(a + (b − a)e0)1/m−1 = k(b − a)b1/m−1.

83. With notation as in Example 8, calculate

(a)
d

dθ
sin θ

∣∣∣∣
θ=60◦

(b)
d

dθ

(
θ + tan θ

) ∣∣∣∣
θ=45◦

solution

(a)
d

dθ
sin θ

∣∣∣
θ=60◦=

d

dθ
sin

( π

180
θ
) ∣∣∣

θ=60◦ =
( π

180

)
cos

( π

180
(60)

)
= π

180

1

2
= π

360
.
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(b)
d

dθ

(
θ + tan θ

) ∣∣∣
θ=45◦=

d

dθ

(
θ + tan

( π

180
θ
)) ∣∣∣

θ=45◦ = 1 + π

180
sec2

(π

4

)
= 1 + π

90
.

84. Assume that

f (0) = 2, f ′(0) = 3, h(0) = −1, h′(0) = 7

Calculate the derivatives of the following functions at x = 0:

(a) (f (x))3 (b) f (7x) (c) f (4x)h(5x)

solution

(a) Let g(x) = (f (x))3. Then

g′(0) = 3(f (0))2(f ′(0)) = 12(3) = 36.

(b) Let g(x) = f (7x). Then

g′(0) = 7f ′(7(0)) = 21.

(c) Let F(x) = f (4x)h(5x). Then F ′(x) = 4f ′(4x)h(5x) + 5f (4x)h′(5x) and

F ′(0) = 4(3)(−1) + 5(2)(7) = 58.

85. Compute the derivative of h(sin x) at x = π
6 , assuming that h′(0.5) = 10.

solution Let u = sin x and suppose that h′(0.5) = 10. Then

d

dx
(h(u)) = dh

du

du

dx
= dh

du
cos x.

When x = π
6 , we have u = 0.5. Accordingly, the derivative of h(sin x) at x = π

6 is 10 cos
(

π
6

) = 5
√

3.

86. Let F(x) = f (g(x)), where the graphs of f and g are shown in Figure 3. Estimate g′(2) and f ′(g(2))

and compute F ′(2).

1

2

3

4

1 2 3 4 5

f (x)

g(x)

x

y

FIGURE 3

solution After sketching an approximate tangent line to g at x = 2 (see the figure below), we estimate
g′(2) = −1. It appears from the graph that g(2) = 3 and f ′(3) = 5

4 (since between x = 2 and x = 4 the
graph of f appears to be linear with slope 5

4 ). Thus,

F ′(2) = f ′(g(2))g′(2) = 5

4
(−1) = −1.25.

1

2

3

4

1 2 3 4 5
x

y
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In Exercises 87–90, use the table of values to calculate the derivative of the function at the given point.

x 1 4 6

f (x) 4 0 6
f ′(x) 5 7 4
g(x) 4 1 6
g′(x) 5 1

2 3

87. f (g(x)), x = 6

solution
d

dx
f (g(x))

∣∣∣∣
x=6

= f ′(g(6))g′(6) = f ′(6)g′(6) = 4 × 3 = 12.

88. ef (x), x = 4

solution
d

dx
ef (x)

∣∣∣∣
x=4

= ef (4)f ′(4) = e0(7) = 7.

89. g(
√

x), x = 16

solution
d

dx
g(

√
x)

∣∣∣∣
x=16

= g′(4)

(
1

2

)
(1/

√
16) =

(
1

2

) (
1

2

) (
1

4

)
= 1

16
.

90. f (2x + g(x)), x = 1

solution
d

dx
f (2x + g(x))

∣∣∣∣
x=1

= f ′(2(1) + g(1))(2 + g′(1)) = f ′(2 + 4)(7) = 4(7) = 28.

91. The price (in dollars) of a computer component is P = 2C − 18C−1, where C is the manufacturer’s
cost to produce it. Assume that cost at time t (in years) is C = 9 + 3t−1. Determine the rate of change of
price with respect to time at t = 3.

solution
dC

dt
= −3t−2. C(3) = 10 and C′(3) = − 1

3 , so we compute:

dP

dt

∣∣∣∣
t=3

= 2C′(3) + 18

(C(3))2
C′(3) = −2

3
+ 18

100

(
−1

3

)
= −0.727

dollars

year
.

92. Plot the “astroid” y = (4 − x2/3)3/2 for 0 ≤ x ≤ 8. Show that the part of every tangent line in
the first quadrant has a constant length 8.

solution

• Here is a graph of the astroid.

y

x

10

10−10

−10

• Let f (x) = (4 − x2/3)3/2. Then

f ′(x) = 3

2
(4 − x2/3)1/2

(
−2

3
x−1/3

)
= −

√
4 − x2/3

x1/3
,

and the tangent line to f at x = a is

y = −
√

4 − a2/3

a1/3
(x − a) +

(
4 − a2/3

)3/2
.

The y-intercept of this line is the point P = (
0, 4

√
4 − a2/3

)
, its x-intercept is the point Q = (

4a1/3, 0
)
,

and the distance between P and Q is 8.
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93. According to the U.S. standard atmospheric model, developed by the National Oceanic and Atmospheric
Administration for use in aircraft and rocket design, atmospheric temperature T (in degrees Celsius), pressure
P (kPa = 1000 pascals), and altitude h (in meters) are related by these formulas (valid in the troposphere
h ≤ 11,000):

T = 15.04 − 0.000649h, P = 101.29 +
(

T + 273.1

288.08

)5.256

Use the Chain Rule to calculate dP/dh. Then estimate the change in P (in pascals, Pa) per additional meter
of altitude when h = 3000.

solution

dP

dT
= 5.256

(
T + 273.1

288.08

)4.256 (
1

288.08

)
= 6.21519 × 10−13 (273.1 + T )4.256

and dT
dh

= −0.000649◦C/m. dP
dh

= dP
dT

dT
dh

, so

dP

dh
=

(
6.21519 × 10−13 (273.1 + T )4.256

)
(−0.000649) = −4.03366 × 10−16 (288.14 − 0.000649 h)4.256.

When h = 3000,

dP

dh
= −4.03366 × 10−16(286.193)4.256 = −1.15 × 10−5 kPa/m;

therefore, for each additional meter of altitude,

�P ≈ −1.15 × 10−5 kPa = −1.15 × 10−2 Pa.

94. Climate scientists use the Stefan–Boltzmann Law R = σT 4 to estimate the change in the earth’s average
temperature T (in kelvins) caused by a change in the radiation R (in joules per square meter per second) that
the earth receives from the sun. Here, σ = 5.67 × 10−8 Js−1m−2K−4. Calculate dR/dt , assuming that
T = 283 and dT

dt
= 0.05 K/year. What are the units of the derivative?

solution By the Chain Rule,

dR

dt
= dR

dT
· dT

dt
= 4σT 3 dT

dt
.

Assuming T = 283 K and dT
dt

= 0.05 K/yr, it follows that

dR

dt
= 4σ(2833)(0.05) ≈ 0.257 Js−1m−2/yr

95. In the setting of Exercise 94, calculate the yearly rate of change of T if T = 283 K and R increases at
a rate of 0.5 Js−1m−2 per year.

solution By the Chain Rule,

dR

dt
= dR

dT
· dT

dt
= 4σT 3 dT

dt
.

Assuming T = 283 K and dR
dt

= 0.5 Js−1m−2 per year, it follows that

0.5 = 4σ(283)3 dT

dt
⇒ dT

dt
= 0.5

4σ(283)3
≈ 0.0973 kelvins/yr

96. Use a computer algebra system to compute f (k)(x) for k = 1, 2, 3 for the following functions:

(a) f (x) = cot(x2) (b) f (x) =
√

x3 + 1

solution

(a) Let f (x) = cot(x2). Using a computer algebra system,

f ′(x) = −2x csc2(x2);
f ′′(x) = 2 csc2(x2)(4x2 cot(x2) − 1); and

f ′′′(x) = −8x csc2(x2)
(

6x2 cot2(x2) − 3 cot(x2) + 2x2
)

.
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(b) Let f (x) =
√

x3 + 1. Using a computer algebra system,

f ′(x) = 3x2

2
√

x3 + 1
;

f ′′(x) = 3x(x3 + 4)

4(x3 + 1)3/2
; and

f ′′′(x) = −3(x6 + 20x3 − 8)

8(x3 + 1)5/2
.

97. Use the Chain Rule to express the second derivative of f ◦ g in terms of the first and second derivatives
of f and g.

solution Let h(x) = f (g(x)). Then

h′(x) = f ′(g(x))g′(x)

and

h′′(x) = f ′(g(x))g′′(x) + g′(x)f ′′(g(x))g′(x) = f ′(g(x))g′′(x) + f ′′(g(x))
(
g′(x)

)2
.

98. Compute the second derivative of sin(g(x)) at x = 2, assuming that g(2) = π
4 , g′(2) = 5, and

g′′(2) = 3.

solution Let f (x) = sin(g(x)). Then f ′(x) = cos(g(x))g′(x) and

f ′′(x) = cos(g(x))g′′(x) + g′(x)(− sin(g(x)))g′(x) = cos(g(x))g′′(x) − (g′(x))2 sin(g(x)).

Therefore,

f ′′(2) = g′′(2) cos (g(2)) − (
g′(2)

)2 sin (g(2)) = 3 cos
(

π
4

) − (5)2 sin
(

π
4

) = −22 ·
√

2
2 = −11

√
2

Further Insights and Challenges
99. Show that if f , g, and h are differentiable, then

[f (g(h(x)))]′ = f ′(g(h(x)))g′(h(x))h′(x)

solution Let f , g, and h be differentiable. Let u = h(x), v = g(u), and w = f (v). Then

dw

dx
= df

dv

dv

dx
= df

dv

dg

du

du

dx
= f ′(g(h(x))g′(h(x))h′(x)

100. Show that differentiation reverses parity: If f is even, then f ′ is odd, and if f is odd, then f ′ is
even. Hint: Differentiate f (−x).

solution A function is even if f (−x) = f (x) and odd if f (−x) = −f (x). By the chain rule, d
dx

f (−x) =
−f ′(−x). Now suppose that f is even. Then f (−x) = f (x) and

d

dx
f (−x) = d

dx
f (x) = f ′(x).

Hence, when f is even, −f ′(−x) = f ′(x) or f ′(−x) = −f ′(x) and f ′ is odd. On the other hand, suppose
f is odd. Then f (−x) = −f (x) and

d

dx
f (−x) = − d

dx
f (x) = −f ′(x).

Hence, when f is odd, −f ′(−x) = −f ′(x) or f ′(−x) = f ′(x) and f ′ is even.

101. (a) Sketch a graph of any even function f and explain graphically why f ′ is odd.

(b) Suppose that f ′ is even. Is f necessarily odd? Hint: Check whether this is true for linear functions.
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solution
(a) The graph of an even function is symmetric with respect to the y-axis. Accordingly, its image in the left
half-plane is a mirror reflection of that in the right half-plane through the y-axis. If at x = a ≥ 0, the slope
of f exists and is equal to m, then by reflection its slope at x = −a ≤ 0 is −m. That is, f ′(−a) = −f ′(a).
Note: This means that if f ′(0) exists, then it equals 0.

y

x
−2 −1 1 2

1

2

3

4

(b) Suppose that f ′ is even. Then f is not necessarily odd. Let f (x) = 4x + 7. Then f ′(x) = 4, an even
function. But f is not odd. For example, f (2) = 15, f (−2) = −1, but f (−2) 	= −f (2).

102. Power Rule for Fractional Exponents Let f (u) = uq and g(x) = xp/q . Assume that g is differen-
tiable.

(a) Show that f (g(x)) = xp (recall the Laws of Exponents).

(b) Apply the Chain Rule and the Power Rule for whole-number exponents to show that f ′(g(x)) g′(x) =
pxp−1.

(c) Then derive the Power Rule for xp/q .

solution

(a) Let f (u) = uq and g(x) = xp/q , where q is a positive integer and p is an integer. Then

f (g(x)) = f
(
xp/q

) = (
xp/q

)q = xp.

(b) Differentiating both sides of the final expression in part (a), applying the chain rule on the left and the
power rule for whole number exponents on the right, it follows that

f ′(g(x))g′(x) = pxp−1.

(c) Thus

g′(x) = pxp−1

f ′(g(x))
= pxp−1

q
(
xp/q

)q−1
= pxp−1

qxp−p/q
= p

q
xp/q−1.

103. Prove that for all whole numbers n ≥ 1,

dn

dxn
sin x = sin

(
x + nπ

2

)
Hint: Use the identity cos x = sin

(
x + π

2

)
.

solution We will proceed by induction on n. For n = 1, we find

d

dx
sin x = cos x = sin

(
x + π

2

)
,

as required. Now, suppose that for some positive integer k,

dk

dxk
sin x = sin

(
x + kπ

2

)
.

Then

dk+1

dxk+1
sin x = d

dx
sin

(
x + kπ

2

)

= cos

(
x + kπ

2

)
= sin

(
x + (k + 1)π

2

)
.
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104. A Discontinuous Derivative Use the limit definition to show that g′(0) exists but g′(0) 	= lim
x→0

g′(x),

where

g(x) =

⎧⎪⎨
⎪⎩

x2 sin
1

x
x 	= 0

0 x = 0

solution Using the limit definition,

g′(0) = lim
h→0

g(0 + h) − g(0)

h
= lim

h→0

h2 sin
(

1
h

)
− 0

h
= lim

h→0
h sin

(
1

h

)
= 0,

where we have used the squeeze theorem in the last step. Now, for x 	= 0,

g′(x) = x2
(

− 1

x2

)
cos

(
1

x

)
+ 2x sin

(
1

x

)
= 2x sin

(
1

x

)
− cos

(
1

x

)
.

Although the first term in g′ has a limit of 0 as x → 0 (by the squeeze theorem), the limit as x → 0 of the
second term does not exist. Hence, limx→0 g′(x) does not exist, so g′(0) 	= limx→0 g′(x).

105. Chain Rule This exercise proves the Chain Rule without the special assumption made in the text. For
any number b, define a new function

F(u) = f (u) − f (b)

u − b
for all u 	= b

(a) Show that if we define F(b) = f ′(b), then F is continuous at u = b.
(b) Take b = g(a). Show that if x 	= a, then for all u,

f (u) − f (g(a))

x − a
= F(u)

u − g(a)

x − a
1

Note that both sides are zero if u = g(a).
(c) Substitute u = g(x) in Eq. (1) to obtain

f (g(x)) − f (g(a))

x − a
= F(g(x))

g(x) − g(a)

x − a

Derive the Chain Rule by computing the limit of both sides as x → a.

solution For any differentiable function f and any number b, define

F(u) = f (u) − f (b)

u − b

for all u 	= b.

(a) Define F(b) = f ′(b). Then

lim
u→b

F (u) = lim
u→b

f (u) − f (b)

u − b
= f ′(b) = F(b),

i.e., lim
u→b

F (u) = F(b). Therefore, F is continuous at u = b.

(b) Let g be a differentiable function and take b = g(a). Let x be a number distinct from a. If we substitute
u = g(a) into Eq. (1), both sides evaluate to 0, so equality is satisfied. On the other hand, if u 	= g(a), then

f (u) − f (g(a))

x − a
= f (u) − f (g(a))

u − g(a)

u − g(a)

x − a
= f (u) − f (b)

u − b

u − g(a)

x − a
= F(u)

u − g(a)

x − a
.

(c) Hence for all u, we have

f (u) − f (g(a))

x − a
= F(u)

u − g(a)

x − a
.

Substituting u = g(x) in Eq. (1), we have

f (g(x)) − f (g(a))

x − a
= F(g(x))

g(x) − g(a)

x − a
.
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Letting x → a gives

lim
x→a

f (g(x)) − f (g(a))

x − a
= lim

x→a

(
F(g(x))

g(x) − g(a)

x − a

)
= F(g(a))g′(a) = F(b)g′(a) = f ′(b)g′(a)

= f ′(g(a))g′(a)

Therefore (f ◦ g)′ (a) = f ′(g(a))g′(a), which is the Chain Rule.

3.8 Implicit Differentiation

Preliminary Questions

1. Which differentiation rule is used to show
d

dx
sin y = cos y

dy

dx
?

solution The chain rule is used to show that d
dx

sin y = cos y
dy
dx

.

2. One of (a)–(c) is incorrect. Find and correct the mistake.

(a)
d

dy
sin(y2) = 2y cos(y2) (b)

d

dx
sin(x2) = 2x cos(x2)

(c)
d

dx
sin(y2) = 2y cos(y2)

solution
(a) This is correct. Note that the differentiation is with respect to the variable y.
(b) This is correct. Note that the differentiation is with respect to the variable x.
(c) This is incorrect. Because the differentiation is with respect to the variable x, the chain rule is needed to
obtain

d

dx
sin(y2) = 2y cos(y2)

dy

dx
.

3. On an exam, Jason was asked to differentiate the equation

x2 + 2xy + y3 = 7

Find the errors in Jason’s answer: 2x + 2xy′ + 3y2 = 0.

solution There are two mistakes in Jason’s answer. First, Jason should have applied the product rule to
the second term to obtain

d

dx
(2xy) = 2x

dy

dx
+ 2y.

Second, he should have applied the general power rule to the third term to obtain

d

dx
y3 = 3y2 dy

dx
.

4. Which of (a) or (b) is equal to
d

dx
(x sin t)?

(a) (x cos t)
dt

dx
(b) (x cos t)

dt

dx
+ sin t

solution Using the product rule and the chain rule we see that

d

dx
(x sin t) = x cos t

dt

dx
+ sin t,

so the correct answer is (b).

5. Determine which inverse trigonometric function g has the derivative

g′(x) = 1

x2 + 1

solution g(x) = tan−1 x has the derivative

g′(x) = 1

x2 + 1
.
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6. What does the following identity tell us about the derivatives of sin−1 x and cos−1 x?

sin−1 x + cos−1 x = π

2

solution Differentiating both sides of the idenity with respect to x yields

d

dx
sin−1 x + d

dx
cos−1 x = 0 or

d

dx
sin−1 x = − d

dx
cos−1 x.

In other words, the derivatives of sin−1 x and cos−1 x are negatives of each other.

Exercises
1. Show that if you differentiate both sides of x2 + 2y3 = 6, the result is 2x + 6y2 dy

dx
= 0. Then solve for

dy/dx and evaluate it at the point (2, 1).

solution Let x2 + 2y3 = 6. Then

d

dx
(x2 + 2y3) = d

dx
6

2x + 6y2 dy

dx
= 0

Solving for dy/dx yields

6y2 dy

dx
= −2x

dy

dx
= −2x

6y2
.

At (2, 1), dy
dx

= −4
6 = − 2

3 .

2. Show that if you differentiate both sides of xy + 4x + 2y = 1, the result is (x + 2)
dy
dx

+ y + 4 = 0. Then
solve for dy/dx and evaluate it at the point (1, −1).

solution Let xy + 4x + 2y = 1. Applying the product rule

d

dx
(xy + 4x + 2y) = d

dx
1

x
dy

dx
+ y + 4 + 2

dy

dx
= 0

(x + 2)
dy

dx
+ y + 4 = 0

Solving for dy/dx yields

(x + 2)
dy

dx
= −(y + 4)

dy

dx
= −y + 4

x + 2
.

At (1, −1), dy/dx = −3/3 = −1.

In Exercises 3–8, differentiate the expression with respect to x, assuming that y = f (x).

3. x2y3

solution Assuming that y depends on x, then

d

dx

(
x2y3

)
= x2 · 3y2y′ + y3 · 2x = 3x2y2y′ + 2xy3.

4.
x3

y2

solution Assuming that y depends on x, then

d

dx

(
x3

y

)
= y(3x2) − x3y′

y2
= 3x2

y
− x3y′

y2
.



S E C T I O N 3.8 Implicit Differentiation 311

5. (x2 + y2)3/2

solution Assuming that y depends on x, then

d

dx

((
x2 + y2

)3/2
)

= 3

2

(
x2 + y2

)1/2 (
2x + 2yy′) = 3

(
x + yy′)√

x2 + y2.

6. tan(xy)

solution Assuming that y depends on x, then
d

dx
(tan (xy)) = (

xy′ + y
)

sec2(xy).

7.
y

y + 1

solution Assuming that y depends on x, then

d

dx

(
y

y + 1

)
= (y + 1)y′ − yy′

(y + 1)2
= y′

(y + 1)2
.

8. ey/x

solution Assuming that y depends on x, then

d

dx
ey/x = ey/x

(
xy′ − y

x2

)
.

In Exercises 9–26, calculate the derivative of the other variable with respect to x.

9. 3y3 + x2 = 5

solution Let 3y3 + x2 = 5. Then 9y2y′ + 2x = 0, and y′ = − 2x

9y2
.

10. y4 − 2y = 4x3 + x

solution Let y4 − 2y = 4x3 + x. Then

d

dx
(y4 − 2y) = d

dx
(4x3 + x)

4y3y′ − 2y′ = 12x2 + 1

y′(4y3 − 2) = 12x2 + 1

y′ = 12x2 + 1

4y3 − 2

11. x2y + 2x3y = x + y

solution Let x2y + 2xy2 = x + y. Then

x2y′ + 2xy + 2x · 2yy′ + 2y2 = 1 + y′

x2y′ + 4xyy′ − y′ = 1 − 2xy − 2y2

y′ = 1 − 2xy − 2y2

x2 + 4xy − 1
.

12. xy2 + x2y5 − x3 = 3

solution Let xy2 + x2y5 − x3 = 3. Then

2xyy′ + y2 + 5x2y4y′ + 2xy5 − 3x2 = 0

(2xy + 5x2y4)y′ = 3x2 − y2 − 2xy5

y′ = 3x2 − y2 − 2xy5

2xy + 5x2y4

13. x3R5 = 1

solution Let x3R5 = 1. Then x3 · 5R4R′ + R5 · 3x2 = 0, and R′ = −3x2R5

5x3R4
= −3R

5x
.
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14. x4 + z4 = 1

solution Let x4 + z4 = 1. Then 4x3 + 4z3z′ = 0, and z′ = −x3/z3.

15.
y

x
+ x

y
= 2y

solution Let

y

x
+ x

y
= 2y.

Then

xy′ − y

x2
+ y − xy′

y2
= 2y′

(
1

x
− x

y2
− 2

)
y′ = y

x2
− 1

y

y2 − x2 − 2xy2

xy2
y′ = y2 − x2

x2y

y′ = y(y2 − x2)

x(y2 − x2 − 2xy2)
.

16.
√

x + s = 1

x
+ 1

s

solution Let (x + s)1/2 = x−1 + s−1. Then

1

2
(x + s)−1/2 (

1 + s′) = −x−2 − s−2s′.

Multiplying by 2x2s2√x + s and then solving for s′ gives

x2s2 (
1 + s′) = −2s2√x + s − 2x2s′√x + s

x2s2s′ + 2x2s′√x + s = −2s2√x + s − x2s2

x2
(
s2 + 2

√
x + s

)
s′ = −s2

(
x2 + 2

√
x + s

)

s′ = − s2
(
x2 + 2

√
x + s

)
x2

(
s2 + 2

√
x + s

) .

17. y−2/3 + x3/2 = 1

solution Let y−2/3 + x3/2 = 1. Then

−2

3
y−5/3y′ + 3

2
x1/2 = 0 or y′ = 9

4
x1/2y5/3.

18. x1/2 + y2/3 = −4y

solution Let x1/2 + y2/3 = x + y. Then 1
2x−1/2 + 2

3y−1/3y′ = 1 + y′, and

y′ = 1 − 1
2x−1/2

2
3y−1/3 − 1

· 6x1/2y1/3

6x1/2y1/3
= 3y1/3

(
2x1/2 − 1

)
2x1/2

(
2 − 3y1/3

) .

19. y + 1

y
= x2 + x

solution Let y + 1
y

= x2 + x. Then

y′ − 1

y2
y′ = 2x + 1 or y′ = 2x + 1

1 − y−2
= (2x + 1)y2

y2 − 1
.
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20. sin(xt) = t

solution In what follows, t ′ = dt
dx

. Applying the chain rule and the product rule, we get:

d

dx
sin(xt) = d

dx
t

cos(xt)(xt ′ + t) = t ′

x cos(xt)t ′ + t cos(xt) = t ′

x cos(xt)t ′ − t ′ = −t cos(xt)

t ′(x cos(xt) − 1) = −t cos(xt)

t ′ = −t cos(xt)

x cos(xt) − 1
.

21. sin(x + y) = x + cos y

solution Let sin(x + y) = x + cos y. Then

(1 + y′) cos(x + y) = 1 − y′ sin y

cos(x + y) + y′ cos(x + y) = 1 − y′ sin y

(cos(x + y) + sin y) y′ = 1 − cos(x + y)

y′ = 1 − cos(x + y)

cos(x + y) + sin y
.

22. tan(x2y) = (x + y)3

solution Let tan
(
x2y

) = x + y. Then

sec2(x2y) · (x2y′ + 2xy) = 1 + y′

x2 sec2(x2y)y′ + 2xy sec2(x2y) = 1 + y′(
x2 sec2(x2y) − 1

)
y′ = 1 − 2xy sec2(x2y)

y′ = 1 − 2xy sec2
(
x2y

)
x2 sec2

(
x2y

) − 1
.

23. xey = 2xy + y3

solution Let xey = 2xy + y3. Then xy′ey + ey = 2xy′ + 2y + 3y2y′, whence

y′ = ey − 2y

2x + 3y2 − xey
.

24. exy = sin(y2)

solution Let exy = sin(y2). Then exy
(
xy′ + y

) = 2y cos(y2)y′, whence

y′ = yexy

2y cos(y2) − xexy
.

25. ex + ey = x − y

solution Let ex + ey = x − y. Then

ex + y′ey = 1 − y′ or y′ = 1 − ex

1 + ey
.

26. ex2+y2 = x + 4

solution Let ex2+y2 = x + 4. Then

(2x + 2yy′)ex2+y2 = 1 or y′ = e−(x2+y2) − 2x

2y
.
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In Exercises 27–30, compute the derivative at the point indicated without using a calculator.

27. y = sin−1 x, x = 3
5

solution Let y = sin−1 x. Then y′ = 1√
1−x2

and

y′
(

3

5

)
= 1√

1 − 9/25
= 1

4/5
= 5

4
.

28. y = tan−1 x, x = 1
2

solution Let y = tan−1 x. Then y′ = 1
x2+1

and

y′
(

1

2

)
= 1

1
4 + 1

= 4

5
.

29. y = sec−1 x, x = 4

solution Let y = sec−1 x. Then y′ = 1

|x|
√

x2−1
and

y′(4) = 1

4
√

15
.

30. y = arccos(4x), x = 1
5

solution Let y = cos−1(4x). Then y′ = −4√
1−16x2

and

y′
(

1

5

)
= −4√

1 − 16
25

= −4
3
5

= −20

3
.

In Exercises 31–44, find the derivative.

31. y = sin−1(7x)

solution
d

dx
sin−1(7x) = 1√

1 − (7x)2
· d

dx
7x = 7√

1 − (7x)2
.

32. y = arctan
(x

3

)

solution
d

dx
tan−1

(x

3

)
= 1

(x/3)2 + 1
· d

dx

(x

3

)
= 1

3
· 1(

x
3

)2 + 1
= 1

(x2/3) + 3
.

33. y = cos−1(x2)

solution
d

dx
cos−1(x2) = −1√

1 − x4
· d

dx
x2 = −2x√

1 − x4
.

34. y = sec−1(t + 1)

solution
d

dt
sec−1(t + 1) = 1

|t + 1|√(t + 1)2 − 1
= 1

|t + 1|√t2 + 2t
.

35. y = x tan−1 x

solution
d

dx
x tan−1 x = x

(
1

1 + x2

)
+ tan−1 x.

36. y = ecos−1 x

solution
d

dx
ecos−1 x = ecos−1 x d

dx
cos−1 x = −ecos−1 x

√
1 − x2

.

37. y = arcsin(ex)

solution
d

dx
sin−1(ex) = 1√

1 − e2x
· d

dx
ex = ex

√
1 − e2x

.
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38. y = csc−1(x−1)

solution
d

dx
csc−1(x−1) = −1

|1/x|√1/x2 − 1

(−1

x2

)
= 1

x2|1/x|√1/x2 − 1
= 1√

1 − x2
.

39. y = √
1 − t2 + sin−1 t

solution
d

dt

(√
1 − t2 + sin−1 t

)
= 1

2
(1 − t2)−1/2(−2t) + 1√

1 − t2
= −t√

1 − t2
+ 1√

1 − t2
= 1 − t√

1 − t2
.

40. y = tan−1
(

1 + t

1 − t

)

solution
d

dt
tan−1

(
1 + t

1 − t

)
= 1(

1+t
1−t

)2 + 1
·
(

(1 − t) − (1 + t)(−1)

(1 − t)2

)
= 2

(1 + t)2 + (1 − t)2
= 1

t2 + 1
.

41. y = (tan−1 x)3

solution
d

dx

(
(tan−1 x)3

)
= 3(tan−1 x)2 d

dx
tan−1 x = 3(tan−1 x)2

x2 + 1
.

42. y = cos−1 x

sin−1 x

solution
d

dx

(
cos−1 x

sin−1 x

)
=

sin−1 x

(
−1√
1−x2

)
− cos−1 x

(
1√

1−x2

)
(sin−1 x)2

= − π

2
√

1 − x2(sin−1 x)2
.

43. y = cos−1 t−1 − sec−1 t

solution
d

dt
(cos−1 t−1 − sec−1 t)= −1√

1 − (1/t)2

(−1

t2

)
− 1

|t |√t2 − 1

= 1√
t4 − t2

− 1

|t |√t2 − 1
= 1

|t |√t2 − 1
− 1

|t |√t2 − 1
= 0.

Alternatively, let t = sec θ . Then t−1 = cos θ and cos−1 t−1 − sec−1 t = θ − θ = 0. Consequently,

d

dx
(cos−1 t−1 − sec−1 t) = 0.

44. y = cos−1(x + sin−1 x)

solution
d

dx
cos−1(x + sin−1 x) = −1√

1 − (x + sin−1 x)2

(
1 + 1√

1 − x2

)
.

45. Use Figure 8 to prove that (cos−1 x)′ = − 1√
1 − x2

.

1

x
y

1 − x2

FIGURE 8 Right triangle with y = cos−1 x.

solution Let y = cos−1 x. Then cos y = x and

− sin y
dy

dx
= 1 or

dy

dx
= − 1

sin y
= − 1

sin(cos−1 x)
.

From Figure 8, we see that sin(cos−1 x) = sin y = √
1 − x2; hence,

d

dx
cos−1 x = − 1

sin(cos−1 x)
= − 1√

1 − x2
.
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46. Show that (tan−1 x)′ = cos2(tan−1 x) and then use Figure 9 to prove that (tan−1 x)′ = (x2 + 1)−1.

1

x

y

1 + x2

FIGURE 9 Right triangle with y = tan−1 x.

solution Let y = tan−1 x. Then x = tan y and

1 = sec2 y
dy

dx
or

dy

dx
= 1

sec2 y
= cos2 y = cos2(tan−1 x).

From Figure 9, cos y = 1√
1 + x2

, thus cos2 y = 1

1 + x2
and

d

dx
(tan−1 x) = 1

1 + x2
.

47. Let y = sec−1 x. Show that tan y = √
x2 − 1 if x ≥ 1 and that tan y = −√

x2 − 1 if x ≤ −1. Hint:
tan y ≥ 0 on

(
0, π

2

)
and tan y ≤ 0 on

(
π
2 , π

)
.

solution In general, 1 + tan2 y = sec2 y, so tan y = ±√
sec2 y − 1. With y = sec−1 x, it follows that

sec y = x, so tan y = ±√
x2 − 1. Finally, if x ≥ 1 then y = sec−1 x ∈ [0, π/2) so tan y is positive; on the

other hand, if x ≤ 1 then y = sec−1 x ∈ (π/2, π ] so tan y is negative.

48. Use Exercise 47 to verify the formula

(sec−1 x)′ = 1

|x|√x2 − 1

solution Let y = sec−1 x. Then sec y = x and

sec y tan y
dy

dx
= 1 or

dy

dx
= 1

sec y tan y
= 1

x tan(sec−1 x)
.

By Exercise 47, tan(sec−1 x) = √
x2 − 1 for x > 1 and tan(sec−1 x) = −√

x2 − 1 for x < −1. Hence,

d

dx
sec−1 x = 1

|x|√x2 − 1
.

49. Show that x + yx−1 = 1 and y = x − x2 define the same curve [except that (0, 0) is not a solution of
the first equation] and that implicit differentiation yields y′ = yx−1 − x and y′ = 1 − 2x. Explain why these
formulas produce the same values for the derivative.

solution Multiply the first equation by x and then isolate the y term to obtain

x2 + y = x or y = x − x2.

Implicit differentiation applied to the first equation yields

1 − yx−2 + x−1y′ = 0 or y′ = yx−1 − x.

From the first equation, we find yx−1 = 1 − x; upon substituting this expression into the previous derivative,
we find

y′ = 1 − x − x = 1 − 2x,

which is the derivative of the second equation.
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50. Use the method of Example 4 to compute dy
dx

∣∣
P

at P = (2, 1) on the curve y2x3 + y3x4 − 10x + y = 5.

solution Implicit differentiation yields

3x2y2 + 2x3yy′ + 4x3y3 + 3x4y2y′ − 10 + y′ = 0 or y′ = 10 − 3x2y2 − 4x3y3

2x3y + 3x4y2 + 1
.

Thus, at P = (2, 1),

dy

dx

∣∣∣
P

= 10 − 3(2)2(1)2 − 4(2)3(1)3

2(2)3(1) + 3(2)4(1)2 + 1
= −34

65
.

In Exercises 51 and 52, find dy/dx at the given point.

51. (x + 2)2 − 6(2y + 3)2 = 3, (1, −1)

solution By the chain rule,

2(x + 2) − 24(2y + 3)y′ = 0.

If x = 1 and y = −1, then

2(3) − 24(1)y′ = 0,

so that 24y′ = 6, or y′ = 1
4 .

52. sin2(3y) = x + y,

(
2 − π

4
,
π

4

)

solution Taking the derivative of both sides of sin2(3y) = x + y yields

2 sin(3y) cos(3y)(3y′) = 1 + y′.

If x = 2−π
4 and y = π

4 , we get

6 sin

(
3π

4

)
cos

(
3π

4

)
y′ = 1 + y′.

Using

sin

(
3π

4

)
=

√
2

2
and cos

(
3π

4

)
= −

√
2

2

we find

−6

(√
2

2

) (√
2

2

)
y′ = 1 + y′

−3y′ = 1 + y′

y′ = −1

4
.

In Exercises 53–60, find an equation of the tangent line at the given point.

53. xy + x2y2 = 6, (2, 1)

solution Taking the derivative of both sides of xy + x2y2 = 6 yields

xy′ + y + 2xy2 + 2x2yy′ = 0.

Substituting x = 2, y = 1, we find

2y′ + 1 + 4 + 8y′ = 0 or y′ = −1

2
.

Hence, the equation of the tangent line at (2, 1) is y − 1 = − 1
2 (x − 2) or y = − 1

2x + 2.
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54. x2/3 + y2/3 = 2, (1, 1)

solution Taking the derivative of both sides of x2/3 + y2/3 = 2 yields

2

3
x−1/3 + 2

3
y−1/3y′ = 0.

Substituting x = 1, y = 1 yields 2
3 + 2

3y′ = 0, so that 1 + y′ = 0, or y′ = −1. Hence, the equation of the
tangent line at (1, 1) is y − 1 = −(x − 1), or y = 2 − x.

55. x2 + sin y = xy2 + 1, (1, 0)

solution Taking the derivative of both sides of x2 + sin y = xy2 + 1 yields

2x + cos yy′ = y2 + 2xyy′.

Substituting x = 1, y = 0, we find

2 + y′ = 0 or y′ = −2.

Hence, the equation of the tangent line is y − 0 = −2(x − 1) or y = −2x + 2.

56. sin(x − y) = x cos
(
y + π

4

)
,

(
π
4 , π

4

)
solution Taking the derivative of both sides of sin(x − y) = x cos

(
y + π

4

)
yields

cos(x − y)(1 − y′) = cos
(
y + π

4

) − x sin
(
y + π

4

)
y′.

Substituting x = π
4 , y = π

4 , we find

1(1 − y′) = 0 − π

4
y′ or y′ = 4

4 − π
.

Hence, the equation of the tangent line is

y − π

4
= 4

4 − π

(
x − π

4

)
.

57. 2x1/2 + 4y−1/2 = xy, (1, 4)

solution Taking the derivative of both sides of 2x1/2 + 4y−1/2 = xy yields

x−1/2 − 2y−3/2y′ = xy′ + y.

Substituting x = 1, y = 4, we find

1 − 2

(
1

8

)
y′ = y′ + 4 or y′ = −12

5
.

Hence, the equation of the tangent line is y − 4 = − 12
5 (x − 1) or y = − 12

5 x + 32
5 .

58. x2ey + yex = 4, (2, 0)

solution Taking the derivative of both sides of x2ey + yex = 4 yields

x2eyy′ + 2xey + yex + exy′ = 0.

Substituting x = 2, y = 0, we find

4y′ + 4 + 0 + e2y′ = 0 or y′ = − 4

4 + e2
.

Hence, the equation of the tangent line is

y = − 4

4 + e2
(x − 2).

59. e2x−y = x2

y
, (2, 4)

solution Taking the derivative of both sides of e2x−y = x2

y
yields

e2x−y(2 − y′) = 2xy − x2y′

y2
.
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Substituting x = 2, y = 4, we find

e0(2 − y′) = 16 − 4y′

16
or y′ = 4

3
.

Hence, the equation of the tangent line is y − 4 = 4
3 (x − 2) or y = 4

3x + 4
3 .

60. y2ex2−16 − xy−1 = 2, (4, 2)

solution Taking the derivative of both sides of y2ex2−16 − xy−1 = 2 yields

2xy2ex2−16 + 2yy′ex2−16 + xy−2y′ − y−1 = 0.

Substituting x = 4, y = 2, we find

32e0 + 4y′e0 + y′ − 1

2
= 0 or y′ = −63

10
.

Hence, the equation of the tangent line is y − 2 = − 63
10 (x − 4) or y = − 63

10x + 136
5 .

61. Find the points on the graph of y2 = x3 − 3x + 1 (Figure 10) where the tangent line is horizontal.

(a) First show that 2yy′ = 3x2 − 3, where y′ = dy/dx.

(b) Do not solve for y′. Rather, set y′ = 0 and solve for x. This yields two values of x where the slope may
be zero.

(c) Show that the positive value of x does not correspond to a point on the graph.

(d) The negative value corresponds to the two points on the graph where the tangent line is horizontal. Find
their coordinates.

2

−2

−2 −1 1 2
x

y

FIGURE 10 Graph of y2 = x3 − 3x + 1.

solution

(a) Applying implicit differentiation to y2 = x3 − 3x + 1, we have

2y
dy

dx
= 3x2 − 3.

(b) Setting y′ = 0 we have 0 = 3x2 − 3, so x = 1 or x = −1.

(c) If we return to the equation y2 = x3 − 3x + 1 and substitute x = 1, we obtain the equation y2 = −1,
which has no real solutions.

(d) Substituting x = −1 into y2 = x3 − 3x + 1 yields

y2 = (−1)3 − 3(−1) + 1 = −1 + 3 + 1 = 3,

so y = √
3 or −√

3. The tangent is horizontal at the points (−1,
√

3) and (−1, −√
3).

62. Show, by differentiating the equation, that if the tangent line at a point (x, y) on the curve x2y − 2x + 8y =
2 is horizontal, then xy = 1. Then substitute y = x−1 in x2y − 2x + 8y = 2 to show that the tangent line is
horizontal at the points

(
2, 1

2

)
and

( − 4, − 1
4

)
.

solution Taking the derivative on both sides of the equation x2y − 2x + 8y = 2 yields

x2y′ + 2xy − 2 + 8y′ = 0 or y′ = 2(1 − xy)

x2 + 8
.
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Thus, if the tangent line to the given curve is horizontal, it must be that 1 − xy = 0, or xy = 1. Substituting
y = x−1 into x2y − 2x + 8y = 2 then yields

x − 2x + 8

x
= 2 or x2 + 2x − 8 = (x + 4)(x − 2) = 0.

Hence, the given curve has a horizontal tangent line when x = 2 and when x = −4. The corresponding points
on the curve are thus

(
2, 1

2

)
and

( − 4, − 1
4

)
.

63. Find all points on the graph of 3x2 + 4y2 + 3xy = 24 where the tangent line is horizontal (Figure 11).

x

y

FIGURE 11 Graph of 3x2 + 4y2 + 3xy = 24.

solution

(a) Differentiating the equation 3x2 + 4y2 + 3xy = 24 implicitly yields

6x + 8yy′ + 3xy′ + 3y = 0,

so

y′ = −6x + 3y

8y + 3x
.

Setting y′ = 0 leads to 6x + 3y = 0, or y = −2x.
(b) Substituting y = −2x into the equation 3x2 + 4y2 + 3xy = 24 yields

3x2 + 4(−2x)2 + 3x(−2x) = 24,

or 13x2 = 24. Thus, x = ±2
√

78/13, and the coordinates of the two points on the graph of 3x2 + 4y2 + 3xy =
24 where the tangent line is horizontal are(

2
√

78

13
, −4

√
78

13

)
and

(
−2

√
78

13
,

4
√

78

13

)
.

64. Show that no point on the graph of x2 − 3xy + y2 = 1 has a horizontal tangent line.

solution Let the implicit curve x2 − 3xy + y2 = 1 be given. Then

2x − 3xy′ − 3y + 2yy′ = 0,

so

y′ = 2x − 3y

3x − 2y
.

Setting y′ = 0 leads to y = 2
3x. Substituting y = 2

3x into the equation of the implicit curve gives

x2 − 3x

(
2

3
x

)
+

(
2

3
x

)2

= 1,

or − 5
9x2 = 1, which has no real solutions. Accordingly, there are no points on the implicit curve where the

tangent line has slope zero.

65. Figure 1 shows the graph of y4 + xy = x3 − x + 2. Find dy/dx at the two points on the graph with
x-coordinate 0 and find an equation of the tangent line at (1, 1).

solution Consider the equation y4 + xy = x3 − x + 2. Then 4y3y′ + xy′ + y = 3x2 − 1, and

y′ = 3x2 − y − 1

x + 4y3
.
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• Substituting x = 0 into y4 + xy = x3 − x + 2 gives y4 = 2, which has two real solutions, y = ±21/4.
When y = 21/4, we have

y′ = −21/4 − 1

4
(
23/4

) = −
√

2 + 4
√

2

8
≈ −0.3254.

When y = −21/4, we have

y′ = 21/4 − 1

−4
(
23/4

) = −
√

2 − 4
√

2

8
≈ −0.02813.

• At the point (1, 1), we have y′ = 1
5 . At this point the tangent line is y − 1 = 1

5 (x − 1) or y = 1
5x + 4

5 .

66. Folium of Descartes The curve x3 + y3 = 3xy (Figure 12) was first discussed in 1638 by the French
philosopher-mathematician René Descartes, who called it the folium (meaning “leaf”). Descartes’s scientific
colleague Gilles de Roberval called it the jasmine flower. Both men believed incorrectly that the leaf shape in
the first quadrant was repeated in each quadrant, giving the appearance of petals of a flower. Find an equation
of the tangent line at the point

( 2
3 , 4

3

)
.

2

−2

−2 2
x

y

FIGURE 12 Folium of Descartes: x3 + y3 = 3xy.

solution Let x3 + y3 = 3xy. Then 3x2 + 3y2y′ = 3xy′ + 3y, and y′ = x2 − y

x − y2
. At the point

(
2
3 , 4

3

)
, we

have

y′ =
4
9 − 4

3
2
3 − 16

9

= − 8
9

− 10
9

= 4

5
.

The tangent line at P is thus y − 4
3 = 4

5

(
x − 2

3

)
or y = 4

5x + 4
5 .

67. Find a point on the folium x3 + y3 = 3xy other than the origin at which the tangent line is horizontal.

solution Using implicit differentiation, we find

d

dx

(
x3 + y3

)
= d

dx
(3xy)

3x2 + 3y2y′ = 3(xy′ + y)

Setting y′ = 0 in this equation yields 3x2 = 3y or y = x2. If we substitute this expression into the original
equation x3 + y3 = 3xy, we obtain:

x3 + x6 = 3x(x2) = 3x3 or x3(x3 − 2) = 0.

One solution of this equation is x = 0 and the other is x = 21/3. Thus, the two points on the folium
x3 + y3 = 3xy at which the tangent line is horizontal are (0, 0) and (21/3, 22/3).

68. Plot x3 + y3 = 3xy + b for several values of b and describe how the graph changes as
b → 0. Then compute dy/dx at the point (b1/3, 0). How does this value change as b → ∞? Do your plots
confirm this conclusion?

solution

(a) Consider the first row of figures below. When b < 0, the graph of x3 + y3 = 3xy + b consists of two
pieces. As b → 0−, the two pieces move closer to intersecting at the origin. From the second row of figures,
we see that the graph of x3 + y3 = 3xy + b when b > 0 consists of a single piece that has a “loop" in the
first quadrant. As b → 0+, the loop comes closer to “pinching off" at the origin.
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y

x
−0.5

−0.5

1.510.5

b = −0.1

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = −0.01

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = −0.001

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = 0.1

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = 0.01

0.5

1

1.5

y

x
−0.5

−0.5

1.510.5

b = 0.001

0.5

1

1.5

(b) Differentiating the equation x3 + y3 = 3xy + b with respect to x yields 3x2 + 3y2y′ = 3xy′ + 3y, so

y′ = y − x2

y2 − x
.

At (b1/3, 0), we have

y′ = 0 − x2

02 − x
= x = 3

√
b.

Consequently, as b → ∞, y′ → ∞ at the point on the graph where y = 0. This conclusion is supported by
the figures shown below, which correspond to b = 1, b = 10, and b = 100.

y

x
−4 −2

−4

−2

42

b = 01

2

4

y

x
−4 −2

−4

−2

42

2

4

y

x
−4 −2

−4

−2

42

2

4

b = 10
b = 100

69. Find the x-coordinates of the points where the tangent line is horizontal on the trident curve xy =
x3 − 5x2 + 2x − 1, so named by Isaac Newton in his treatise on curves published in 1710 (Figure 13).

Hint: 2x3 − 5x2 + 1 = (2x − 1)(x2 − 2x − 1).

20

−20

−2 86

4

2
x

y

FIGURE 13 Trident curve: xy = x3 − 5x2 + 2x − 1.

solution Take the derivative of the equation of a trident curve:

xy = x3 − 5x2 + 2x − 1

to obtain

xy′ + y = 3x2 − 10x + 2.



S E C T I O N 3.8 Implicit Differentiation 323

Setting y′ = 0 in (a) gives y = 3x2 − 10x + 2. Substituting this into the equation of the trident, we have

xy = x(3x2 − 10x + 2) = x3 − 5x2 + 2x − 1

or

3x3 − 10x2 + 2x = x3 − 5x2 + 2x − 1

Collecting like terms and setting to zero, we have

0 = 2x3 − 5x2 + 1 = (2x − 1)(x2 − 2x − 1).

Hence, x = 1
2 , 1 ± √

2.

70. Find an equation of the tangent line at each of the four points on the curve (x2 + y2 − 4x)2 = 2(x2 + y2)

where x = 1. This curve (Figure 14) is an example of a limaçon of Pascal, named after the father of the
French philosopher Blaise Pascal, who first described it in 1650.

3

−3

531
x

y

FIGURE 14 Limaçon: (x2 + y2 − 4x)2 = 2(x2 + y2).

solution Plugging x = 1 into the equation for the limaçon and solving for y, we find that the points on
the curve where x = 1 are: (1, 1), (1, −1), (1,

√
7), (1, −√

7). Using implicit differentiation, we obtain

2(x2 + y2 − 4x)(2x + 2yy′ − 4) = 2(2x + 2yy′).

We plug in x = 1 and get

2(1 + y2 − 4)(2 + 2yy′ − 4) = 2(2 + 2yy′)

or

(2y2 − 6)(2yy′ − 2) = 4 + 4yy′.

After collecting like terms and solving for y′, we have

y′ = −2 + y2

y3 − 4y
.

At the point (1, 1) the slope of the tangent is 1
3 and the tangent line is

y − 1 = 1

3
(x − 1) or y = 1

3
x + 2

3
.

At the point (1, −1) the slope of the tangent is − 1
3 and the tangent line is

y + 1 = −1

3
(x − 1) or y = −1

3
x − 2

3
.

At the point (1,
√

7) the slope of the tangent is 5/3
√

7 and the tangent line is

y − √
7 = 5

3
√

7
(x − 1) or y = 5

3
√

7
x + √

7 − 5

3
√

7
.

At the point (1, −√
7) the slope of the tangent is −5/3

√
7 and the tangent line is

y + √
7 = − 5

3
√

7
(x − 1) or y = − 5

3
√

7
x + 5

3
√

7
− √

7.
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71. Find the derivative at the points where x = 1 on the folium (x2 + y2)2 = 25
4 xy2. See Figure 15.

2

−2

1
x

y

FIGURE 15 Folium curve: (x2 + y2)2 = 25

4
xy2.

solution First, find the points (1, y) on the curve. Setting x = 1 in the equation (x2 + y2)2 = 25
4 xy2

yields

(1 + y2)2 = 25

4
y2

y4 + 2y2 + 1 = 25

4
y2

4y4 + 8y2 + 4 = 25y2

4y4 − 17y2 + 4 = 0

(4y2 − 1)(y2 − 4) = 0

y2 = 1

4
or y2 = 4

Hence y = ± 1
2 or y = ±2. Taking d

dx
of both sides of the original equation yields

2(x2 + y2)(2x + 2yy′) = 25

4
y2 + 25

2
xyy′

4(x2 + y2)x + 4(x2 + y2)yy′ = 25

4
y2 + 25

2
xyy′

(4(x2 + y2) − 25

2
x)yy′ = 25

4
y2 − 4(x2 + y2)x

y′ =
25
4 y2 − 4(x2 + y2)x

y(4(x2 + y2) − 25
2 x)

• At (1, 2), x2 + y2 = 5, and

y′ =
25
4 22 − 4(5)(1)

2(4(5) − 25
2 (1))

= 1

3
.

Hence, at (1, 2), the equation of the tangent line is y − 2 = 1
3 (x − 1) or y = 1

3x + 5
3 .

• At (1, −2), x2 + y2 = 5 as well, and

y′ =
25
4 (−2)2 − 4(5)(1)

−2(4(5) − 25
2 (1))

= −1

3
.

Hence, at (1, −2), the equation of the tangent line is y + 2 = − 1
3 (x − 1) or y = − 1

3x − 5
3 .

• At (1, 1
2 ), x2 + y2 = 5

4 , and

y′ =
25
4

(
1
2

)2 − 4
( 5

4

)
(1)

1
2

(
4

( 5
4

) − 25
2 (1)

) = 11

12
.

Hence, at (1, 1
2 ), the equation of the tangent line is y − 1

2 = 11
12 (x − 1) or y = 11

12x − 5
12 .



S E C T I O N 3.8 Implicit Differentiation 325

• At (1, − 1
2 ), x2 + y2 = 5

4 , and

y′ =
25
4

(
− 1

2

)2 − 4
( 5

4

)
(1)

− 1
2

(
4

( 5
4

) − 25
2 (1)

) = −11

12
.

Hence, at (1, − 1
2 ), the equation of the tangent line is y + 1

2 = − 11
12 (x − 1) or y = − 11

12x + 5
12 .

The folium and its tangent lines are plotted below:

2

1

−1

−2

21.510.5
x

y

72. Plot (x2 + y2)2 = 12(x2 − y2) + 2 for −4 ≤ x ≤ 4, 4 ≤ y ≤ 4 using a computer algebra
system. How many horizontal tangent lines does the curve appear to have? Find the points where these occur.

solution A plot of the curve (x2 + y2)2 = 12(x2 − y2) + 2 is shown below. From this plot, it appears
that the curve has a horizontal tangent line at six different locations.

−1−2−3

1

−1

1 2 3
x

y

Differentiating the equation (x2 + y2)2 = 12(x2 − y2) + 2 with respect to x yields

2(x2 + y2)(2x + 2yy′) = 12(2x − 2yy′),

so

y′ = x(6 − x2 − y2)

y(x2 + y2 + 6)
.

Thus, horizontal tangent lines occur when x = 0 and when x2 + y2 = 6. Substituting x = 0 into the equation

for the curve leaves y4 + 12y2 − 2 = 0, from which it follows that y2 = √
38 − 6 or y = ±

√√
38 − 6.

Substituting x2 + y2 = 6 into the equation for the curve leaves x2 − y2 = 17
6 . From here, it follows that

x = ±
√

159

6
and y = ±

√
57

6
.

The six points at which horizontal tangent lines occur are therefore(
0,

√√
38 − 6

)
,

(
0, −

√√
38 − 6

)
(√

159

6
,

√
57

6

)
,

(√
159

6
, −

√
57

6

)
,

(
−

√
159

6
,

√
57

6

)
,

(
−

√
159

6
, −

√
57

6

)

73. Calculate dx/dy for the equation y4 + 1 = y2 + x2 and find the points on the graph where the tangent
line is vertical.

solution Let y4 + 1 = y2 + x2. Differentiating this equation with respect to y yields

4y3 = 2y + 2x
dx

dy
,
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so

dx

dy
= 4y3 − 2y

2x
= y(2y2 − 1)

x
.

Thus,
dx

dy
= 0 when y = 0 and when y = ±

√
2

2
. Substituting y = 0 into the equation y4 + 1 = y2 + x2

gives 1 = x2, so x = ±1. Substituting y = ±
√

2

2
, gives x2 = 3/4, so x = ±

√
3

2
. Thus, there are six points

on the graph of y4 + 1 = y2 + x2 where the tangent line is vertical:

(1, 0), (−1, 0),

(√
3

2
,

√
2

2

)
,

(
−

√
3

2
,

√
2

2

)
,

(√
3

2
, −

√
2

2

)
,

(
−

√
3

2
, −

√
2

2

)
.

74. Show that the tangent lines at x = 1 ± √
2 to the conchoid with equation (x − 1)2(x2 + y2) = 2x2 are

vertical (Figure 16).

2

1

−1

−2

21
x

y

FIGURE 16 Conchoid: (x − 1)2(x2 + y2) = 2x2.

solution Consider the equation of a conchoid:

(x − 1)2
(
x2 + y2

)
= 2x2.

Taking the derivative of both sides of this equation gives

(x − 1)2
(

2x
dx

dy
+ 2y

)
+

(
x2 + y2

)
· 2 (x − 1)

dx

dy
= 4x

dx

dy
,

so that

dx

dy
= (x − 1)2 y

2x + (1 − x)
(
x2 + y2

) − x (x − 1)2
.

Setting dx/dy = 0 yields x = 1 or y = 0. We can’t have x = 1, lest 0 = 2 in the conchoid’s equation.
Plugging y = 0 into the equation gives (x − 1)2 x2 = 2x2 or x2

(
(x − 1)2 − 2

) = 0, which implies x = 0
(a double root) or x = 1 ± √

2. [Plugging x = 0 into the conchoid’s equation gives y2 = 0 or y = 0.

At (x, y) = (0, 0) the expression for dx/dy is undefined (0/0). Via an alternative parametric analysis, the
slopes of the tangent lines at the origin turn out to be ±√

3.] Accordingly, the tangent lines to the conchoid
are vertical at (x, y) = (1 ± √

2, 0).

75. Use a computer algebra system to plot y2 = x3 − 4x for −4 ≤ x ≤ 4, 4 ≤ y ≤ 4. Show that if
dx/dy = 0, then y = 0. Conclude that the tangent line is vertical at the points where the curve intersects the
x-axis. Does your plot confirm this conclusion?

solution A plot of the curve y2 = x3 − 4x is shown below.

1

2

−1

−2

−1−2 321
x

y
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Differentiating the equation y2 = x3 − 4x with respect to y yields

2y = 3x2 dx

dy
− 4

dx

dy
,

or

dx

dy
= 2y

3x2 − 4
.

From here, it follows that dx
dy

= 0 when y = 0, so the tangent line to this curve is vertical at the points where
the curve intersects the x-axis. This conclusion is confirmed by the plot of the curve shown above.

76. Show that for all points P on the graph in Figure 17, the segments OP and PR have equal length.

x

y

P

Tangent line

RO

FIGURE 17 Graph of x2 − y2 = a2.

solution Because of the symmetry of the graph, we may restrict attention to any point P in the first

quadrant. Suppose P has coordinates (p,
√

p2 − a2). Taking the derivative of both sides of the equation
x2 − y2 = a2 yields 2x − 2yy′ = 0, or y′ = x/y. It follows that the slope of the line tangent to the graph at
P has slope

p√
p2 − a2

and the slope of the normal line is

−
√

p2 − a2

p
.

Thus, the equation of the normal line is

y −
√

p2 − a2 = −
√

p2 − a2

p
(x − p),

and the coordinates of the point R are (2p, 0). Finally, the length of the line segment OP is√
p2 + p2 − a2 =

√
2p2 − a2,

while the length of the segment PR is√
(2p − p)2 + p2 − a2 =

√
2p2 − a2.

In Exercises 77–80, use implicit differentiation to calculate higher derivatives.

77. Consider the equation y3 − 3
2x2 = 1.

(a) Show that y′ = x/y2 and differentiate again to show that

y′′ = y2 − 2xyy′

y4

(b) Express y′′ in terms of x and y using part (a).
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solution

(a) Let y3 − 3
2x2 = 1. Then 3y2y′ − 3x = 0, and y′ = x/y2. Therefore,

y′′ = y2 · 1 − x · 2yy′

y4
= y2 − 2xyy′

y4
.

(b) Substituting the expression for y′ into the result for y′′ gives

y′′ = y2 − 2xy
(
x/y2

)
y4

= y3 − 2x2

y5 .

78. Use the method of the previous exercise to show that y′′ = −y−3 on the circle x2 + y2 = 1.

solution Let x2 + y2 = 1. Then 2x + 2yy′ = 0, and y′ = −x

y
. Thus

y′′ = −y · 1 − xy′

y2
= −

y − x
(
− x

y

)
y2

= −y2 + x2

y3
= − 1

y3
= −y−3.

79. Calculate y′′ at the point (1, 1) on the curve xy2 + y − 2 = 0 by the following steps:

(a) Find y′ by implicit differentiation and calculate y′ at the point (1, 1).

(b) Differentiate the expression for y′ found in (a). Then compute y′′ at (1, 1) by substituting x = 1, y = 1,
and the value of y′ found in (a).

solution Let xy2 + y − 2 = 0.

(a) Then x · 2yy′ + y2 · 1 + y′ = 0, and y′ = − y2

2xy + 1
. At (x, y) = (1, 1), we have y′ = −1

3
.

(b) Differentiating the expression for y′ from (a) yields

y′′ = − (2xy + 1)
(
2yy′) − y2

(
2xy′ + 2y

)
(2xy + 1)2

.

Substituting x = 1, y = 1, and y′ = − 1
3 gives

y′′ = −
(3)

(
− 2

3

)
− (1)

(
− 2

3 + 2
)

32
= −−6 + 2 − 6

27
= 10

27
.

80. Use the method of the previous exercise to compute y′′ at the point (1, 1) on the curve x3 + y3 =
3x + y − 2.

solution Let x3 + y3 = 3x + y − 2. Then 3x2 + 3y2y′ = 3 + y′, and y′ = 3(1 − x2)

3y2 − 1
.At (x, y) = (1, 1),

we find

y′ = 3(1 − 1)

3(1) − 1
= 0.

Next,

y′′ =
(
3y2 − 1

)
(−6x) − (

3 − 3x2
) (

6yy′)(
3y2 − 1

)2
.

When (x, y) = (1, 1) and y′ = 0, it follows that y′′ = −3.

In Exercises 81–83, x and y are functions of a variable t and use implicit differentiation to relate dy/dt and
dx/dt .

81. Differentiate xy = 1 with respect to t and derive the relation
dy

dt
= −y

x

dx

dt
.

solution Let xy = 1. Then x
dy

dt
+ y

dx

dt
= 0, and

dy

dt
= −y

x

dx

dt
.
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82. Differentiate

x3 + 3xy2 = 1

with respect to t and express dy/dt in terms of dx/dt , as in Exer-
cise 81.

solution Let x3 + 3xy2 = 1. Then

3x2 dx

dt
+ 6xy

dy

dt
+ 3y2 dx

dt
= 0,

and

dy

dt
= −x2 + y2

2xy

dx

dt
.

83. Calculate dy/dt in terms of dx/dt .

(a) x3 − y3 = 1

(b) y4 + 2xy + x2 = 0

solution

(a) Taking the derivative of both sides of the equation x3 − y3 = 1 with respect to t yields

3x2 dx

dt
− 3y2 dy

dt
= 0 or

dy

dt
= x2

y2

dx

dt
.

(b) Taking the derivative of both sides of the equation y4 + 2xy + x2 = 0 with respect to t yields

4y3 dy

dt
+ 2x

dy

dt
+ 2y

dx

dt
+ 2x

dx

dt
= 0,

or

dy

dt
= − x + y

2y3 + x

dx

dt
.

84. The volume V and pressure P of gas in a piston (which vary in time t) satisfy PV 3/2 = C, where
C is a constant. Prove that

dP/dt

dV /dt
= −3

2

P

V

The ratio of the derivatives is negative. Could you have predicted this from the relation PV 3/2 = C?

solution Let PV 3/2 = C, where C is a constant. Then

P · 3

2
V 1/2 dV

dt
+ V 3/2 dP

dt
= 0, so

dP/dt

dV/dt
= −3

2

P

V
.

If P is increasing (respectively, decreasing), then V = (C/P )2/3 is decreasing (respectively, increasing).
Hence the ratio of the derivatives (+/− or −/+) is negative.

Further Insights and Challenges
85. Show that if P lies on the intersection of the two curves x2 − y2 = c and xy = d (c, d constants), then
the tangents to the curves at P are perpendicular.

solution Let C1 be the curve described by x2 − y2 = c, and let C2 be the curve described by xy = d .
Suppose that P = (x0, y0) lies on the intersection of the two curves x2 − y2 = c and xy = d . Since
x2 − y2 = c, the chain rule gives us 2x − 2yy′ = 0, so that y′ = 2x

2y
= x

y
. The slope to the tangent line to C1

is x0
y0

. On the curve C2, since xy = d , the product rule yields that xy′ + y = 0, so that y′ = − y
x

. Therefore

the slope to the tangent line to C2 is − y0
x0

. The two slopes are negative reciprocals of one another, hence the
tangents to the two curves are perpendicular.
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86. The lemniscate curve (x2 + y2)2 = 4(x2 − y2) was discovered by Jacob Bernoulli in 1694, who noted
that it is “shaped like a figure 8, or a knot, or the bow of a ribbon.” Find the coordinates of the four points at
which the tangent line is horizontal (Figure 18).

1

−1

−1 1
x

y

FIGURE 18 Lemniscate curve: (x2 + y2)2 = 4(x2 − y2).

solution Consider the equation of a lemniscate curve:
(
x2 + y2

)2 = 4
(
x2 − y2

)
. Taking the derivative

of both sides of this equation, we have

2
(
x2 + y2

) (
2x + 2yy′) = 4

(
2x − 2yy′) .

Therefore,

y′ = 8x − 4x
(
x2 + y2

)
8y + 4y

(
x2 + y2

) = −
(
x2 + y2 − 2

)
x(

x2 + y2 + 2
)
y

.

If y′ = 0, then either x = 0 or x2 + y2 = 2.

• If x = 0 in the lemniscate curve, then y4 = −4y2 or y2
(
y2 + 4

) = 0. If y is real, then y = 0. The
formula for y′ in (a) is not defined at the origin (0/0). An alternative parametric analysis shows that the
slopes of the tangent lines to the curve at the origin are ±1.

• If x2 + y2 = 2 or y2 = 2 − x2, then plugging this into the lemniscate equation gives 4 = 4
(
2x2 − 2

)
which yields x = ±

√
3
2 = ±

√
6

2 . Thus y = ±
√

1
2 = ±

√
2

2 . Accordingly, the four points at which the

tangent lines to the lemniscate curve are horizontal are
(
−

√
6

2 , −
√

2
2

)
,
(
−

√
6

2 ,
√

2
2

)
,
(√

6
2 , −

√
2

2

)
, and(√

6
2 ,

√
2

2

)
.

87. Divide the curve in Figure 19 into five branches, each of which is the graph of a function. Sketch the
branches.

2

−2

−2−4 4

2
x

y

FIGURE 19 Graph of y5 − y = x2y + x + 1.

solution The branches are:

• Upper branch:

−2−4 42
x

2

−2

y

• Lower part of lower left curve:

x

y

−4 −3 −2 −1

−2

−1

1
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• Upper part of lower left curve:

x

y

−4 −3 −2 −1

−1

1

−2

• Upper part of lower right curve:

y

−1

−2

1

1 2 3 4
x

• Lower part of lower right curve:

y

−1

−2

1

1 2 3 4
x

3.9 Derivatives of General Exponential and Logarithmic Functions

Preliminary Questions
1. What is the slope of the tangent line to y = 4x at x = 0?

solution The slope of the tangent line to y = 4x at x = 0 is

d

dx
4x

∣∣∣∣
x=0

= 4x ln 4

∣∣∣∣
x=0

= ln 4.

2. What is the rate of change of y = ln x at x = 10?

solution The rate of change of y = ln x at x = 10 is

d

dx
ln x

∣∣∣∣
x=10

= 1

x

∣∣∣∣
x=10

= 1

10
.

3. What is b > 0 if the tangent line to y = bx at x = 0 has slope 2?

solution The tangent line to y = bx at x = 0 has slope

d

dx
bx

∣∣∣∣
x=0

= bx ln b

∣∣∣∣
x=0

= ln b.

This slope will be equal to 2 when

ln b = 2 or b = e2.

4. What is b if (logb x)′ = 1

3x
?

solution (logb x)′ =
(

ln x

ln b

)′
= 1

x ln b
. This derivative will equal 1

3x
when

ln b = 3 or b = e3.
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5. What are y(100) and y(101) for y = cosh x?

solution Let y = cosh x. Then y′ = sinh x, y′′ = cosh x, and this pattern repeats indefinitely. Thus,
y(100) = cosh x and y(101) = sinh x.

Exercises
In Exercises 1–20, find the derivative.

1. y = x ln x

solution
d

dx
x ln x = ln x + x

x
= ln x + 1.

2. y = t ln t − t

solution
d

dt
(t ln t − t) = t

(
1

t

)
+ ln t − 1 = ln t .

3. y = 2x3

solution
d

dx
2x3 = 3x2(ln 2)2x3

.

4. y = ln(x5)

solution
d

dx
(ln x5) = 1

x5 (5x4) = 5

x
.

5. y = ln(9x2 − 8)

solution
d

dx
ln(9x2 − 8) = 18x

9x2 − 8
.

6. y = ln(t5t )

solution Using the rules for logarithms, we write

y = ln(t5t ) = ln t + ln(5t ) = ln t + t ln 5.

Then,

d

dt
ln(t5t ) = 1

t
+ ln 5.

7. y = (ln x)2

solution
d

dx
(ln x)2 = (2 ln x)

1

x
= 2

x
ln x.

8. y = x2 ln x

solution
d

dx
x2 ln x = 2x ln x + x2

x
= 2x ln x + x.

9. y = e(ln x)2

solution
d

dx
e(ln x)2 = e(ln x)2 · 2 · ln x

x
.

10. y = ln x

x

solution
d

dx

ln x

x
=

1
x
(x) − ln x

x2
= 1 − ln x

x2
.

11. y = ln(ln x)

solution
d

dx
ln(ln x) = 1

x ln x
.

12. y = ln(cot x)

solution
d

dx
ln(cot x) = 1

cot x
(− csc2 x) = − 1

sin x cos x
.

13. y = (
ln(ln x)

)3

solution
d

dx
(ln(ln x))3 = 3(ln(ln x))2

(
1

ln x

) (
1

x

)
= 3(ln(ln x))2

x ln x
.
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14. y = ln
(
(ln x)3

)
solution

d

dx
ln((ln x)3) = 3(ln x)2

x(ln x)3
= 3

x ln x
.

Alternately, because ln((ln x)3) = 3 ln(ln x),

d

dx
ln((ln x)3) = 3

d

dx
ln(ln x) = 3 · 1

x ln x
.

15. y = ln
(
(x + 1)(2x + 9)

)
solution

d

dx
ln ((x + 1)(2x + 9)) = 1

(x + 1)(2x + 9)
· ((x + 1)2 + (2x + 9)) = 4x + 11

(x + 1)(2x + 9)
.

Alternately, because ln((x + 1)(2x + 9)) = ln(x + 1) + ln(2x + 9),

d

dx
ln((x + 1)(2x + 9)) = 1

x + 1
+ 2

2x + 9
= 4x + 11

(x + 1)(2x + 9)
.

16. y = ln

(
x + 1

x3 + 1

)

solution

d

dx
ln

(
x + 1

x3 + 1

)
= d

dx
ln

(
1

x2 − x + 1

)
= − d

dx
ln(x2 − x + 1) = − 2x − 1

x2 − x + 1
.

17. y = 11x

solution
d

dx
11x = ln 11 · 11x .

18. y = 74x−x2

solution
d

dx
74x−x2 = ln 7(4 − 2x)74x−x2

.

19. y = 2x − 3−x

x

solution
d

dx

2x − 3−x

x
= x(2x ln 2 + 3−x ln 3) − (2x − 3−x)

x2
.

20. y = 16sin x

solution
d

dx
16sin x = ln 16(cos x)16sin x .

In Exercises 21–24, compute the derivative.

21. f ′(x), f (x) = log2 x

solution f (x) = log2 x = ln x

ln 2
. Thus, f ′(x) = 1

x
· 1

ln 2
.

22. f ′(3), f (x) = log5 x

solution f (x) = ln x

ln 5
, so f ′(x) = 1

x ln 5
. Thus, f ′(3) = 1

3 ln 5
.

23.
d

dt
log3(sin t)

solution
d

dt
log3(sin t) = d

dt

(
ln(sin t)

ln 3

)
= 1

ln 3
· 1

sin t
· cos t = cot t

ln 3
.

24.
d

dt
log10(t + 2t )

solution
d

dt
log10(t + 2t ) = d

dt

(
ln(t + 2t )

ln 10

)
= 1

ln 10
· 1 + 2t ln 2

t + 2t
.
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In Exercises 25–36, find an equation of the tangent line at the point indicated.

25. f (x) = 6x , x = 2

solution Let f (x) = 6x . Then f (2) = 36, f ′(x) = 6x ln 6 and f ′(2) = 36 ln 6. The equation of the
tangent line is therefore y = 36 ln 6(x − 2) + 36.

26. y = (
√

2)x , x = 8

solution Let y = (
√

2)x . Then y(8) = 16, y′(x) = (
√

2)x ln
√

2 and y′(8) = 16 ln
√

2 = 8 ln 2. The
equation of the tangent line is therefore y = 8 ln 2(x − 8) + 16.

27. s(t) = 39t , t = 2

solution Let s(t) = 39t . Then s(2) = 318, s′(t) = 39t9 ln 3, and s′(2) = 318 · 9 ln 3 = 320 ln 3. The
equation of the tangent line is therefore y = 320 ln 3(t − 2) + 318.

28. y = π5x−2, x = 1

solution Let y = π5x−2. Then y(1) = π3, y′(x) = π5x−25 ln π , and y′(1) = 5π3 ln π . The equation of
the tangent line is therefore y = 5π3 ln π(x − 1) + π3.

29. f (x) = 5x2−2x , x = 1

solution Let f (x) = 5x2−2x+9. Then f (1) = 58. f ′(x) = ln 5 · 5x2−2x+9(2x − 2), so f ′(1) = ln 5(0) =
0. Therefore, the equation of the tangent line is y = 58.

30. s(t) = ln t , t = 5

solution Let s(t) = ln t . Then s(5) = ln 5. s′(t) = 1/t , so s′(5) = 1/5. Therefore the equation of the
tangent line is y = (1/5)(t − 5) + ln 5.

31. s(t) = ln(8 − 4t), t = 1

solution Let s(t) = ln(8 − 4t). Then s(1) = ln(8 − 4) = ln 4. s′(t) = −4
8−4t

, so s′(1) = −4/4 = −1.
Therefore the equation of the tangent line is y = −1(t − 1) + ln 4.

32. f (x) = ln(x2), x = 4

solution Let f (x) = ln x2 = 2 ln x. Then f (4) = 2 ln 4. f ′(x) = 2/x, so f ′(4) = 1/2. Therefore the
equation of the tangent line is y = (1/2)(x − 4) + 2 ln 4.

33. R(z) = log5(2z2 + 7), z = 3

solution Let R(z) = log5(2z2 + 7). Then R(3) = log5(25) = 2,

R′(z) = 4z

(2z2 + 7) ln 5
, and R′(3) = 12

25 ln 5
.

The equation of the tangent line is therefore

y = 12

25 ln 5
(z − 3) + 2.

34. y = ln(sin x), x = π

4

solution Let f (x) = ln sin x. Then f (π/4) = ln(
√

2/2). f ′(x) = cos x/ sin x = cot x, so f ′(π/4) = 1.

Therefore the equation of the tangent line is y = (x − π/4) + ln(
√

2/2).

35. f (w) = log2 w, w = 1
8

solution Let f (w) = log2 w. Then

f

(
1

8

)
= log2

1

8
= log2 2−3 = −3,

f ′(w) = 1
w ln 2 , and

f ′
(

1

8

)
= 8

ln 2
.

The equation of the tangent line is therefore

y = 8

ln 2

(
w − 1

8

)
− 3.
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36. y = log2(1 + 4x−1), x = 4

solution Let y = log2(1 + 4x−1). Then y(4) = log2(1 + 1) = 1,

y′(x) = − 4x−2

(1 + 4x−1) ln 2
, and y′(4) = − 1

8 ln 2
.

The equation of the tangent line is therefore

y = − 1

8 ln 2
(x − 4) − 1.

In Exercises 37–44, find the derivative using logarithmic differentiation as in Example 5.

37. y = (x + 5)(x + 9)

solution Let y = (x + 5)(x + 9). Then ln y = ln((x + 5)(x + 9)) = ln(x + 5) + ln(x + 9). By
logarithmic differentiation

y′

y
= 1

x + 5
+ 1

x + 9

or

y′ = (x + 5)(x + 9)

(
1

x + 5
+ 1

x + 9

)
= (x + 9) + (x + 5) = 2x + 14.

38. y = (3x + 5)(4x + 9)

solution Let y = (3x + 5)(4x + 9). Then ln y = ln((3x + 5)(4x + 9)) = ln(3x + 5) + ln(4x + 9). By
logarithmic differentiation

y′

y
= 3

3x + 5
+ 4

4x + 9

or

y′ = (3x + 5)(4x + 9)

(
3

3x + 5
+ 4

4x + 9

)
= (12x + 27) + (12x + 20) = 24x + 47.

39. y = (x − 1)(x − 12)(x + 7)

solution Let y = (x − 1)(x − 12)(x + 7). Then ln y = ln(x − 1) + ln(x − 12) + ln(x + 7). By
logarithmic differentiation,

y′

y
= 1

x − 1
+ 1

x − 12
+ 1

x + 7

or

y′ = (x − 12)(x + 7) + (x − 1)(x + 7) + (x − 1)(x − 12) = 3x2 − 12x − 79.

40. y = x(x + 1)3

(3x − 1)2

solution Let y = x(x+1)3

(3x−1)2 . Then ln y = ln x + 3 ln(x + 1) − 2 ln(3x − 1). By logarithmic differentiation

y′

y
= 1

x
+ 3

x + 1
− 6

3x − 1
,

so

y′ = (x + 1)3

(3x − 1)2
+ 3x(x + 1)2

(3x − 1)2
− 6x(x + 1)3

(3x − 1)3
.
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41. y = x(x2 + 1)√
x + 1

solution Let y = x(x2+1)√
x+1

. Then ln y = ln x + ln(x2 + 1) − 1
2 ln(x + 1). By logarithmic differentiation

y′

y
= 1

x
+ 2x

x2 + 1
− 1

2(x + 1)
,

so

y′ = x(x2 + 1)√
x + 1

(
1

x
+ 2x

x2 + 1
− 1

2(x + 1)

)
.

42. y = (2x + 1)(4x2)
√

x − 9

solution Let y = (2x + 1)(4x2)
√

x − 9. Then

ln y = ln(2x + 1) + ln 4x2 + ln(x − 9)1/2 = ln(2x + 1) + ln 4 + 2 ln x + 1

2
ln(x − 9).

By logarithmic differentiation

y′

y
= 2

2x + 1
+ 2

x
+ 1

2(x − 9)
,

so

y′ = (2x + 1)(4x2)
√

x − 9

(
2

2x + 1
+ 2

x
+ 1

2(x − 9)

)
.

43. y =
√

x(x + 2)

(2x + 1)(3x + 2)

solution Let y =
√

x(x+2)
(2x+1)(2x+2)

. Then ln y = 1
2 [ln(x) + ln(x + 2) − ln(2x + 1) − ln(2x + 2)]. By

logarithmic differentiation

y′

y
= 1

2

(
1

x
+ 1

x + 2
− 2

2x + 1
− 2

2x + 2

)
,

so

y′ = 1

2

√
x(x + 2)

(2x + 1)(2x + 2)
·
(

1

x
+ 1

x + 2
− 2

2x + 1
− 1

x + 1

)
.

44. y = (x3 + 1)(x4 + 2)(x5 + 3)2

solution Let y = (x2 + 1)(x2 + 2)(x2 + 3)2. Then ln y = ln(x2 + 1) + ln(x2 + 2) + 2 ln(x2 + 3). By
logarithmic differentiation

y′

y
= 2x

x2 + 1
+ 2x

x2 + 2
+ 4x

x2 + 3
,

so

y′ = (x2 + 1)(x2 + 2)(x2 + 3)2
(

2x

x2 + 1
+ 2x

x2 + 2
+ 4x

x2 + 3

)
.

In Exercises 45–50, find the derivative using either method of Example 6.

45. f (x) = x3x

solution Method 1: x3x = e3x ln x , so

d

dx
x3x = e3x ln x(3 + 3 ln x) = x3x(3 + 3 ln x).



S E C T I O N 3.9 Derivatives of General Exponential and Logarithmic Functions 337

Method 2: Let y = x3x . Then, ln y = 3x ln x. By logarithmic differentiation

y′

y
= 3x · 1

x
+ 3 ln x,

so

y′ = y(3 + 3 ln x) = x3x (3 + 3 ln x) .

46. f (x) = x3x

solution Method 1: x3x = e3x ln x , so

d

dx
x3x = e3x ln x

(
3x

x
+ 3x ln 3 ln x

)
= x3x

3x

(
1

x
+ ln 3 ln x

)
.

Method 2: Let y = x3x
. Then, ln y = 3x ln x. By logarithmic differentiation

y′

y
= 3x · 1

x
+ 3x ln 3 ln x,

so

y′ = y

(
3x

x
+ 3x ln 3 ln x

)
= x3x

3x

(
1

x
+ ln 3 ln x

)
.

47. f (x) = xex

solution Method 1: xex = eex ln x , so

d

dx
xex = eex ln x

(
ex

x
+ ex ln x

)
= xex

(
ex

x
+ ex ln x

)
.

Method 2: Let y = xex
. Then ln y = ex ln x. By logarithmic differentiation

y′

y
= ex · 1

x
+ ex ln x,

so

y′ = y

(
ex

x
+ ex ln x

)
= xex

(
ex

x
+ ex ln x

)
.

48. f (x) = xx2

solution Method 1: xx2 = ex2 ln x , so

d

dx
xx2 = ex2 ln x(x + 2x ln x) = xx2

(x + 2x ln x) = xx2+1(1 + 2 ln x).

Method 2: Let y = xx2
. Then ln y = x2 ln x. By logarithmic differentiation

y′

y
= x + 2x ln x,

so

y′ = xx2
(x + 2x ln x) = xx2+1(1 + 2 ln x).

49. f (x) = xcos x

solution Method 1: xcos x = ecos x ln x , so

d

dx
xcos x = ecos x ln x

(cos x

x
− sin x ln x

)
= xcos x

(cos x

x
− sin x ln x

)
.

Method 2: Let y = xcos x . Then ln y = cos x ln x. By logarithmic differentiation

y′

y
= cos x · 1

x
+ ln x(− sin x),
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so

y′ = y
(cos x

x
− sin x ln x

)
= xcos x

(cos x

x
− sin x ln x

)
.

50. f (x) = exx

solution Method 1:

d

dx
exx = exx d

dx
xx = exx · xx(1 + ln x),

by Example 6 from the text.
Method 2: Let y = exx

. Then ln y = xx ln e = xx . By logarithmic differentiation and Example 6

y′

y
= xx(1 + ln x), so y′ = exx

(xx)(1 + ln x).

In Exercises 51–74, calculate the derivative.

51. y = sinh(9x)

solution
d

dx
sinh(9x) = 9 cosh(9x).

52. y = sinh(x2)

solution
d

dx
sinh(x2) = 2x cosh(x2).

53. y = cosh2(9 − 3t)

solution
d

dt
cosh2(9 − 3t) = 2 cosh(9 − 3t) · (−3 sinh(9 − 3t)) = −6 cosh(9 − 3t) sinh(9 − 3t).

54. y = tanh(t2 + 1)

solution
d

dt
tanh(t2 + 1) = 2t sech2(t2 + 1).

55. y = √
cosh x + 1

solution
d

dx

√
cosh x + 1 = 1

2
(cosh x + 1)−1/2 sinh x.

56. y = sinh x tanh x

solution
d

dx
sinh x tanh x = cosh x tanh x + sinh x sech2 x = sinh x + tanh x sech x.

57. y = coth t

1 + tanh t

solution
d

dt

coth t

1 + tanh t
= −csch t (csch t + 2 sech t)

(1 + tanh t)2
.

58. y = (ln(cosh x))5

solution
d

dx
ln(cosh x) = sinh x

cosh x
= tanh x.

59. y = sinh(ln x)

solution
d

dx
sinh(ln x) = cosh(ln x)

x
.

60. y = ecoth x

solution
d

dx
ecoth x = − csch2 x · ecoth x .

61. y = tanh(ex)

solution
d

dx
tanh(ex) = ex sech2(ex).

62. y = sinh(cosh3 x)

solution
d

dx
sinh(cosh x) = cosh(cosh x)(sinh x).
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63. y = sech(
√

x)

solution
d

dx
sech(

√
x) = −1

2
x−1/2 sech

√
x tanh

√
x.

64. y = ln(coth x)

solution
d

dx
ln(coth x) = − csch2 x

coth x
= −1

sinh2 x( cosh x
sinh x

)
= −1

sinh x cosh x
.

65. y = sech x coth x

solution
d

dx
sech x coth x = d

dx
csch x = − csch x coth x.

66. y = xsinh x

solution

d

dx
xsinh x = d

dx
eln x sinh x =

(
cosh x ln x + sinh x

x

)
esinh x ln x = xsinh x

(
cosh x ln x + sinh x

x

)
.

67. y = cosh−1(3x)

solution
d

dx
cosh−1(3x) = 3√

9x2 − 1
.

68. y = tanh−1(ex + x2)

solution
d

dx
tanh−1(ex + x2) = ex + 2x

1 − (ex + x2)2
.

69. y = (sinh−1(x2))3

solution
d

dx
sinh−1(x2) = 2x√

x4 + 1
.

70. y = (csch−1 3x)4

solution
d

dx
(csch−1 3x)4 = 4(csch−1 3x)3

( −1

|3x|√1 + 9x2

)
(3) = −4(csch−1 3x)3

|x|√1 + 9x2
.

71. y = ecosh−1 x

solution
d

dx
ecosh−1 x = ecosh−1 x

(
1√

x2 − 1

)
.

72. y = sinh−1(
√

x2 + 1)

solution
d

dx
sinh−1(

√
x2 + 1) = 1√

x2 + 1 + 1

(
1

2
√

x2 + 1

)
(2x) = x√

x2 + 2 · √
x2 + 1

.

73. y = tanh−1(ln t)

solution
d

dt
tanh−1(ln t) = 1

t (1 − (ln t)2)
.

74. y = ln(tanh−1 x)

solution
d

dx
ln(tanh−1 x) = 1

tanh−1 x

(
1

1 − x2

)
.

In Exercises 75–77, prove the formula.

75.
d

dx
(coth x) = − csch2 x

solution
d

dx
coth x = d

dx

cosh x

sinh x
= sinh2 x − cosh2 x

sinh2 x
= −1

sinh2 x
= − csch2 x.
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76.
d

dt
sinh−1 t = 1√

t2 + 1

solution Let x = sinh−1 t . Then t = sinh x and

1 = cosh x
dx

dt
or

dx

dt
= 1

cosh x
.

Thus,

d

dt
sinh−1 t = 1

cosh(sinh−1 t)
.

Now, note

d

dt

[
cosh(sinh−1 t)

] = sinh(sinh−1 t)
1√

1 + t2
= t√

1 + t2
= d

dt

√
1 + t2,

so the functions cosh(sinh−1 t) and
√

1 + t2 differ by a constant; substituting t = 0 we find that the constant
is 0. Therefore,

cosh(sinh−1 t) =
√

t2 + 1,

and

d

dt
sinh−1 t = 1

cosh(sinh−1 t)
= 1√

t2 + 1
.

77.
d

dt
cosh−1 t = 1√

t2 − 1
for t > 1

solution Let x = cosh−1 t . Then t = cosh x and

1 = sinh x
dx

dt
or

dx

dt
= 1

sinh x
.

Thus, for t > 1,

d

dt
cosh−1 t = 1

sinh(cosh−1 t)
.

Now, for t ≥ 1, note

d

dt

[
sinh(cosh−1 t)

] = cosh(cosh−1 t)
1√

t2 − 1
= t√

t2 − 1
= d

dt

√
t2 − 1,

so the functions sinh(cosh−1 t) and
√

t2 − 1 differ by a constant; substituting t = 1 we find that the constant
is 0. Therefore, for t ≥ 1,

sinh(cosh−1 t) =
√

t2 − 1,

and

d

dt
cosh−1 t = 1

sinh(cosh−1 t)
= 1√

t2 − 1
.

78. Use the formula (ln f (x))′ = f ′(x)/f (x) to show that ln x and ln(2x) have the same derivative.
Is there a simpler explanation of this result?

solution Observe

(ln x)′ = 1

x
and (ln 2x)′ = 2

2x
= 1

x
.

As an alternative explanation, note that ln(2x) = ln 2 + ln x. Hence, ln x and ln(2x) differ by a constant,
which implies the two functions have the same derivative.
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79. According to one simplified model, the purchasing power of a dollar in the year 2000 + t is equal to
P(t) = 0.68(1.04)−t (in 1983 dollars). Calculate the predicted rate of decline in purchasing power (in cents
per year) in the year 2020.

solution First, note that

P ′(t) = −0.68(1.04)−t ln 1.04;
thus, the rate of change in the year 2020 is

P ′(20) = −0.68(1.04)−20 ln 1.04 = −0.0122.

That is, the rate of decline is 1.22 cents per year.

80. The energy E (in joules) radiated as seismic waves by an earthquake of Richter magnitude M satisfies
log10 E = 4.8 + 1.5M .
(a) Show that when M increases by 1, the energy increases by a factor of approximately 31.5.
(b) Calculate dE/dM .

solution Solving log10 E = 4.8 + 1.5M for E yields

E = 104.8+1.5M.

(a) We find

E(M + 1) = 104.8+1.5(M+1) = 101.5104.8+1.5M ≈ 31.6E(M).

(b)

dE

dM
= (1.5 ln 10)104.8+1.5M.

81. Show that for any constants M , k, and a, the function

y(t) = 1

2
M

(
1 + tanh

(
k(t − a)

2

))

satisfies the logistic equation:
y′

y
= k

(
1 − y

M

)
.

solution Let

y(t) = 1

2
M

(
1 + tanh

(
k(t − a)

2

))
.

Then

1 − y(t)

M
= 1

2

(
1 − tanh

(
k(t − a)

2

))
,

and

ky(t)

(
1 − y(t)

M

)
= 1

4
Mk

(
1 − tanh2

(
k(t − a)

2

))

= 1

4
Mk sech2

(
k(t − a)

2

)
.

Finally,

y′(t) = 1

4
Mk sech2

(
k(t − a)

2

)
= ky(t)

(
1 − y(t)

M

)
.

82. Show that V (x) = 2 ln(tanh(x/2)) satisfies the Poisson–Boltzmann equation V ′′(x) = sinh(V (x)),
which is used to describe electrostatic forces in certain molecules.

solution Let V (x) = 2 ln(tanh(x/2)). Then

V ′(x) = 2
1

tanh(x/2)
· 1

2
sech2(x/2) = 1

sinh(x/2) cosh(x/2)



342 C H A P T E R 3 DIFFERENTIATION

and

V ′′(x) = −1

2

sinh2(x/2) + cosh2(x/2)

sinh2(x/2) cosh2(x/2)
= −1

2

(
sech2(x/2) + csch2(x/2)

)
.

On the other hand,

sinh(V (x)) = e2 ln(tanh(x/2)) − e−2 ln(tanh(x/2))

2

= tanh2(x/2) − coth2(x/2)

2

= (1 − sech2(x/2)) − (1 + csch2(x/2))

2
= −1

2

(
sech2(x/2) + csch2(x/2)

)
.

Thus, V ′′(x) = sinh(V (x)).

83. The Palermo Technical Impact Hazard Scale P is used to quantify the risk associated with the impact of
an asteroid colliding with the earth:

P = log10

(
piE

0.8

0.03T

)

where pi is the probability of impact, T is the number of years until impact, and E is the energy of impact
(in megatons of TNT). The risk is greater than a random event of similar magnitude if P > 0.

(a) Calculate dP/dT , assuming that pi = 2 × 10−5 and E = 2 megatons.

(b) Use the derivative to estimate the change in P if T increases from 8 to 9 years.

solution
(a) Observe that

P = log10

(
piE

0.8

0.03T

)
= log10

(
piE

0.8

0.03

)
− log10 T ,

so

dP

dT
= − 1

T ln 10
.

(b) If T increases to 26 years from 25 years, then

�P ≈ dP

dT

∣∣∣∣
T =25

· �T = − 1

(25 yr) ln 10
· (1 yr) = −0.017

Further Insights and Challenges
84. (a) Show that if f and g are differentiable, then

d

dx
ln(f (x)g(x)) = f ′(x)

f (x)
+ g′(x)

g(x)
1

(b) Give a new proof of the Product Rule by observing that the left-hand side of Eq. (1) is equal to
(f (x)g(x))′

f (x)g(x)
.

solution

(a)
d

dx
ln f (x)g(x) = d

dx
(ln f (x) + ln g(x)) = f ′(x)

f (x)
+ g′(x)

g(x)
.

(b) By part (a),

d

dx
ln f (x)g(x) = f ′(x)

f (x)
+ g′(x)

g(x)
= f ′(x)g(x) + f (x)g′(x)

f (x)g(x)
.

Alternately,

d

dx
ln f (x)g(x) = (f (x)g(x))′

f (x)g(x)
.



S E C T I O N 3.10 Related Rates 343

Thus,

(f (x)g(x))′

f (x)g(x)
= f ′(x)g(x) + f (x)g′(x)

f (x)g(x)
,

or

(f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x).

85. Use the formula logb x = loga x

loga b
for a, b > 0 to verify the formula

d

dx
logb x = 1

(ln b)x

solution
d

dx
logb x = d

dx

ln x

ln b
= 1

(ln b)x
.

3.10 Related Rates

Preliminary Questions
1. Assign variables and restate the following problem in terms of known and unknown derivatives (but do

not solve it): How fast is the volume of a cube increasing if its side increases at a rate of 0.5 cm/s?

solution Let s and V denote the length of the side and the corresponding volume of a cube, respectively.
Determine dV

dt
if ds

dt
= 0.5 cm/s.

2. What is the relation between dV /dt and dr/dt if V = ( 4
3

)
πr3?

solution Applying the general power rule, we find dV
dt

= 4πr2 dr
dt

.

In Questions 3 and 4, water pours into a cylindrical glass of radius 4 cm. Let V and h denote the volume and
water level respectively, at time t .

3. Restate this question in terms of dV /dt and dh/dt : How fast is the water level rising if water pours in
at a rate of 2 cm3/min?

solution Determine dh
dt

if dV
dt

= 2 cm3/min.

4. Restate this question in terms of dV /dt and dh/dt : At what rate is water pouring in if the water level
rises at a rate of 1 cm/min?

solution Determine dV
dt

if dh
dt

= 1 cm/min.

Exercises
In Exercises 1 and 2, consider a rectangular bathtub whose base is 18 ft2.

1. How fast is the water level rising if water is filling the tub at a rate of 0.7 ft3/min?

solution Let h be the height of the water in the tub and V be the volume of the water. Then V = 18h and
dV

dt
= 18

dh

dt
. Thus

dh

dt
= 1

18

dV

dt
= 1

18
(0.7) ≈ 0.039 ft/min.

2. At what rate is water pouring into the tub if the water level rises at a rate of 0.8 ft/min?

solution Let h be the height of the water in the tub and V its volume. Then V = 18h and

dV

dt
= 18

dh

dt
= 18 (0.8) = 14.4 ft3/min.
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3. The radius of a circular oil slick expands at a rate of 2 m/min.

(a) How fast is the area of the oil slick increasing when the radius is 25 m?

(b) If the radius is 0 at time t = 0, how fast is the area increasing after 3 min?

solution Let r be the radius of the oil slick and A its area.

(a) Then A = πr2 and
dA

dt
= 2πr

dr

dt
. Substituting r = 25 and dr

dt
= 2, we find

dA

dt
= 2π (25) (2) = 100π ≈ 314.16 m2/min.

(b) Since dr
dt

= 2 and r(0) = 0, it follows that r(t) = 2t . Thus, r(3) = 6 and

dA

dt
= 2π (6) (2) = 24π ≈ 75.40 m2/min.

4. At what rate is the diagonal of a cube increasing if its edges are increasing at a rate of 2 cm/s?

solution Let s be the length of an edge of the cube and q the length of its diagonal. Two applications of

the Pythagorean Theorem (or the distance formula) yield q = √
3s. Thus

dq

dt
= √

3
ds

dt
. Using ds

dt
= 2,

dq

dt
= √

3 × 2 = 2
√

3 ≈ 3.46 cm/s.

In Exercises 5–8, assume that the radius r of a sphere is expanding at a rate of 30 cm/min. The volume of a
sphere is V = 4

3πr3 and its surface area is 4πr2. Determine the given rate.

5. Volume with respect to time when r = 15 cm

solution As the radius is expanding at 30 centimeters per minute, we know that dr
dt

= 30 cm/min. Taking
d
dt

of the equation V = 4
3πr3 yields

dV

dt
= 4

3
π

(
3r2 dr

dt

)
= 4πr2 dr

dt
.

Substituting r = 15 and dr
dt

= 30 yields

dV

dt
= 4π(15)2(30) = 27000π cm3/min.

6. Volume with respect to time at t = 2 min, assuming that r = 0 at t = 0

solution Taking d
dt

of the equation V = 4
3πr3 yields dV

dt
= 4πr2 dr

dt
. Since dr

dt
= 30 and r(0) = 0, it

follows that r(t) = 30t . From this, r(2) = 60, so

dV

dt
= 4π(602)(30) = 432000π cm3/min.

7. Surface area with respect to time when r = 40 cm

solution Taking the derivative of both sides of A = 4πr2 with respect to t yields dA
dt

= 8πr dr
dt

. dr
dt

= 30,
so

dA

dt
= 8π(40)(30) = 9600π cm2/min.

8. Surface area with respect to time at t = 2 min, assuming that r = 10 at t = 0

solution Taking d
dt

of both sides of A = 4πr2 yields dA
dt

= 8πr dr
dt

. Since r = 10 at t = 0 and dr
dt

= 30,
r = 30t + 10. Hence, at t = 2,

dA

dt
= 8π(30 · 2 + 10)(30) = 16800π cm2/min.
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In Exercises 9–12, refer to a 5-m ladder sliding down a wall, as in Figures 1 and 2. The variable h is the
height of the ladder’s top at time t , and x is the distance from the wall to the ladder’s bottom.

9. Assume the bottom slides away from the wall at a rate of 0.8 m/s. Find the velocity of the top of the
ladder at t = 2 s if the bottom is 1.5 m from the wall at t = 0 s.

solution Let x denote the distance from the base of the ladder to the wall, and h denote the height of the
top of the ladder from the floor. The ladder is 5 m long, so h2 + x2 = 52. At any time t , x = 1.5 + 0.8t .
Therefore, at time t = 2, the base is x = 1.5 + 0.8(2) = 3.1 m from the wall. Furthermore, we have

2h
dh

dt
+ 2x

dx

dt
= 0 so

dh

dt
= −x

h

dx

dt
.

Substituting x = 3.1, h = √
52 − 3.12 and dx

dt
= 0.8, we obtain

dh

dt
= − 3.1√

52 − 3.12
(0.8) ≈ −0.632 m/s.

10. Suppose that the top is sliding down the wall at a rate of 1.2 m/s. Calculate dx/dt when h = 3 m.

solution Let h be the height of the ladder’s top and x the distance from the wall of the ladder’s bottom.

Then h2 + x2 = 52. Thus 2h
dh

dt
+ 2x

dx

dt
= 0, and

dx

dt
= −h

x

dh

dt
. With h = 3, x = √

52 − 32 = 4, and
dh
dt

= −1.2, we find

dx

dt
= −3

4
(−1.2) = 0.9 m/s.

11. Suppose that h(0) = 4 and the top slides down the wall at a rate of 1.2 m/s. Calculate x and dx/dt at
t = 2 s.

solution Let h and x be the height of the ladder’s top and the distance from the wall of the ladder’s bottom,
respectively. After 2 seconds, h = 4 + 2 (−1.2) = 1.6 m. Since h2 + x2 = 52,

x =
√

52 − 1.62 = 4.737 m.

Furthermore, we have 2h
dh

dt
+ 2x

dx

dt
= 0, so that

dx

dt
= −h

x

dh

dt
. Substituting h = 1.6, x = 4.737, and

dh
dt

= −1.2, we find

dx

dt
= − 1.6

4.737
(−1.2) ≈ 0.405 m/s.

12. What is the relation between h and x at the moment when the top and bottom of the ladder move at the
same speed?

solution Let h and x be the height of the ladder’s top and the distance from the wall of the ladder’s
bottom, respectively. When the top and the bottom of the ladder are moving at the same speed (say s > 0),

their velocities satisfy
dh

dt
= −dx

dt
= −s. Since h2 + x2 = 52, we have 2h

dh

dt
+ 2x

dx

dt
= 0 or −hs + xs = 0.

This implies h = x.

13. A conical tank has height 3 m and radius 2 m at the top. Water flows in at a rate of 2 m3/min. How fast is
the water level rising when it is 2 m?

solution Consider the cone of water in the tank at a certain instant. Let r be the radius of its (inverted)
base, h its height, and V its volume. By similar triangles, r

h
= 2

3 or r = 2
3h and thus V = 1

3πr2h = 4
27πh3.

Therefore,

dV

dt
= 4

9πh2 dh

dt
,

and

dh

dt
= 9

4πh2

dV

dt
.

Substituting h = 2 and dV
dt

= 2 yields

dh

dt
= 9

4π (2)2
· 2 = 9

8π
≈ 0.36 m/min.
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14. Follow the same set-up as in Exercise 13, but assume that the water level is rising at a rate of 0.3 m/min
when it is 2 m. At what rate is water flowing in?

solution Consider the cone of water in the tank at a certain instant. Let r be the radius of its (inverted)
base, h its height, and V its volume. By similar triangles, r

h
= 2

3 or r = 2
3h and thus V = 1

3πr2h = 4
27πh3.

Accordingly,

dV

dt
= 4

9
πh2 dh

dt
.

Substituting h = 2 and dh
dt

= 0.3 yields

dV

dt
= 4

9
π (2)2 (0.3) ≈ 1.68 m3/min.

15. The radius r and height h of a circular cone change at a rate of 2 cm/s. How fast is the volume of the cone
increasing when r = 10 and h = 20?

solution Let r be the radius,hbe the height, andV be the volume of a right circular cone.ThenV = 1
3πr2h,

and

dV

dt
= 1

3
π

(
r2 dh

dt
+ 2hr

dr

dt

)
.

When r = 10, h = 20, and dr
dt

= dh
dt

= 2, we find

dV

dt
= π

3

(
102 · 2 + 2 · 20 · 10 · 2

)
= 1000π

3
≈ 1047.20 cm3/s.

16. A road perpendicular to a highway leads to a farmhouse located 2 km away (Figure 8). An automobile
travels past the farmhouse at a speed of 80 km/h. How fast is the distance between the automobile and the
farmhouse increasing when the automobile is 6 km past the intersection of the highway and the road?

80 km/h

Automobile

2

FIGURE 8

solution Let l denote the distance between the automobile and the farmhouse, and let s denote the distance
past the intersection of the highway and the road. Then l2 = 22 + s2. Taking the derivative of both sides of
this equation yields 2l dl

dt
= 2s ds

dt
, so

dl

dt
= s

l

ds

dt
.

When the auto is 6 km past the intersection, we have

dl

dt
= 6 · 80√

22 + 62
= 480√

40
= 24

√
10 ≈ 75.89 km/h.

17. A man of height 1.8 m walks away from a 5-m lamppost at a speed of 1.2 m/s (Figure 9). Find the rate at
which his shadow is increasing in length.

x y

5

FIGURE 9
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solution Since the man is moving at a rate of 1.2 m/s, his distance from the light post at any given time
is x = 1.2t . Knowing the man is 1.8 meters tall and that the length of his shadow is denoted by y, we set up
a proportion of similar triangles from the diagram:

y

1.8
= 1.2t + y

5
.

Clearing fractions and solving for y yields

y = 0.675t.

Thus, dy/dt = 0.675 meters per second is the rate at which the length of the shadow is increasing.

18. As Claudia walks away from a 264-cm lamppost, the tip of her shadow moves twice as fast as she does.
What is Claudia’s height?

solution Let L be the distance from the base of the lamppost to the tip of Claudia’s shadow, let x denote
the distance from the base of the lamppost to Claudia’s feet, and let h denote Claudia’s height. The right
triangle with legs L − x and h (formed by Claudia and her shadow) and the right triangle with legs L and
264 (formed by the lamppost and the total distance L) are similar. By similarity

L − x

h
= L

264
.

h is constant, so taking the derivative of both sides of this equation yields

dL/dt − dx/dt

h
= dL/dt

264
.

The problem states that dL
dt

= 2 dx
dt

, so

264

(
2
dx

dt
− dx

dt

)
= 2h

dx

dt
or 264 = 2h.

Hence, h = 132 cm.

19. At a given moment, a plane passes directly above a radar station at an altitude of 6 km.

(a) The plane’s speed is 800 km/h. How fast is the distance between the plane and the station changing half
a minute later?

(b) How fast is the distance between the plane and the station changing when the plane passes directly above
the station?

solution Let x be the distance of the plane from the station along the ground and h the distance through
the air.

(a) By the Pythagorean Theorem, we have

h2 = x2 + 62 = x2 + 36.

Thus 2h
dh

dt
= 2x

dx

dt
, and

dh

dt
= x

h

dx

dt
. After half a minute, x = 1

2 × 1
60 × 800 = 20

3 kilometers. With

x = 20
3 ,

h =
√(

20

3

)2

+ 36 = 1

3

√
724 = 2

3

√
181 ≈ 8.969 km,

and dx
dt

= 800,

dh

dt
= 20

3

3

2
√

181
× 800 = 8000√

181
≈ 594.64 km/h.

(b) When the plane is directly above the station, x = 0, so the distance between the plane and the station is
not changing, for at this instant we have

dh

dt
= 0

6
× 800 = 0 km/h.
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20. In the setting of Exercise 19, let θ be the angle that the line through the radar station and the plane makes
with the horizontal. How fast is θ changing 12 min after the plane passes over the radar station?

solution Let the distance x and angle θ be defined as in the figure below. Then

tan θ = 6

x
and sec2 θ

dθ

dt
= − 6

x2

dx

dt
.

Because the plane is traveling at 800 km/h, 12 minutes after the plane passes over the radar station,

x = 160 and tan θ = 3

80
.

Furthermore,

sec2 θ = 1 + tan2 θ = 1 + 32

802
.

Finally,

dθ

dt
= − 6

1602

1

1 + 32

802

800 = −1200

6409
= −0.187 rad/hour.

x

q

6

Plane

Radar
station

21. A hot air balloon rising vertically is tracked by an observer located 4 km from the lift-off point. At a
certain moment, the angle between the observer’s line of sight and the horizontal is π

5 , and it is changing at a
rate of 0.2 rad/min. How fast is the balloon rising at this moment?

solution Let y be the height of the balloon (in miles) and θ the angle between the line-of-sight and the

horizontal. Via trigonometry, we have tan θ = y

4
. Therefore,

sec2 θ · dθ

dt
= 1

4

dy

dt
,

and

dy

dt
= 4

dθ

dt
sec2 θ.

Using dθ
dt

= 0.2 and θ = π
5 yields

dy

dt
= 4 (0.2)

1

cos2 (π/5)
≈ 1.22 km/min.

22. A laser pointer is placed on a platform that rotates at a rate of 20 revolutions per minute. The beam hits a
wall 8 m away, producing a dot of light that moves horizontally along the wall. Let θ be the angle between the
beam and the line through the searchlight perpendicular to the wall (Figure 10). How fast is this dot moving
when θ = π

6 ?

8 m
θ

Wall

Laser

FIGURE 10

solution Let y be the distance between the dot of light and the point of intersection of the wall and the
line through the searchlight perpendicular to the wall. Let θ be the angle between the beam of light and the
line. Using trigonometry, we have tan θ = y

8 . Therefore,

sec2 θ · dθ

dt
= 1

8

dy

dt
,
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and

dy

dt
= 8

dθ

dt
sec2 θ.

With θ = π
6 and dθ

dt
= 40π , we find

dy

dt
= 8 (40π)

1

cos2 (π/6)
= 1280

3
π ≈ 1340.4 m/min.

23. A rocket travels vertically at a speed of 1200 km/h. The rocket is tracked through a telescope by an
observer located 16 km from the launching pad. Find the rate at which the angle between the telescope and
the ground is increasing 3 min after lift-off.

solution Let y be the height of the rocket and θ the angle between the telescope and the ground. Using
trigonometry, we have tan θ = y

16 . Therefore,

sec2 θ · dθ

dt
= 1

16

dy

dt
,

and

dθ

dt
= cos2 θ

16

dy

dt
.

After the rocket has traveled for 3 minutes (or 1
20 hour), its height is 1

20 × 1200 = 60 km. At this instant,
tan θ = 60/16 = 15/4 and thus

cos θ = 4√
152 + 42

= 4√
241

.

Finally,

dθ

dt
= 16/241

16
(1200) = 1200

241
≈ 4.98 rad/hr.

24. Using a telescope, you track a rocket that was launched 4 km away, recording the angle θ between the
telescope and the ground at half-second intervals. Estimate the velocity of the rocket if θ(10) = 0.205 and
θ(10.5) = 0.225.

solution Let h be the height of the vertically ascending rocket. Using trigonometry, tan θ = h

4
, so

dh

dt
= 4 sec2 θ · dθ

dt
.

We are given θ(10) = 0.205, and we can estimate

dθ

dt

∣∣∣∣
t=10

≈ θ(10.5) − θ(10)

0.5
= 0.04.

Thus,

dh

dt
≈ 4 sec2(0.205) · (0.04) ≈ 0.166 km/s,

or roughly 600 km/h.

25. A police car traveling south toward Sioux Falls at 160 km/h pursues a truck traveling east away from
Sioux Falls, Iowa, at 140 km/h (Figure 11). At time t = 0, the police car is 20 km north and the truck is 30 km
east of Sioux Falls. Calculate the rate at which the distance between the vehicles is changing:

(a) At time t = 0

(b) 5 min later
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160 km/h

140 km/h

Sioux Falls

x

y

FIGURE 11

solution Let y denote the distance the police car is north of Sioux Falls and x the distance the truck is
east of Sioux Falls. Then y = 20 − 160t and x = 30 + 140t . If � denotes the distance between the police car
and the truck, then

�2 = x2 + y2 = (30 + 140t)2 + (20 − 160t)2

and

�
d�

dt
= 140(30 + 140t) − 160(20 − 160t) = 1000 + 45200t.

(a) At t = 0, � = √
302 + 202 = 10

√
13, so

d�

dt
= 1000

10
√

13
= 100

√
13

13
≈ 27.735 km/h.

(b) At t = 5 minutes = 1
12 hour,

� =
√(

30 + 140 · 1

12

)2

+
(

20 − 160 · 1

12

)2

≈ 42.197 km,

and

d�

dt
= 1000 + 45200 · 1

12

42.197
≈ 112.962 km/h.

26. A car travels down a highway at 25 m/s. An observer stands 150 m from the highway.

(a) How fast is the distance from the observer to the car increasing when the car passes in front of the
observer? Explain your answer without making any calculations.

(b) How fast is the distance increasing 20 s later?

solution Let x be the distance (in feet) along the road that the car has traveled and h be the distance (in
feet) between the car and the observer.

(a) Before the car passes the observer, we have dh/dt < 0; after it passes, we have dh/dt > 0. So at the
instant it passes we have dh/dt = 0, given that dh/dt varies continuously since the car travels at a constant
velocity.

(b) By the Pythagorean Theorem, we have h2 = x2 + 1502. Thus

2h
dh

dt
= 2x

dx

dt
,

and

dh

dt
= x

h

dx

dt
.

The car travels at 25 m/s, so after 20 seconds, x = 25(20) = 500 meters. Therefore,

dh

dt
= 500√

5002 + 1502
(25) ≈ 23.95 m/s.

27. In the setting of Example 5, at a certain moment, the tractor’s speed is 3 m/s and the bale is rising at 2
m/s. How far is the tractor from the bale at this moment?
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solution From Example 5, we have the equation

x dx
dt√

x2 + 4.52
= dh

dt
,

where x denotes the distance from the tractor to the bale and h denotes the height of the bale. Given

dx

dt
= 3 and

dh

dt
= 2,

it follows that

3x√
4.52 + x2

= 2,

which yields x = √
16.2 ≈ 4.025 m.

28. Placido pulls a rope attached to a wagon through a pulley at a rate of q m/s. With dimensions as in Figure
12:

(a) Find a formula for the speed of the wagon in terms of q and the variable x in the figure.

(b) Find the speed of the wagon when x = 0.6 if q = 0.5 m/s.

x

0.6 m

3 m

FIGURE 12

solution Let h be the distance from the pulley to the loop on the wagon. Using the Pythagorean Theorem,
we have h2 = x2 + (3 − 0.6)2 = x2 + 2.42.

(a) Thus 2h
dh

dt
= 2x

dx

dt
, and

dx

dt
= h

x

dh

dt
. Given dh/dt = q, it follows that

dx

dt
=

√
x2 + 2.42

x
q.

(b) As Placido pulls the rope at the rate of q = 0.5 m/s and x = 0.6

dx

dt
=

√
0.62 + 2.42

0.6
(0.5) ≈ 2.06 m/s.

29. Julian is jogging around a circular track of radius 50 m. In a coordinate system with its origin at the center
of the track, Julian’s x-coordinate is changing at a rate of −1.25 m/s when his coordinates are (40, 30). Find
dy/dt at this moment.

solution We have x2 + y2 = 502, so

2x
dx

dt
+ 2y

dy

dt
= 0 or

dy

dt
= −x

y

dx

dt
.

Given x = 40, y = 30 and dx/dt = −1.25, we find

dy

dt
= −40

30
(−1.25) = 5

3
m/s.

30. A particle moves counterclockwise around the ellipse with equation 9x2 + 16y2 = 25 (Figure 13).

(a) In which of the four quadrants is dx/dt > 0? Explain.

(b) Find a relation between dx/dt and dy/dt .

(c) At what rate is the x-coordinate changing when the particle passes the point (1, 1) if its y-coordinate is
increasing at a rate of 6 m/s?

(d) Find dy/dt when the particle is at the top and bottom of the ellipse.
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5
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5
4

5
3

x

y

−

5
4

−

FIGURE 13

solution A particle moves counterclockwise around the ellipse with equation 9x2 + 16y2 = 25.

(a) The derivative dx/dt is positive in quadrants 3 and 4 since the particle is moving to the right.

(b) From 9x2 + 16y2 = 25 we have 18x
dx

dt
+ 32y

dy

dt
= 0.

(c) From (b), we have
dx

dt
= −16y

9x

dy

dt
. With x = y = 1 and dy

dt
= 6,

dx

dt
= −16 · 1

9 · 1
(6) = −32

3
m/s.

(d) From (b), we have
dy

dt
= − 9x

16y

dx

dt
. When (x, y) =

(
0, ±5

4

)
, it follows that

dy

dt
= 0.

In Exercises 31 and 32, assume that the pressure P (in kilopascals) and volume V (in cubic centimeters) of an
expanding gas are related by PV b = C, where b and C are constants (this holds in an adiabatic expansion,
without heat gain or loss).

31. Find dP/dt if b = 1.2, P = 8 kPa, V = 100 cm2, and dV /dt = 20 cm3/min.

solution Let PV b = C. Then

PbV b−1 dV

dt
+ V b dP

dt
= 0,

and

dP

dt
= −Pb

V

dV

dt
.

Substituting b = 1.2, P = 8, V = 100, and dV
dt

= 20, we find

dP

dt
= − (8) (1.2)

100
(20) = −1.92 kPa/min.

32. Find b if P = 25 kPa, dP/dt = 12 kPa/min, V = 100 cm2, and dV /dt = 20 cm3/min.

solution Let PV b = C. Then

PbV b−1 dV

dt
+ V b dP

dt
= 0,

and

b = −V

P

dP/dt

dV/dt
.

With P = 25, V = 100, dP
dt

= 12, and dV
dt

= 20, we have

b = −100

25
× 12

20
= −12

5
.

(Note: If instead we have dP
dt

= −12 kPa/min, then b = 12
5 .)
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33. The base x of the right triangle in Figure 14 increases at a rate of 5 cm/s, while the height remains constant
at h = 20. How fast is the angle θ changing when x = 20?

x
θ

20

FIGURE 14

solution We have cot θ = x

20
, from which

− csc2 θ · dθ

dt
= 1

20

dx

dt

and thus

dθ

dt
= − sin2 θ

20

dx

dt
.

We are given dx
dt

= 5 and when x = h = 20, θ = π
4 . Hence,

dθ

dt
= − sin2 (

π
4

)
20

(5) = −1

8
rad/s.

34. Two parallel paths 15 m apart run east–west through the woods. Brooke jogs east on one path at 10 km/h,
while Jamail walks west on the other path at 6 km/h. If they pass each other at time t = 0, how far apart are
they 3 s later, and how fast is the distance between them changing at that moment?

solution Brooke jogs at 10 km/h = 25
9 m/s and Jamail walks at 6 km/h = 5

3 m/s. At time zero, consider
Brooke to be at the origin (0, 0) and (without loss of generality) Jamail to be at (0, 15); i.e., due north of

Brooke. Then at time t , the position of Brooke is
(

25
9 t, 0

)
and that of Jamail is

(− 5
3 t, 15

)
. The distance

between them is

L =
√(

25

9
t + 5

3
t

)2

+ (15)2 =
((

40

9
t

)2

+ 152

)1/2

.

• When t = 3 seconds, the distance between them is

L =
√(

40

3

)2

+ 152 = 5

3

√
145 ≈ 20.07 m.

• The distance between them is changing at the rate

dL

dt
= 1

2

((
40

9
t

)2

+ 152

)−1/2 (
2

(
40

9
t

)
40

9

)
.

When t = 3, we then have

dL

dt
=

1
9 (40)2

√
402 + 452

≈ 2.95 m/s

35. A particle travels along a curve y = f (x) as in Figure 15. Let L(t) be the particle’s distance from the
origin.

(a) Show that
dL

dt
=

(
x + f (x)f ′(x)√

x2 + f (x)2

)
dx

dt
if the particle’s location at time t is P = (x, f (x)).

(b) Calculate L′(t) when x = 1 and x = 2 if f (x) = √
3x2 − 8x + 9 and dx/dt = 4.
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x

y

y = f (x)

O

P

θ

1 2

2

FIGURE 15

solution
(a) If the particle’s location at time t is P = (x, f (x)), then

L(t) =
√

x2 + f (x)2.

Thus,

dL

dt
= 1

2
(x2 + f (x)2)−1/2

(
2x

dx

dt
+ 2f (x)f ′(x)

dx

dt

)
=

(
x + f (x)f ′(x)√

x2 + f (x)2

)
dx

dt
.

(b) Given f (x) = √
3x2 − 8x + 9, it follows that

f ′(x) = 3x − 4√
3x2 − 8x + 9

.

Let’s start with x = 1. Then f (1) = 2, f ′(1) = − 1
2 and

dL

dt
=

(
1 − 1√
12 + 22

)
(4) = 0.

With x = 2, f (2) = √
5, f ′(2) = 2/

√
5 and

dL

dt
= 2 + 2√

22 + √
5

2
(4) = 16

3
.

36. Let θ be the angle in Figure 15, where P = (x, f (x)). In the setting of the previous exercise, show that

dθ

dt
=

(
xf ′(x) − f (x)

x2 + f (x)2

)
dx

dt

Hint: Differentiate tan θ = f (x)/x and observe that cos θ = x/
√

x2 + f (x)2.

solution If the particle’s location at time t is P = (x, f (x)), then tan θ = f (x)/x and

sec2 θ
dθ

dt
= xf ′(x) dx

dt
− f (x)dx

dt

x2
=

(
xf ′(x) − f (x)

x2

)
dx

dt
.

Now

cos θ = x√
x2 + f (x)2

so sec2 θ = x2 + f (x)2

x2
.

Finally,

dθ

dt
=

(
xf ′(x) − f (x)

x2 + f (x)2

)
dx

dt
.

Exercises 37 and 38 refer to the baseball diamond (a square of side 90 ft) in Figure 16.

37. A baseball player runs from home plate toward first base at 20 ft/s. How fast is the player’s distance from
second base changing when the player is halfway to first base?
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solution Let x be the distance of the player from home plate and h the player’s distance from second
base. Using the Pythagorean theorem, we have h2 = 902 + (90 − x)2. Therefore,

2h
dh

dt
= 2 (90 − x)

(
− dx

dt

)
,

and

dh

dt
= −90 − x

h

dx

dt
.

We are given dx
dt

= 20. When the player is halfway to first base, x = 45 and h = √
902 + 452, so

dh

dt
= − 45√

902 + 452
(20) = −4

√
5 ≈ −8.94 ft/s.

38. Player 1 runs to first base at a speed of 20 ft/s, while Player 2 runs from second base to third base at a
speed of 15 ft/s. Let s be the distance between the two players. How fast is s changing when Player 1 is 30 ft
from home plate and Player 2 is 60 ft from second base?

solution Let x denote the distance from home plate to Player 1 and y denote the distance from second
base to Player 2, both distances measured along the base path. Then

s(t) =
√

(90 − x − y)2 + 902,

and

ds

dt
= − 90 − x − y√

(90 − x − y)2 + 902

(
dx

dt
+ dy

dt

)
.

With x = 30 and y = 60, it follows that

ds

dt
= 0.

20 ft/s

15 ft/s

s

90 ft

First base

Second base

Home plate

FIGURE 16

39. The conical watering pail in Figure 17 has a grid of holes. Water flows out through the holes at a rate of
kA m3/min, where k is a constant and A is the surface area of the part of the cone in contact with the water.
This surface area is A = πr

√
h2 + r2 and the volume is V = 1

3πr2h. Calculate the rate dh/dt at which the
water level changes at h = 0.3 m, assuming that k = 0.25 m.

0.45 m

0.15 m

h

r

FIGURE 17
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solution By similar triangles, we have

r

h
= 0.15

0.45
= 1

3
so r = 1

3
h.

Substituting this expression for r into the formula for V yields

V = 1

3
π

(
1

3
h

)2

h = 1

27
πh3.

From here and the problem statement, it follows that

dV

dt
= 1

9
πh2 dh

dt
= −kA = −0.25πr

√
h2 + r2.

Solving for dh/dt gives

dh

dt
= −9

4

r

h2

√
h2 + r2.

When h = 0.3, r = 0.1 and

dh

dt
= −9

4

0.1

0.32

√
0.32 + 0.12 = −0.79 m/min.

Further Insights and Challenges
40. A bowl contains water that evaporates at a rate proportional to the surface area of water exposed
to the air (Figure 18). Let A(h) be the cross-sectional area of the bowl at height h.
(a) Explain why V (h + �h) − V (h) ≈ A(h)�h if �h is small.

(b) Use (a) to argue that
dV

dh
= A(h).

(c) Show that the water level h decreases at a constant rate.

V(h) = volume up 
            to height h

Cross-sectional
area A(h)

h

�h

V(h + �h) − V(h)

FIGURE 18

solution
(a) Consider a thin horizontal slice of the water in the cup of thickness �h at height h. Assuming the
cross-sectional area of the cup is roughly constant across this slice, it follows that

V (h + �h) − V (h) ≈ A(h)�h.

(b) If we take the expression from part (a), divide by �h and pass to the limit as �h → 0, we find

dV

dh
= A(h).

(c) If we take the expression from part (b) and multiply by dh/dt , recognizing that

dV

dt
= dV

dh
· dh

dt
,

we find that

dV

dt
= A(h)

dh

dt
.

We are told that the water in the bowl evaporates at a rate proportional to the surface area exposed to the air;
translated into mathematics, this means

dV

dt
= −kA(h),
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where k is a positive constant of proportionality. Combining the last two equations yields

dh

dt
= −k;

that is, the water level decreases at a constant rate.

41. A roller coaster has the shape of the graph in Figure 19. Show that when the roller coaster passes the point
(x, f (x)), the vertical velocity of the roller coaster is equal to f ′(x) times its horizontal velocity.

(x, f (x))

FIGURE 19 Graph of f as a roller coaster track.

solution Let the equation y = f (x) describe the shape of the roller coaster track. Taking d
dt

of both sides

of this equation yields dy
dt

= f ′(x) dx
dt

. In other words, the vertical velocity of a car moving along the track,
dy
dt

, is equal to f ′(x) times the horizontal velocity, dx
dt

.

42. Two trains leave a station at t = 0 and travel with constant velocity v along straight tracks that make an
angle θ .
(a) Show that the trains are separating from each other at a rate v

√
2 − 2 cos θ .

(b) What does this formula give for θ = π?

solution Choose a coordinate system such that

• the origin is the point of departure of the trains;
• the first train travels along the positive x-axis;
• the second train travels along the ray emanating from the origin at an angle of θ > 0.

(a) At time t , the position of the first train is (vt, 0), while that of the second is (vt cos θ, vt sin θ). The
distance between the trains is

L =
√

(vt (1 − cos θ))2 + (vt sin θ)2 = vt
√

2 − 2 cos θ.

Thus dL/dt = v
√

2 − 2 cos θ .
(b) When θ = π , we have dL/dt = 2v. This is obviously correct since at this angle the trains travel in
opposite directions at the same constant speed, having started from the same point.

43. As the wheel of radius r cm in Figure 20 rotates, the rod of length L attached at point P drives a piston
back and forth in a straight line. Let x be the distance from the origin to point Q at the end of the rod, as
shown in the figure.
(a) Use the Pythagorean Theorem to show that

L2 = (x − r cos θ)2 + r2 sin2 θ 1

(b) Differentiate Eq. (1) with respect to t to prove that

2(x − r cos θ)

(
dx

dt
+ r sin θ

dθ

dt

)
+ 2r2 sin θ cos θ

dθ

dt
= 0

(c) Calculate the speed of the piston when θ = π
2 , assuming that r = 10 cm, L = 30 cm, and the wheel

rotates at 4 revolutions per minute.

Piston moves

back and forth

x

L
θP

Q

r

FIGURE 20
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solution From the diagram, the coordinates of P are (r cos θ, r sin θ) and those of Q are (x, 0).

(a) The distance formula gives

L =
√

(x − r cos θ)2 + (−r sin θ)2.

Thus,

L2 = (x − r cos θ)2 + r2 sin2 θ.

Note that L (the length of the fixed rod) and r (the radius of the wheel) are constants.

(b) From (a) we have

0 = 2 (x − r cos θ)

(
dx

dt
+ r sin θ

dθ

dt

)
+ 2r2 sin θ cos θ

dθ

dt
.

(c) Solving for dx/dt in (b) gives

dx

dt
= r2 sin θ cos θ dθ

dt

r cos θ − x
− r sin θ

dθ

dt
= rx sin θ dθ

dt

r cos θ − x
.

With θ = π
2 , r = 10, L = 30, and dθ

dt
= 8π ,

dx

dt
= (10) (x)

(
sin π

2

)
(8π)

(10) (0) − x
= −80π ≈ −251.33 cm/min

44. A spectator seated 300 m away from the center of a circular track of radius 100 m watches an athlete run
laps at a speed of 5 m/s. How fast is the distance between the spectator and athlete changing when the runner
is approaching the spectator and the distance between them is 250 m? Hint: The diagram for this problem is
similar to Figure 20, with r = 100 and x = 300.

solution From the diagram, the coordinates of P are (r cos θ, r sin θ) and those of Q are (x, 0).

• The distance formula gives

L =
√

(x − r cos θ)2 + (−r sin θ)2.

Thus,

L2 = (x − r cos θ)2 + r2 sin2 θ.

Note that x (the distance of the spectator from the center of the track) and r (the radius of the track) are
constants.

• Differentiating with respect to t gives

2L
dL

dt
= 2 (x − r cos θ) r sin θ

dθ

dt
+ 2r2 sin θ cos θ

dθ

dt
.

Thus,

dL

dt
= rx

L
sin θ

dθ

dt
.

• Recall the relation between arc length s and angle θ , namely s = rθ . Thus
dθ

dt
= 1

r

ds

dt
. Given r = 100

and ds
dt

= −5, we have

dθ

dt
= 1

100
(−5) = − 1

20
rad/s.

(Note: In this scenario, the runner traverses the track in a clockwise fashion and approaches the spectator
from Quadrant 1.)
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• Next, the Law of Cosines gives L2 = r2 + x2 − 2rx cos θ , so

cos θ = r2 + x2 − L2

2rx
= 1002 + 3002 − 2502

2 (100) (300)
= 5

8
.

Accordingly,

sin θ =
√

1 −
(

5

8

)2

=
√

39

8
.

• Finally

dL

dt
= (300) (100)

250

(√
39

8

) (
− 1

20

)
= −3

√
39

4
≈ −4.68 m/s.

45. A cylindrical tank of radius R and length L lying horizontally as in Figure 21 is filled with oil to height h.

(a) Show that the volume V (h) of oil in the tank is

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)

(b) Show that dV
dh

= 2L
√

h(2R − h).

(c) Suppose that R = 1.5 m and L = 10 m and that the tank is filled at a constant rate of 0.6 m3/min. How
fast is the height h increasing when h = 0.5?

h

L

R

FIGURE 21 Oil in the tank has level h.

solution
(a) From Figure 21, we see that the volume of oil in the tank, V (h), is equal to L times A(h), the area of that
portion of the circular cross section occupied by the oil. Now,

A(h) = area of sector − area of triangle = R2θ

2
− R2 sin θ

2
,

where θ is the central angle of the sector. Referring to the diagram below,

cos
θ

2
= R − h

R
and sin

θ

2
=

√
2hR − h2

R
.

2hR − h2

/2
R − h

R

Thus,

θ = 2 cos−1
(

1 − h

R

)
,

sin θ = 2 sin
θ

2
cos

θ

2
= 2

(R − h)
√

2hR − h2

R2
,
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and

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)
.

(b) Recalling that d
dx

cos−1 u = − 1√
1−x2

du
dx

,

dV

dh
= L

(
d

dh

(
R2 cos−1

(
1 − h

R

))
− d

dh

(
(R − h)

√
2hR − h2

))

= L

(
−R

−1√
1 − (1 − (h/R))2

+
√

2hR − h2 − (R − h)2

√
2hR − h2

)

= L

(
R2

√
2hR − h2

+
√

2hR − h2 − R2 − 2Rh + h2

√
2hR − h2

)

= L

(
R2 + (2hR − h2) − (R2 − 2Rh + h2)√

2hR − h2

)

= L

(
4hR − 2h2

√
2hR − h2

)
= L

(
2(2hR − h2)√

2hR − h2

)
= 2L

√
2hR − h2.

(c)
dV

dt
= dV

dh

dh

dt
, so

dh

dt
= 1

dV/dh

dV

dt
. From part (b) with R = 4, L = 30 and h = 5,

dV

dh
= 2(30)

√
2(5)(4) − 52 = 60

√
15 ft2.

Thus,

dh

dt
= 1

60
√

15
(10) =

√
15

90
≈ 0.043 ft/min.

CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function f whose graph is shown in Figure 1.

y

2.01.51.00.5
x

7

6

5

4

3

2

1

FIGURE 1

1. Compute the average rate of change of f (x) over [0, 2]. What is the graphical interpretation of this
average rate?

solution The average rate of change of f (x) over [0, 2] is

f (2) − f (0)

2 − 0
= 7 − 1

2 − 0
= 3.

Graphically, this average rate of change represents the slope of the secant line through the points (2, 7) and
(0, 1) on the graph of f (x).

2. For which value of h is
f (0.7 + h) − f (0.7)

h
equal to the slope of the secant line between the points

where x = 0.7 and x = 1.1?
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solution Because 1.1 = 0.7 + 0.4, the difference quotient

f (0.7 + h) − f (0.7)

h

is equal to the slope of the secant line between the points where x = 0.7 and x = 1.1 for h = 0.4.

3. Estimate
f (0.7 + h) − f (0.7)

h
for h = 0.3. Is this number larger or smaller than f ′(0.7)?

solution For h = 0.3,

f (0.7 + h) − f (0.7)

h
= f (1) − f (0.7)

0.3
≈ 2.8 − 2

0.3
= 8

3
.

Because the curve is concave up, the slope of the secant line is larger than the slope of the tangent line, so the
value of the difference quotient should be larger than the value of the derivative.

4. Estimate f ′(0.7) and f ′(1.1).

solution The tangent line sketched in the graph below at the left appears to pass through the points (0.2, 1)

and (1.5, 3.5). Thus,

f ′(0.7) ≈ 3.5 − 1

1.5 − 0.2
= 2.5

1.3
= 1.923.

The tangent line sketched in the graph below at the right appears to pass through the points (0.8, 2) and
(2, 5.5). Thus,

f ′(1.1) ≈ 5.5 − 2

2 − 0.8
= 3.5

1.2
= 2.917.
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In Exercises 5–8, compute f ′(a) using the limit definition and find an equation of the tangent line to the graph
of f at x = a.

5. f (x) = x2 − x, a = 1

solution Let f (x) = x2 − x and a = 1. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

(1 + h)2 − (1 + h) − (12 − 1)

h

= lim
h→0

1 + 2h + h2 − 1 − h

h
= lim

h→0
(1 + h) = 1

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = 1(x − 1) + 0 = x − 1.

6. f (x) = 5 − 3x, a = 2

solution Let f (x) = 5 − 3x and a = 2. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

5 − 3(2 + h) − (5 − 6)

h
= lim

h→0
−3 = −3

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = −3(x − 2) − 1 = −3x + 5.
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7. f (x) = x−1, a = 4

solution Let f (x) = x−1 and a = 4. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

1
4+h

− 1
4

h
= lim

h→0

4 − (4 + h)

4h(4 + h)

= lim
h→0

−1

4(4 + h)
= − 1

4(4 + 0)
= − 1

16

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = − 1

16
(x − 4) + 1

4
= − 1

16
x + 1

2
.

8. f (x) = x3, a = −2

solution Let f (x) = x3 and a = −2. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

(−2 + h)3 − (−2)3

h
= lim

h→0

−8 + 12h − 6h2 + h3 + 8

h

= lim
h→0

(12 − 6h + h2) = 12 − 6(0) + 02 = 12

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = 12(x + 2) − 8 = 12x + 16.

In Exercises 9–12, compute dy/dx using the limit definition.

9. y = 4 − x2

solution Let y = 4 − x2. Then

dy

dx
= lim

h→0

4 − (x + h)2 − (4 − x2)

h
= lim

h→0

4 − x2 − 2xh − h2 − 4 + x2

h
= lim

h→0
(−2x − h) = −2x − 0 = −2x.

10. y = √
2x + 1

solution Let y = √
2x + 1. Then

dy

dx
= lim

h→0

√
2(x + h) + 1 − √

2x + 1

h
= lim

h→0

√
2x + 2h + 1 − √

2x + 1

h
·
√

2x + 2h + 1 + √
2x + 1√

2x + 2h + 1 + √
2x + 1

= lim
h→0

(2x + 2h + 1) − (2x + 1)

h(
√

2x + 2h + 1 + √
2x + 1)

= lim
h→0

2√
2x + 2h + 1 + √

2x + 1
= 1√

2x + 1
.

11. y = 1

2 − x

solution Let y = 1

2 − x
. Then

dy

dx
= lim

h→0

1
2−(x+h)

− 1
2−x

h
= lim

h→0

(2 − x) − (2 − x − h)

h(2 − x − h)(2 − x)
= lim

h→0

1

(2 − x − h)(2 − x)
= 1

(2 − x)2
.

12. y = 1

(x − 1)2

solution Let y = 1

(x − 1)2
. Then

dy

dx
= lim

h→0

1
(x+h−1)2 − 1

(x−1)2

h
= lim

h→0

(x − 1)2 − (x + h − 1)2

h(x + h − 1)2(x − 1)2

= lim
h→0

x2 − 2x + 1 − (x2 + 2xh + h2 − 2x − 2h + 1)

h(x + h − 1)2(x − 1)2
= lim

h→0

−2x − h + 2

(x + h − 1)2(x − 1)2

= −2x + 2

(x − 1)4
= − 2

(x − 1)3
.
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In Exercises 13–16, express the limit as a derivative.

13. lim
h→0

√
1 + h − 1

h

solution Let f (x) = √
x. Then

lim
h→0

√
1 + h − 1

h
= lim

h→0

f (1 + h) − f (1)

h
= f ′(1).

14. lim
x→−1

x3 + 1

x + 1

solution Let f (x) = x3. Then

lim
x→−1

x3 + 1

x + 1
= lim

x→−1

f (x) − f (−1)

x − (−1)
= f ′(−1).

15. lim
t→π

sin t cos t

t − π

solution Let f (t) = sin t cos t and note that f (π) = sin π cos π = 0. Then

lim
t→π

sin t cos t

t − π
= lim

t→π

f (t) − f (π)

t − π
= f ′(π).

16. lim
θ→π

cos θ − sin θ + 1

θ − π

solution Let f (θ) = cos θ − sin θ and note that f (π) = −1. Then

lim
θ→π

cos θ − sin θ + 1

θ − π
= lim

θ→π

f (θ) − f (π)

θ − π
= f ′(π).

17. Find f (4) and f ′(4) if the tangent line to the graph of f at x = 4 has equation y = 3x − 14.

solution The equation of the tangent line to the graph of f (x) at x = 4 is y = f ′(4)(x − 4) + f (4) =
f ′(4)x + (f (4) − 4f ′(4)). Matching this to y = 3x − 14, we see that f ′(4) = 3 and f (4) − 4(3) = −14,
so f (4) = −2.

18. Each graph in Figure 2 shows the graph of a function f and its derivative f ′. Determine which is the
function and which is the derivative.

y

x

(I)

y

x x

(II)

y

(III)

A

B

A

B

A

B

FIGURE 2 Graph of f.

solution

• In (I), the graph labeled A is increasing when the graph labeled B is positive and is decreasing when the
graph labeled B is negative. Therefore, the graph labeled A is the function f and the graph labeled B is
the derivative f ′.

• In (II), the graph labeled B is increasing when the graph labeled A is positive and is decreasing when
the graph labeled A is negative. Therefore, the graph labeled B is the function f and the graph labeled
A is the derivative f ′.

• In (III), the graph labeled B has horizontal tangent lines at the locations the graph labeled A is zero.
Therefore, the graph labeled B is the function f and the graph labeled A is the derivative f ′.
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19. Is (A), (B), or (C) the graph of the derivative of the function f shown in Figure 3?

(A) (B)

y

(C)

y

x
−2 2−1

1
x

−2 2

−1

1

y

y = f (x)

x
−2

2

−1

1

y

x
−2 2

−1

1

FIGURE 3

solution The graph of f has four horizontal tangent lines on [−2, 2], so the graph of its derivative must
have four x-intercepts on [−2, 2]. This eliminates (B). Moreover, f is increasing at both ends of the interval,
so its derivative must be positive at both ends. This eliminates (A) and identifies (C) as the graph of f ′.

20. Sketch the graph of f ′ if the graph of f appears as in Figure 4.

x

y

1 2

2

1

3 4

FIGURE 4

solution Examine Figure 4. For x < 1, f is constant, so f ′(x) = 0. For 1 ≤ x < 2 and x > 2, f is
increasing, so f ′ must be positive on these intervals. As x → 1+, the slope of the tangent line appears to
approach 1, while as x → 2−, the slope of the tangent line appears to approach ∞. Moreover, as x → 2+,
the slope of the tangent line appears to approach ∞, while as x → ∞, the slope of the tangent line appears
to approach 0. Bringing this information together, one possible graph for f ′ is shown below.
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y
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21. Sketch the graph of a continuous function f if the graph of f ′ appears as in Figure 5 and f (0) = 0.

x

y

1 2

2

1

3 4

FIGURE 5

solution Examine Figure 5. For x < 1, f ′(x) = 1, so that the graph of f must be a line with slope 1.
Because f (0) = 0, it follows that f (x) = x for x < 1. For x ≥ 1, f ′ is zero and then steadily increases,
indicating that the graph of f must “emerge" from the point (1, 1) with zero slope and then curve upward.
One possible graph of f is shown below.
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22. Let N(t) be the percentage of a state population infected with a flu virus on week t of an epidemic.
What percentage is likely to be infected in week 4 if N(3) = 8 and N ′(3) = 1.2?

solution Because N(4) − N(3) ≈ N ′(3), we estimate that

N(4) ≈ N(3) + N ′(3) = 8 + 1.2 = 9.2.

Thus, 9.2% of the population is likely infected in week 4.

23. A girl’s height h(t) (in centimeters) is measured at time t (in years) for 0 ≤ t ≤ 14:

52, 75.1, 87.5, 96.7, 104.5, 111.8, 118.7, 125.2,
131.5, 137.5, 143.3, 149.2, 155.3, 160.8, 164.7

(a) What is the average growth rate over the 14-year period?
(b) Is the average growth rate larger over the first half or the second half of this period?
(c) Estimate h′(t) (in centimeters per year) for t = 3, 8.

solution
(a) The average growth rate over the 14-year period is

164.7 − 52

14
= 8.05 cm/year.

(b) Over the first half of the 14-year period, the average growth rate is

125.2 − 52

7
≈ 10.46 cm/year,

which is larger than the average growth rate over the second half of the 14-year period:

164.7 − 125.2

7
≈ 5.64 cm/year.

(c) For t = 3,

h′(3) ≈ h(4) − h(3)

4 − 3
= 104.5 − 96.7

1
= 7.8 cm/year;

for t = 8,

h′(8) ≈ h(9) − h(8)

9 − 8
= 137.5 − 131.5

1
= 6.0 cm/year.

24. A planet’s period P (number of days to complete one revolution around the sun) is approximately
0.199A3/2, where A is the average distance (in millions of kilometers) from the planet to the sun.
(a) Calculate P and dP/dA for Earth using the value A = 150.
(b) Estimate the increase in P if A is increased to 152.

solution

(a) Let P = 0.199A3/2. Then dP
dA

= 0.2985A1/2. For A = 150,

P = 0.199(150)3/2 ≈ 365.6 days; and

dP

dA
= 0.2985(150)1/2 ≈ 3.656 days/millions of kilometers.

(b) If A is increased to 152, then

P(152) − P(150) ≈ 2
dP

dA

∣∣∣∣
A=150

= 7.312 days.
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In Exercises 25 and 26, use the following table of values for the number A(t) of automobiles (in millions)
manufactured in the United States in year t .

t 1970 1971 1972 1973 1974 1975 1976

A(t) 6.55 8.58 8.83 9.67 7.32 6.72 8.50

25. What is the interpretation of A′(t)? Estimate A′(1971). Does A′(1974) appear to be positive or negative?

solution Because A(t) measures the number of automobiles manufactured in the United States in year t ,
A′(t) measures the rate of change in automobile production in the United States. For t = 1971,

A′(1971) ≈ A(1972) − A(1971)

1972 − 1971
= 8.83 − 8.58

1
= 0.25 million automobiles/year.

Because A(t) decreases from 1973 to 1974 and from 1974 to 1975, it appears that A′(1974) would be negative.

26. Given the data, which of (A)–(C) in Figure 6 could be the graph of the derivative A′? Explain.

(A) (B) (C)
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,
75

,
73

,
71

−1

1
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−1
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,
73

,
71

−1

1

2

FIGURE 6

solution The values of A(t) increase, then decrease and finally increase. Thus A′(t) should transition
from positive to negative and back to positive. This describes the graph in (B).

27. Which of the following is equal to
d

dx
2x?

(a) 2x (b) (ln 2)2x (c) x2x−1 (d)
1

ln 2
2x

solution The derivative of f (x) = 2x is

d

dx
2x = 2x ln 2.

Hence, the correct answer is (b).

28. Use the Chain Rule to show that if g is the inverse of f , then g′(x) = 1/f ′(g(x)) for all x in the domain
of g such that f (g(x)) 	= 0. Use this to obtain another method for finding the derivative of ln x using the
derivative of ex .

solution Let g be the inverse of f . Then x = f (g(x)). Upon differentiating both sides of this expression
by x, we find

1 = f ′(g(x)) · g′(x) or g′(x) = 1

f ′(g(x))
,

provided x is in the domain of g and f ′(g(x)) 	= 0. Now, let f (x) = ex . The inverse of f is g(x) = ln x, and

d

dx
ln x = g′(x) = 1

f ′(g(x))
= 1

f ′(ln x)
= 1

eln x
= 1

x
.

In Exercises 29–80, compute the derivative.

29. y = 3x5 − 7x2 + 4

solution Let y = 3x5 − 7x2 + 4. Then

dy

dx
= 15x4 − 14x.



Chapter Review Exercises 367

30. y = 4x−3/2

solution Let y = 4x−3/2. Then

dy

dx
= −6x−5/2.

31. y = t−7.3

solution Let y = t−7.3. Then

dy

dt
= −7.3t−8.3.

32. y = 4x2 − x−2

solution Let y = 4x2 − x−2. Then

dy

dx
= 8x + 2x−3.

33. y = x + 1

x2 + 1

solution Let y = x + 1

x2 + 1
. Then

dy

dx
= (x2 + 1)(1) − (x + 1)(2x)

(x2 + 1)2
= 1 − 2x − x2

(x2 + 1)2
.

34. y = 3t − 2

4t − 9

solution Let y = 3t − 2

4t − 9
. Then

dy

dt
= (4t − 9)(3) − (3t − 2)(4)

(4t − 9)2
= − 19

(4t − 9)2
.

35. y = (x4 − 9x)6

solution Let y = (x4 − 9x)6. Then

dy

dx
= 6(x4 − 9x)5 d

dx
(x4 − 9x) = 6(4x3 − 9)(x4 − 9x)5.

36. y = (3t2 + 20t−3)6

solution Let y = (3t2 + 20t−3)6. Then

dy

dt
= 6(3t2 + 20t−3)5 d

dt
(3t2 + 20t−3) = 6(6t − 60t−4)(3t2 + 20t−3)5.

37. y = (2 + 9x2)3/2

solution Let y = (2 + 9x2)3/2. Then

dy

dx
= 3

2
(2 + 9x2)1/2 d

dx
(2 + 9x2) = 27x(2 + 9x2)1/2.

38. y = (x + 1)3(x + 4)4

solution Let y = (x + 1)3(x + 4)4. Then

dy

dx
= 4(x + 1)3(x + 4)3 + 3(x + 1)2(x + 4)4 = (x + 1)2(x + 4)3(4x + 4 + 3x + 12)

= (7x + 16)(x + 1)2(x + 4)3.
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39. y = z√
1 − z

solution Let y = z√
1 − z

. Then

dy

dz
=

√
1 − z − z

(
− 1

2
√

1−z

)
1 − z

= 1 − z + z
2

(1 − z)3/2
= 2 − z

2(1 − z)3/2
.

40. y =
(

1 + 1

x

)3

solution Let y =
(

1 + 1

x

)3

. Then

dy

dx
= 3

(
1 + 1

x

)2
d

dx

(
1 + 1

x

)
= − 3

x2

(
1 + 1

x

)2

.

41. y = x4 + √
x

x2

solution Let

y = x4 + √
x

x2
= x2 + x−3/2.

Then

dy

dx
= 2x − 3

2
x−5/2.

42. y = 1

(1 − x)
√

2 − x

solution Let y = 1

(1 − x)
√

2 − x
=

(
(1 − x)

√
2 − x

)−1
. Then

dy

dx
= −

(
(1 − x)

√
2 − x

)−2 d

dx

(
(1 − x)

√
2 − x

)
= −

(
(1 − x)

√
2 − x

)−2
(

− 1 − x

2
√

2 − x
− √

2 − x

)

= 5 − 3x

2(1 − x)2(2 − x)3/2
.

43. y =
√

x +
√

x + √
x

solution Let y =
√

x + √
x + √

x. Then

dy

dx
= 1

2

(
x +

√
x + √

x

)−1/2
d

dx

(
x +

√
x + √

x

)

= 1

2

(
x +

√
x + √

x

)−1/2 (
1 + 1

2

(
x + √

x
)−1/2 d

dx

(
x + √

x
))

= 1

2

(
x +

√
x + √

x

)−1/2 (
1 + 1

2

(
x + √

x
)−1/2

(
1 + 1

2
x−1/2

))
.

44. h(z) = (
z + (z + 1)1/2)−3/2

solution

d

dz

(
z + (z + 1)1/2)−3/2 = −3

2

(
z + (z + 1)1/2

)−5/2 d

dz

(
z + (z + 1)1/2

)

= −3

2

(
z + (z + 1)1/2

)−5/2
(

1 + 1

2
(z + 1)−1/2

)
.
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45. y = tan(t−3)

solution Let y = tan(t−3). Then

dy

dt
= sec2(t−3)

d

dt
t−3 = −3t−4 sec2(t−3).

46. y = 4 cos(2 − 3x)

solution Let y = 4 cos(2 − 3x). Then

dy

dx
= −4 sin(2 − 3x)

d

dx
(2 − 3x) = 12 sin(2 − 3x).

47. y = sin(2x) cos2 x

solution Let y = sin(2x) cos2 x = 2 sin x cos3 x. Then

dy

dx
= −6 sin2 x cos2 x + 2 cos4 x.

48. y = sin

(
4

θ

)

solution Let y = sin

(
4

θ

)
. Then

dy

dθ
= cos

(
4

θ

)
d

dθ

(
4

θ

)
= − 4

θ2
cos

(
4

θ

)
.

49. y = t

1 + sec t

solution Let y = t

1 + sec t
. Then

dy

dt
= 1 + sec t − t sec t tan t

(1 + sec t)2
.

50. y = z csc(9z + 1)

solution Let y = z csc(9z + 1). Then

dy

dz
= −9z csc(9z + 1) cot(9z + 1) + csc(9z + 1).

51. y = 8

1 + cot θ

solution Let y = 8

1 + cot θ
= 8(1 + cot θ)−1. Then

dy

dθ
= −8(1 + cot θ)−2 d

dθ
(1 + cot θ) = 8 csc2 θ

(1 + cot θ)2
.

52. y = tan(cos x)

solution Let y = tan(cos x). Then

dy

dx
= sec2(cos x)

d

dx
cos x = − sin x sec2(cos x).

53. y = tan(
√

1 + csc θ)

solution

dy

dx
= sec2(

√
1 + csc θ)

d

dx

√
1 + csc θ = sec2(

√
1 + csc θ) · 1

2
(1 + csc θ)−1/2 d

dx
(1 + csc θ)

= − sec2(
√

1 + csc θ) csc θ cot θ

2(
√

1 + csc θ)
.
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54. y = cos(cos(cos(θ)))

solution Let y = cos(cos(cos(θ))). Then

dy

dθ
= − sin(cos(cos(θ)))

d

dθ
cos(cos(θ)) = sin(cos(cos(θ))) sin(cos(θ))

d

dθ
cos(θ)

= − sin(cos(cos(θ))) sin(cos(θ)) sin(θ).

55. f (x) = 9e−4x

solution
d

dx
9e−4x = −36e−4x .

56. f (x) = e−x

x

solution
d

dx

(
e−x

x

)
= −xe−x − e−x

x2
= −e−x(x + 1)

x2
.

57. g(t) = e4t−t2

solution
d

dt
e4t−t2 = (4 − 2t)e4t−t2

.

58. g (t) = t2e1/t

solution
d

dt
t2e1/t = 2te1/t + t2

(
− 1

t2

)
e1/t = (2t − 1)e1/t .

59. f (x) = ln(4x2 + 1)

solution
d

dx
ln(4x2 + 1) = 8x

4x2 + 1
.

60. f (x) = ln(ex − 4x)

solution
d

dx
ln(ex − 4x) = ex − 4

ex − 4x
.

61. G(s) = (ln(s))2

solution
d

ds
(ln s)2 = 2 ln s

s
.

62. G(s) = ln(s2)

solution
d

ds
ln(s2) = 2

d

ds
ln s = 2

s
.

63. f (θ) = ln(sin θ)

solution
d

dθ
ln(sin θ) = cos θ

sin θ
= cot θ .

64. f (θ) = sin(ln θ)

solution
d

dθ
sin(ln θ) = cos(ln θ)

θ
.

65. h(z) = sec(z + ln z)

solution
d

dz
sec(z + ln z) = sec(z + ln z) tan(z + ln z)

(
1 + 1

z

)
.

66. f (x) = esin2x

solution
d

dx
esin2 x = 2 sin x cos xesin2 x = sin 2xesin2 x .

67. f (x) = 7−2x

solution
d

dx
7−2x = ( − 2 ln 7

)(
7−2x

)
.



Chapter Review Exercises 371

68. h (y) = 1 + ey

1 − ey

solution
d

dy

(
1 + ey

1 − ey

)
= (1 − ey)ey − (1 + ey)(−ey)

(1 − ey)2
= ey(1 − ey + 1 + ey)

(1 − ey)2
= 2ey

(1 − ey)2
.

69. g(x) = tan−1(ln x)

solution
d

dx
tan−1(ln x) = 1

1 + (ln x)2
· 1

x
.

70. G(s) = cos−1(s−1)

solution
d

ds
cos−1(s−1) = −1√

1 −
(

1
s

)2

(
− 1

s2

)
= 1√

s4 − s2
.

71. f (x) = ln(csc−1 x)

solution
d

dx
ln(csc−1 x) = − 1

|x|√x2 − 1 csc−1 x
.

72. f (x) = esec−1 x

solution
d

dx
esec−1 x = 1

|x|√x2 − 1
esec−1 x .

73. R(s) = sln s

solution Rewrite

R(s) =
(
eln s

)ln s = e(ln s)2
.

Then

dR

ds
= e(ln s)2 · 2 ln s · 1

s
= 2 ln s

s
sln s .

Alternately, R(s) = sln s implies that ln R = ln
(
sln s

) = (ln s)2. Thus,

1

R

dR

ds
= 2 ln s · 1

s
or

dR

ds
= 2 ln s

s
sln s .

74. f (x) = (cos2 x)cos x

solution Rewrite

f (x) =
(
eln cos2 x

)cos x = e2 cos x ln cos x.

Then

df

dx
= e2 cos x ln cos x

(
2 cos x · − sin x

cos x
− 2 sin x ln cos x

)

= −2 sin x(cos2 x)cos x(1 + ln cos x).

Alternately, f (x) = (cos2 x)cos x implies that ln f = cos x ln cos2 x = 2 cos x ln cos x. Thus,

1

f

df

dx
= 2 cos x · − sin x

cos x
− 2 sin x ln cos x

= −2 sin x(1 + ln cos x),

and

df

dx
= −2 sin x(cos2 x)cos x(1 + ln cos x).

75. G(t) = (sin2 t)t

solution Rewrite

G(t) =
(
eln sin2 t

)t = e2t ln sin t .
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Then

dG

dt
= e2t ln sin t

(
2t · cos t

sin t
+ 2 ln sin t

)
= 2(sin2 t)t (t cot t + ln sin t).

Alternately, G(t) = (sin2 t)t implies that ln G = t ln sin2 t = 2t ln sin t . Thus,

1

G

dG

dt
= 2t · cos t

sin t
+ 2 ln sin t,

and

dG

dt
= 2(sin2 t)t (t cot t + ln sin t).

76. h(t) = t (t
t )

solution Let h(t) = t (t
t ). Then ln h = t t ln t and

ln(ln h) = ln(t t ln t) = ln t t + ln(ln t)

= t ln t + ln(ln t).

Thus,

1

h ln h

dh

dt
= t · 1

t
+ ln t + 1

t ln t
= 1 + ln t + 1

t ln t
,

and

dh

dt
= t (t

t )t t ln t

(
1 + ln t + 1

t ln t

)
.

77. g(t) = sinh(t2)

solution
d

dt
sinh(t2) = 2t cosh(t2).

78. h(y) = y tanh(4y)

solution
d

dy
y tanh(4y) = tanh(4y) + 4y sech2(4y).

79. g(x) = tanh−1(ex)

solution
d

dx
tanh−1(ex) = 1

1 − (ex)2
ex = ex

1 − e2x
.

80. g(t) = √
t2 − 1 sinh−1 t

solution
d

dt

√
t2 − 1 sinh−1 t = t√

t2 − 1
sinh−1t +

√
t2 − 1 · 1√

t2 + 1
= tsinh−1t√

t2 − 1
+

√
t2 − 1

t2 + 1
.

81. For which values of α is f (x) = |x|α differentiable at x = 0?

solution Let f (x) = |x|α . If α < 0, then f (x) is not continuous at x = 0 and therefore cannot be
differentiable at x = 0. If α = 0, then the function reduces to f (x) = 1, which is differentiable at x = 0.
Now, suppose α > 0 and consider the limit

lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

|x|α
x

.

If 0 < α < 1, then

lim
x→0−

|x|α
x

= −∞ while lim
x→0+

|x|α
x

= ∞

and f ′(0) does not exist. If α = 1, then

lim
x→0−

|x|
x

= −1 while lim
x→0+

|x|
x

= 1
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and f ′(0) again does not exist. Finally, if α > 1, then

lim
x→0

|x|α
x

= 0,

so f ′(0) does exist.
In summary, f (x) = |x|α is differentiable at x = 0 when α = 0 and when α > 1.

82. Find f ′(2) if f (g(x)) = ex2
, g(1) = 2, and g′(1) = 4.

solution We differentiate both sides of the equation f (g(x)) = ex2
to obtain,

f ′ (g(x)) g′(x) = 2xex2
.

Setting x = 1 yields

f ′ (g(1)) g′(1) = 2e.

Since g(1) = 2 and g′(1) = 4, we find

f ′(2) · 4 = 2e,

or

f ′(2) = e

2
.

In Exercises 83 and 84, let f (x) = xe−x .

83. Show that f has an inverse on [1, ∞). Let g be this inverse. Find the domain and range of g and compute
g′(2e−2).

solution Let f (x) = xe−x . Then f ′(x) = e−x(1 − x). On [1, ∞), f ′(x) < 0, so f is decreasing and
therefore one-to-one. It follows that f has an inverse on [1, ∞). Let g denote this inverse. Because f (1) = e−1

and f (x) → 0 as x → ∞, the domain of g is (0, e−1], and the range is [1, ∞).
To determine g′(2e−2), we use the formula g′(x) = 1/f ′(g(x)). Because f (2) = 2e−2, it follows that

g(2e−2) = 2. Then,

g′(2e−2) = 1

f ′(g(2e−2))
= 1

f ′(2)
= 1

−e−2
= −e2.

84. Show that f (x) = c has two solutions if 0 < c < e−1.

solution First note that f (x) < 0 for x < 0, so we only need to examine (0, ∞) for solutions to f (x) = c

when c > 0. Next, because f ′(x) = e−x(1 − x), f is decreasing on (1, ∞) and increasing on (0, 1). Therefore,
f is one-to-one on each of these intervals, which guarantees that the equation f (x) = c can have at most one
solution on each of these intervals for any value of c.

Now, let 0 < c < e−1 and consider the interval [1, ∞). Because

lim
x→∞ f (x) = lim

x→∞
x

ex
= 0,

it follows that there exists a d ∈ (1, ∞) such that f (d) < c. With f (1) = e−1 > c, it follows from the
Intermediate Value Theorem that the equation f (x) = c has a solution on [1, ∞). Next, consider the interval
[0, 1]. With f (0) = 0 < c and f (1) = e−1 > c, it follows from the Intermediate Value Theorem that the
equation f (x) = c has a solution on [0, 1].

In summary, the equation f (x) = c has exactly two solutions for any c between 0 and e−1.

In Exercises 85–90, use the following table of values to calculate the derivative of the given function at x = 2:

x f (x) g(x) f ′(x) g′(x)

2 5 4 −3 9

4 3 2 −2 3

85. S(x) = 3f (x) − 2g(x)

solution Let S(x) = 3f (x) − 2g(x). Then S′(x) = 3f ′(x) − 2g′(x) and

S′(2) = 3f ′(2) − 2g′(2) = 3(−3) − 2(9) = −27.
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86. H(x) = f (x)g(x)

solution Let H(x) = f (x)g(x). Then H ′(x) = f (x)g′(x) + f ′(x)g(x) and

H ′(2) = f (2)g′(2) + f ′(2)g(2) = 5(9) + (−3)(4) = 33.

87. R(x) = f (x)

g(x)

solution Let R(x) = f (x)/g(x). Then

R′(x) = g(x)f ′(x) − f (x)g′(x)

g(x)2

and

R′(2) = g(2)f ′(2) − f (2)g′(2)

g(2)2
= 4(−3) − 5(9)

42
= −57

16
.

88. G(x) = f (g(x))

solution Let G(x) = f (g(x)). Then G′(x) = f ′(g(x))g′(x) and

G′(2) = f ′(g(2))g′(2) = f ′(4)g′(2) = −2(9) = −18.

89. F(x) = f (g(2x))

solution Let F(x) = f (g(2x)). Then F ′(x) = 2f ′(g(2x))g′(2x) and

F ′(2) = 2f ′(g(4))g′(4) = 2f ′(2)g′(4) = 2(−3)(3) = −18.

90. K(x) = f (x2)

solution Let K(x) = f (x2). Then K ′(x) = 2xf ′(x2) and

K ′(2) = 2(2)f ′(4) = 4(−2) = −8.

91. Find the points on the graph of f (x) = x3 − 3x2 + x + 4 where the tangent line has slope 10.

solution Let f (x) = x3 − 3x2 + x + 4. Then f ′(x) = 3x2 − 6x + 1. The tangent line to the graph of f

will have slope 10 when f ′(x) = 10. Solving the quadratic equation 3x2 − 6x + 1 = 10 yields x = −1 and
x = 3. Thus, the points on the graph of f where the tangent line has slope 10 are (−1, −1) and (3, 7).

92. Find the points on the graph of x2/3 + y2/3 = 1 where the tangent line has slope 1.

solution Suppose x2/3 + y2/3 = 1. Differentiating with respect to x leads to

2

3
x−1/3 + 2

3
y−1/3 dy

dx
= 0,

or

dy

dx
= −

(
x

y

)−1/3

= −
(y

x

)1/3
.

Tangents to the curve therefore have slope 1 when y = −x. Substituting y = −x into the equation for the

curve yields 2x2/3 = 1, so x = ±
√

2
4 . Thus, the points along the curve x2/3 + y2/3 = 1 where the tangent

line has slope 1 are: (√
2

4
, −

√
2

4

)
and

(
−

√
2

4
,

√
2

4

)
.

93. Find a such that the tangent lines to y = x3 − 2x2 + x + 1 at x = a and x = a + 1 are parallel.

solution Let f (x) = x3 − 2x2 + x + 1. Then f ′(x) = 3x2 − 4x + 1 and the slope of the tangent line at
x = a is f ′(a) = 3a2 − 4a + 1, while the slope of the tangent line at x = a + 1 is

f ′(a + 1) = 3(a + 1)2 − 4(a + 1) + 1 = 3(a2 + 2a + 1) − 4a − 4 + 1 = 3a2 + 2a.
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In order for the tangent lines at x = a and x = a + 1 to have the same slope, we must have f ′(a) = f ′(a + 1),
or

3a2 − 4a + 1 = 3a2 + 2a.

The only solution to this equation is a = 1
6 .

94. Use the table to compute the average rate of change of Candidate A’s percentage of votes over
the intervals from day 20 to day 15, day 15 to day 10, and day 10 to day 5. If this trend continues over the
last 5 days before the election, will Candidate A win?

Days Before Election 20 15 10 5

Candidate A 44.8% 46.8% 48.3% 49.3%

Candidate B 55.2% 53.2% 51.7% 50.7%

solution The average rate of change of A’s percentage for the period from day 20 to day 15 is

46.8 − 44.8

5
= 0.4%/day.

For the period from day 15 to day 10, the average rate of change is

48.3 − 46.8

5
= 0.3%/day.

Finally, for the period from day 10 to day 5, the average rate of change is

49.3 − 48.3

5
= 0.2%/day.

If this trend continues over the last five days before the election, the average rate of change will drop to 0.1
%/day, so A’s percentage will increase another 0.5% to 49.8%. Accordingly, A will not win the election.

In Exercises 95–100, calculate y′′.

95. y = 12x3 − 5x2 + 3x

solution Let y = 12x3 − 5x2 + 3x. Then

y′ = 36x2 − 10x + 3 and y′′ = 72x − 10.

96. y = x−2/5

solution Let y = x−2/5. Then

y′ = −2

5
x−7/5 and y′′ = 14

25
x−12/5.

97. y = √
2x + 3

solution Let y = √
2x + 3 = (2x + 3)1/2. Then

y′ = 1

2
(2x + 3)−1/2 d

dx
(2x + 3) = (2x + 3)−1/2 and y′′ = −1

2
(2x + 3)−3/2 d

dx
(2x + 3) = −(2x + 3)−3/2.

98. y = 4x

x + 1

solution Let y = 4x

x + 1
. Then

y′ = (x + 1)(4) − 4x

(x + 1)2
= 4

(x + 1)2
and y′′ = − 8

(x + 1)3
.
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99. y = tan(x2)

solution Let y = tan(x2). Then

y′ = 2x sec2(x2) and

y′′ = 2x

(
2 sec(x2)

d

dx
sec(x2)

)
+ 2 sec2(x2) = 8x2 sec2(x2) tan(x2) + 2 sec2(x2).

100. y = sin2(4x + 9)

solution Let y = sin2(x + 9). Then

y′ = 2 sin(x + 9) cos(x + 9) = sin(2x + 18) and y′′ = 2 cos(2x + 18).

In Exercises 101–106, compute
dy

dx
.

101. x3 − y3 = 4

solution Consider the equation x3 − y3 = 4. Differentiating with respect to x yields

3x2 − 3y2 dy

dx
= 0.

Therefore,

dy

dx
= x2

y2
.

102. 4x2 − 9y2 = 36

solution Consider the equation 4x2 − 9y2 = 36. Differentiating with respect to x yields

8x − 18y
dy

dx
= 0.

Therefore,

dy

dx
= 4x

9y
.

103. y = xy2 + 2x2

solution Consider the equation y = xy2 + 2x2. Differentiating with respect to x yields

dy

dx
= 2xy

dy

dx
+ y2 + 4x.

Therefore,

dy

dx
= y2 + 4x

1 − 2xy
.

104.
y

x
= x + y

solution Solving y
x

= x + y for y yields

y = x2

1 − x
.

By the quotient rule,

dy

dx
= (1 − x)(2x) − x2(−1)

(1 − x)2
= 2x − x2

(1 − x)2
.

105. y = sin(x + y)

solution Consider the equation y = sin(x + y). Differentiating with respect to x yields

dy

dx
= cos(x + y)

(
1 + dy

dx

)
.
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Therefore,

dy

dx
= cos(x + y)

1 − cos(x + y)
.

106. tan(x + y) = xy

solution Consider the equation tan(x + y) = xy. Differentiating with respect to x yields

sec2(x + y)

(
1 + dy

dx

)
= x

dy

dx
+ y.

Therefore,

dy

dx
= y − sec2(x + y)

sec2(x + y) − x
.

107. In Figure 7, label the graphs f , f ′, and f ′′.
y

x

y

x

FIGURE 7

solution First consider the plot on the left. Observe that the green curve is nonnegative whereas the red
curve is increasing, suggesting that the green curve is the derivative of the red curve. Moreover, the green
curve is linear with negative slope for x < 0 and linear with positive slope for x > 0 while the blue curve is
a negative constant for x < 0 and a positive constant for x > 0, suggesting the blue curve is the derivative of
the green curve. Thus, the red, green and blue curves, respectively, are the graphs of f , f ′ and f ′′.

Now consider the plot on the right. Because the red curve is decreasing when the blue curve is negative and
increasing when the blue curve is positive and the green curve is decreasing when the red curve is negative
and increasing when the red curve is positive, it follows that the green, red and blue curves, respectively, are
the graphs of f , f ′ and f ′′.
108. Let f (x) = x2 sin(x−1) for x 	= 0 and f (0) = 0. Show that f ′(x) exists for all x (including x = 0) but
that f ′ is not continuous at x = 0 (Figure 8).

y

x

−0.05

0.05

−0.5 0.5

FIGURE 8 Graph of f (x) = x2 sin(x−1).

solution Let f (x) = x2 sin(x−1) for x 	= 0 and f (0) = 0. For x 	= 0, the product rule and the chain rule
give

f ′(x) = 2x sin(x−1) − x2 cos(x−1)(x−2) = 2x sin(x−1) − cos(x−1),

which exists for all x 	= 0. At x = 0 we use the limit definition of the derivative:

f ′(0) = lim
h→0

f (h) − f (0)

h
= lim

h→0

1

h
(h2 sin(h−1)) = lim

h→0
h sin(h−1) = 0,

by the Squeeze Theorem, since −h ≤ h sin 1
h

≤ h. Thus, f ′(x) exists for all x. However,

lim
x→0

f ′(x) = lim
x→0

(
2x sin(x−1) − cos(x−1)

)
does not exist, so f ′(x) is not continuous at x = 0.
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In Exercises 109–114, use logarithmic differentiation to find the derivative.

109. y = (x + 1)3

(4x − 2)2

solution Let y = (x + 1)3

(4x − 2)2
. Then

ln y = ln

(
(x + 1)3

(4x − 2)2

)
= ln (x + 1)3 − ln (4x − 2)2 = 3 ln(x + 1) − 2 ln(4x − 2).

By logarithmic differentiation,

y′

y
= 3

x + 1
− 2

4x − 2
· 4 = 3

x + 1
− 4

2x − 1
,

so

y′ = (x + 1)3

(4x − 2)2

(
3

x + 1
− 4

2x − 1

)
.

110. y = (x + 1)(x + 2)2

(x + 3)(x + 4)

solution Let y = (x + 1)(x + 2)2

(x + 3)(x + 4)
. Then

ln y = ln
(
(x + 1)(x + 2)2

)
− ln ((x + 3)(x + 4))

= ln(x + 1) + 2 ln(x + 2) − ln(x + 3) − ln(x + 4).

By logarithmic differentiation,

y′

y
= 1

x + 1
+ 2

x + 2
− 1

x + 3
− 1

x + 4
,

so

y′ = (x + 1)(x + 2)2

(x + 3)(x + 4)

(
1

x + 1
+ 2

x + 2
− 1

x + 3
− 1

x + 4

)
.

111. y = e(x−1)2
e(x−3)2

solution Let y = e(x−1)2
e(x−3)2

. Then

ln y = ln
(
e(x−1)2

e(x−3)2) = ln
(
e(x−1)2+(x−3)2) = (x − 1)2 + (x − 3)2.

By logarithmic differentiation,

y′

y
= 2(x − 1) + 2(x − 3) = 4x − 8,

so

y′ = 4e(x−1)2
e(x−3)2

(x − 2).

112. y = ex sin−1 x

ln x

solution Let y = ex sin−1 x

ln x
. Then

ln y = ln

(
exsin−1x

ln x

)
= ln(exsin−1x) − ln(ln x)

= ln
(
ex

) + ln(sin−1x) − ln(ln x) = x + ln(sin−1x) − ln(ln x).
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By logarithmic differentiation,

y′

y
= 1 + 1

sin−1x
· 1√

1 − x2
− 1

ln x
· 1

x
,

so

y′ = exsin−1x

ln x

(
1 + 1√

1 − x2sin−1x
− 1

x ln x

)
.

113. y = e3x(x − 2)2

(x + 1)2

solution Let y = e3x(x − 2)2

(x + 1)2
. Then

ln y = ln

(
e3x(x − 2)2

(x + 1)2

)
= ln e3x + ln (x − 2)2 − ln (x + 1)2

= 3x + 2 ln(x − 2) − 2 ln(x + 1).

By logarithmic differentiation,

y′

y
= 3 + 2

x − 2
− 2

x + 1
,

so

y = e3x(x − 2)2

(x + 1)2

(
3 + 2

x − 2
− 2

x + 1

)
.

114. y = x
√

x(xln x)

solution Let y = x
√

x(xln x). Then

ln y = √
x ln x + (ln x)2

By logarithmic differentiation,

y′

y
= 1

2
√

x
ln x + √

x · 1

x
+ 2(ln x) · 1

x
= ln x

2
√

x
+ 1√

x
+ 2 ln x

x
,

so

y′ = x
√

x(xln x)

(
ln x

2
√

x
+ 1√

x
+ 2 ln x

x

)
.

Exercises 115–117: Let q be the number of units of a product (cell phones, barrels of oil, etc.) that can be sold
at the price p. The price elasticity of demand E is defined as the percentage rate of change of q with respect
to p. In terms of derivatives,

E = p

q

dq

dp
= lim

�p→0

(100�q)/q

(100�p)/p

115. Show that the total revenue R = pq satisfies
dR

dp
= q(1 + E).

solution Let R = pq. Then

dR

dp
= p

dq

dp
+ q = q

p

q

dq

dp
+ q = q(E + 1).

116. A commercial bakery can sell q chocolate cakes per week at price $p, where q = 50p(10 − p)

for 5 < p < 10.

(a) Show that E(p) = 2p − 10

p − 10
.

(b) Show, by computing E(8), that if p = $8, then a 1% increase in price reduces demand by approximately
3%.
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solution

(a) Let q = 50p(10 − p) = 500p − 50p2. Then q ′(p) = 500 − 100p and

E(p) =
(

p

q

)
dq

dp
= p

50p(10 − p)
(500 − 100p) = 10 − 2p

10 − p
= 2p − 10

p − 10
.

(b) From part (a),

E(8) = 2(8) − 10

8 − 10
= −3.

Thus, with the price set at $8, a 1% increase in price results in a 3% decrease in demand.

117. The monthly demand (in thousands) for flights between Chicago and St. Louis at the price p is q =
40 − 0.2p. Calculate the price elasticity of demand when p = $150 and estimate the percentage increase in
number of additional passengers if the ticket price is lowered by 1%.

solution Let q = 40 − 0.2p. Then q ′(p) = −0.2 and

E(p) =
(

p

q

)
dq

dp
= 0.2p

0.2p − 40
.

For p = 150,

E(150) = 0.2(150)

0.2(150) − 40
= −3,

so a 1% decrease in price increases demand by 3%. The demand when p = 150 is q = 40 − 0.2(150) = 10,
or 10000 passengers. Therefore, a 1% increase in demand translates to 300 additional passengers.

118. How fast does the water level rise in the tank in Figure 9 when the water level is h = 4 m and water
pours in at 20 m3/min?

24 m

10 m

8 m

36 m

FIGURE 9

solution When the water level is at height h, the length of the upper surface of the water is 24 + 3
2h and

the volume of water in the trough is

V = 1

2
h

(
24 + 24 + 3

2
h

)
(10) = 240h + 15

2
h2.

Therefore,

dV

dt
= (240 + 15h)

dh

dt
= 20 m3/min.

When h = 4, we have

dh

dt
= 20

240 + 15(4)
= 1

15
m/min.

119. The minute hand of a clock is 8 cm long, and the hour hand is 5 cm long. How fast is the distance
between the tips of the hands changing at 3 o’clock?

solution Let S be the distance between the tips of the two hands. By the law of cosines

S2 = 82 + 52 − 2 · 8 · 5 cos(θ),

where θ is the angle between the hands. Thus

2S
dS

dt
= 80 sin(θ)

dθ

dt
.
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At three o’clock θ = π/2, S = √
89, and

dθ

dt
=

( π

360
− π

30

)
rad/min = −11π

360
rad/min,

so

dS

dt
= 1

2
√

89
(80)(1)

−11π

360
≈ −0.407 cm/min.

120. Chloe and Bao are in motorboats at the center of a lake. At time t = 0, Chloe begins traveling south at
a speed of 50 km/h. One minute later, Bao takes off, heading east at a speed of 40 km/h. At what rate is the
distance between them increasing at t = 12 min?

solution Take the center of the lake to be origin of our coordinate system. Because Chloe travels at 50
km/h = 5

6 km/min due south, her position at time t > 0 is (0, 5
6 t); because Bao travels at 40 km/h = 2

3 km/min
due east, her position at time t > 1 is ( 2

3 (t − 1), 0). Thus, the distance between the two motorboats at time
t > 1 is

s =
√

4

9
(t − 1)2 + 25

36
t2 = 1

6

√
41t2 − 32t + 16,

and

ds

dt
= 41t − 16

6
√

41t2 − 32t + 16
.

At t = 12, it follows that

ds

dt
= 476

6
√

5536
≈ 1.066 km/min.

121. A bead slides down the curve xy = 10. Find the bead’s horizontal velocity at time t = 2 s if its height
at time t seconds is y = 400 − 16t2 cm.

solution Let xy = 10. Then x = 10/y and

dx

dt
= −10

y2

dy

dt
.

If y = 400 − 16t2, then dy
dt

= −32t and

dx

dt
= − 10

(400 − 16t2)2
(−32t) = 320t

(400 − 16t2)2
.

Thus, at t = 2,

dx

dt
= 640

(336)2
≈ 0.00567 cm/s.

122. In Figure 10, x is increasing at 2 cm/s, y is increasing at 3 cm/s, and θ is decreasing such that the area
of the triangle has the constant value 4 cm2.
(a) How fast is θ decreasing when x = 4, y = 4?
(b) How fast is the distance between P and Q changing when x = 4, y = 4?

P

Q
θ

y

x

FIGURE 10

solution
(a) The area of the triangle is

A = 1

2
xy sin θ = 4.
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Differentiating with respect to t , we obtain

dA

dt
= 1

2
xy cos θ

dθ

dt
+ 1

2
y sin θ

dx

dt
+ 1

2
x sin θ

dy

dt
= 0.

When x = y = 4, we have 1
2 (4)(4) sin θ = 4, so sin θ = 1

2 . Thus, θ = π
6 and

1

2
(4)(4)

√
3

2

dθ

dt
+ 1

2
(4)

(
1

2

)
(2) + 1

2
(4)

(
1

2

)
(3) = 0.

Solving for dθ/dt , we find

dθ

dt
= − 5

4
√

3
≈ −0.72 rad/s.

(b) By the Law of Cosines, the distance D between P and Q satisfies

D2 = x2 + y2 − 2xy cos θ,

so

2D
dD

dt
= 2x

dx

dt
+ 2y

dy

dt
+ 2xy sin θ

dθ

dt
− 2x cos θ

dy

dt
− 2y cos θ

dx

dt
.

With x = y = 4 and θ = π
6 ,

D =
√

42 + 42 − 2(4)(4)

√
3

2
= 4

√
2 − √

3.

Therefore,

dD

dt
=

16 + 24 − 20√
3

− 12
√

3 − 8
√

3

8
√

2 − √
3

≈ −1.50 cm/s.

123. A light moving at 0.8 m/s approaches a man standing 4 m from a wall (Figure 11). The light is 1 m
above the ground. How fast is the tip P of the man’s shadow moving when the light is 7 m from the wall?

1.8 m

1 m

4 m 0.8 m/s

P

FIGURE 11

solution Let x denote the distance between the man and the light. Using similar triangles, we find

0.8

x
= P − 1

4 + x
or P = 3.2

x
+ 1.8.

Therefore,

dP

dt
= −3.2

x2

dx

dt
.

When the light is 7 m from the wall, x = 3. With dx
dt

= −0.8, we have

dP

dt
= −3.2

32
(−0.8) = 0.284 m/s.
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